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the e isoscalar meson" to the isospin-even amplitudes;
however, since the a+ and 6+ results of Raman which
neglected the contributions of the ~ meson were in excel-
lent agreement with experiment, the contribution is
probably negligible and was omitted in our calculation.
As can be seen from Table I, the results are in agree-
ment with experiment except perhaps for the a~ scat-
tering length. The difficulty which Schnitzer had with
ho+ has been overcome, while a~ is about the same
as Schnitzer's calculation but is an improvement over

' B. Dutta-Roy. I. Lapidus, and M. Tausner, Phys. Rev. 177,
2529 (1969).

Raman's value. Ke note that the o- term mentioned in
Sec. I would not affect our calculation if we adopt the
usual symmetric form' for it. It would then contribute
only to the isospin-even amplitudes.

ACKNOWLEDGMENTS

One of the authors (JH) wishes to thank Professor
Abdus Salam and Professor P. Budini and the Interna-
tional Atomic Energy Agency for hospitality at the
International Centre for Theoretical Physics, Trieste,
where part of this work was done. He is also grateful to
Professor H. Suura for some helpful discussions.

P H YSI CAL REVIEW D VOLUME 1, NUMBER 3 1 FEB RUAR Y 1970

Nucleon-Nucleon T-Violating Force from Electromagnetic Interaction
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A T-violating nucleon-nucleon potential is calculated with a model in which the basic violation is in the
electromagnetic interaction. The conditions of Hermiticity and current conservation are applied to choose
a T-violating matrix element of the nucleon electromagnetic current. Since current conservation requires
that the T-violating term vanish on the mass shell, the longest-range force comes from diagrams correspond-
ing to the exchange of one photon and one pion. In leading nonrelativistic order, there are three spin-
dependent T-violating forces of range roughly equal to the Compton wavelength of the pion and of "strength"
about 0.01'P~ of the one-pion-exchange potential.

I. INTRODUCTION

N 1964 Christenson eI, ul. ' found evidence for the 2w

. . CP-violating decay of the E&0 meson. If the TCP
theorem is valid, as is generally assumed, this experi-
ment implies that T must also be violated. Various
suggestions have been made that the violation is in the
weak interaction, ' in a "superweak" interaction, ' or
in the electromagnetic interaction. ' ' Extensive experi-
ments, especially with E mesons, have not been able
so far to distinguish which of these theories is correct.
Indeed, experiments involving searches for transverse
polarization, polarized y correlations, polarization-
asymmetry inequality, static electric dipole moments,
and violation of reciprocity in scattering have so far
produced no direct evidence for T violation.

*Present address: Brookhaven National Laboratory, Upton,
N. Y.
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under Contract No. AT(45-1)1388B.

' J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turley,
Phys. Rev. Letters 13, 138 (1964).' R. G. Sachs, Phys. Rev. Letters 13, 286 (1964); see also L. B.
Okun, Usp. Fiz. Nauk 89, 603 (1966) LEnglish transl. :Soviet Phys.—Usp. 9, 574 (1967)], for a list of references on theories of CP
violation.

3 L. Wolfenstein, Phys. Rev. Letters 13, 562 (1964).
J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,

B1650 (1965).' T. D. Lee, Phys. Rev. 140, B959 (1965).
6 T. D. Lee, Phys. Rev. 140, B967 (1965).

One of the more elegant theories of T violation is
that of Lee and co-workers, ' ' who propose that the
violation is in the electromagnetic interaction. One
basis for this suggestion is the fact that the ratio of the
rate of the T-violating E decay to the normal decay is
of the order of o./2~. In Lee's theory, each fundamental
interaction is separately invariant under its own T, C,
and P operators. The product operator TCP is the
same for every interaction. Violations can arise when
the operator of one interaction is defined differently
from that of another interaction. Thus, T (and C)
violation arises because of the mismatch of the C
operators for the strong (C,t,„„s) and electromagnetic
(C~) interactions, just as P is violated because of the
mismatch of the parity operators of the weak (P„„k)
and electromagnetic (P~) interactions. The mismatch
of the operators could arise because of the existence of
hypothetical "u" particles5 which satisfy

C~a+C~ '=a

+/ —& —+Cstrong~ C strong

or from the minimal electromagnetic interaction of a
system of vector mesons. '

This electromagnetic violation of T will manifest
itself in nuclear forces by time-reversal-violating (TRV)
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contributions to the electromagnetic current of the
nucleon. If both the initial and final nucleons are on
the mass shell, the matrix element of the current reduces
to the form4 (A=c=1; the Dirac, relativistic conven-

tions, and gauge are those used by Bjorken and DrelP) p-kI
I

I
p+k2

p-kI
I

I
pg

I
pg

p. (q&)
—p, (») (q~)+ p. (3) (q&)7 (z) (2)

The first two terms of Eq. (1) are the well-known

charge and anomalous magnetic moment matrix
elements, and the third term violates T, since TqT '

=+q but TJT '= —J. However, the condition of
current conservation requires q„J&=0 or Fz(q') =0.
Therefore, there is no long-range TRV force from such
obvious graphs as one-photon exchange. This point
has been noted by Bernstein et al.4 If the photon
connects to states off the mass shell, both the I'3 term
and others that violate T may appear. Then the lowest-

order TRV nucleon-nucleon force will arise from graphs
like photon-meson exchange (Fig. 1), with a TRV
vertex (shown by 8 in Fig. 1), and the force will be
longest-range if the mediating particle represented by
the dashed line is a pion.

It is the longest-range TRV force that is likely to
have the strongest effect in nuclear experiments, since'
the mean separation of nucleons in the nucleus is 2 F,
which is even larger than the range of the one-pion-
exchange potential (OPEP). Furthermore, hard-core
effects tend to keep the nucleons from approaching
more closely than 0.5 F. Therefore, in this paper me

derive the one-pion —one-photon —exchange TRV nu-

cleon-nucleon force based on the model of a chargeless
C-even current4 5 for use in analyzing nuclear tests of
T invariance. In the following paper, we apply it to
direct-reaction reciprocity tests.

The derivation is performed by calculating the matrix
elements corresponding to the Feynman graphs of Fig.
1. Although perturbation theory is not valid for nuclear
forces, it may be valid for the long-range (lo w-

momentum-transfer) part of the forces. Thus we cannot
at present calculate the pion-nucleon interaction and
do not even know whether it can be described in a local
Lagrangian theory. However, it is known that the
nucleon-nucleon force beyond about z» '=1.4 F (z» is
the mass of pion) is described fairly well by the pseudo-
scalar coupling'

BC;„»——ig)py'~ g,
where ~ is the isospin operator of the nucleons and P
is the x-meson 6eld operator. This coupling has been

(p'I I"
I p) =~(p')L~ (q')v"+zp (q') ""q.

+zFz(q')q"j~(p), (1)

where q&= p'& —p". Each form factor F is understood to
contain an isoscalar and isovector part:
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FIG. 1. Feynman diagrams for T-violating contributions to the
m.-y exchange potential. The indicates vertices at which a T-odd
electromagnetic interaction occurs.

used to calculate one- and two-pion exchange forces'
and is employed here. The resulting TRV force should

be approximately correct beyond the range p '.
The magnitude of the TRV nucleon-nucleon potential

can be estimated as follows: The off-the-mass-shell
character of the force introduces a factor (z»/m)'—1/50 (m is the mass of nucleon). There are factors of

g'(z»/2m)' from the strong vertices, n for the electro-

magnetic vertices, and q/m —)»»/m (q is the momentum

transfer) for the TRV form factor. Then

Vrav g' ( z»/2 m)' n(zz/m)'

The TRV force will have the range p, ', and so may
be compared with OPEP:

Vopzp g'(z»/2m)'.

Thus V'b'av is expected to be 0.002% of Voppp. (This
estimate is discussed further in Sec. IV.)

J. D. Bjorken and S. D. Drell, Relativistic Quantunz 3l/. ecIzanics
(McGraw-Hill Book Co., New York, 1964).

D. H. Wilkinson, comments Nucl. Particle Phys. 2, 48 (1968).

For two-pion exchange potentials (TPEP) see, for example,
Progr. Theoret. Phys. (Kyoto) Suppl. 3 (1956);E. M. Henley and
M. A. Ruderman, Phys. Rev. 92, 1036 (1953).
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In Sec. II, we examine the TRV photon-nucleon
vertex more closely and choose a model current satis-
fying the conditions of Hermiticity and Ward s identity.
Section III describes the calculation of the nucleon-
nucleon TRV force. A discussion follows in Sec. IV.

Lipshutz" has analyzed the electromagnetic current
of the nucleon and chosen a TRV term to calculate T
violation in Compton scattering. Our procedure is
similar to his, but is applied to nucleon-nucleon scat-
tering. We will specify explicitly the conditions to be
satisfied by the electromagnetic current, choose a TRV
term, compute the 5 matrix for Feynman diagrams like
Fig. 1, and reduce the 5 matrix to a nonrelativistic
potential.

II. CHOICE OF MODEL CURRENT

In order to choose a reasonable model of T violation
in the nucleon electromagnetic current, we begin by
studying the properties of the current. The general
oR-the-mass-shell nucleon electromagnetic current must
satisfy the known conditions of covariance (and parity),
current conservation (Ward's identity), and Hermi-
ticity. ff only the conditions of covariance (and parity)
are applied —that is, if all possible four-vectors are
constructed —then there is a total of 12 terms' " for
the current matrix element (P'IJ"

I p). (To get terms
with the improper transformation under parity, a y'
must be inserted. ) The 12 form factors are functions of
the dynamical scalars. We take the squares of the
initial and final momenta and the momentum transfer
as a possible set:

P'(P",P', ~') .
If only one of the initial or final nucleons is oR the mass
shell (P"Wm' or P'4m') the 12 terms reduce to six,
and if both the initial and final nucleons are on the
mass shell (P"=P'=m'), only the three terms of Eq.
(1) remain. (The third term does not vanish until
Ward's identity is applied. ) It is straightforward to
apply the conditions of Hermiticity and time reversal
to the 12 terms, but Ward's identity gives a compli-
cated relationship among most of the 12 terms. ' To
proceed it is necessary to choose certain terms to be
zero so that Ward's identity simplifies. We will take
the three terms of Eq. (1) (including their off-the-mass-
shell dependence) to be nonzero:

&P'I J"IP&=&(P')LP~(P" P' v')v"

+~F2(p",p', v') ""v

+~P (P",P', v') v"3~(P) (3)

and requires

P k (P~2 P2 q2) P (P2 PI2 q2) j 1 2 3 (4)

The condition of time-reversal invariance on the current
is

&P'I J I P) = (P—.l J I P.'&,

&P' ~'IP&=+&P
I
J'IP'&,

where
I pr)—:T

I p). The properties of the current
matrices under time reversal are usually studied by
using TP,"since we already know the current has the
correct property under P; alternatively, CP can be
used, since it is equivalent to T if TCP holds, as is
usually assumed. In any case, time-reversal invariance
requires

p~(p" p' v') = p~(p' p" ~')

F (P",P', v') = pa(P', P—",v') . (3)

(For a more complete derivation of the conditions of
Hermiticity and time-reversal invariance on the form
factors see, for example, Refs. 10 or 12.) The relations
(4) and (5) are summarized in Table l, where we list
the conditions which must be satisfied by the form
factors if Jl" is to satisfy Hermiticity and violate T. A
violation of T occurs if any one of the three form factors
obeys the conditions given in Table I.

The conditions of Hermiticity and time-reversal in-
variance, Eqs. (4) and (5), imply that the form factors
must be either symmetric or antisymmetric in the
momentum variables p" and p'. Since essentially
nothing is known about the shape of the oR-the-rnass-
shell form factors, it is simplest to assume that the
dependence factors

F (P",P', v') =F (c')G (P" P').
Without loss of generality we may take G, (m', m') =1.
The functions Fq(q') and F2(q') are known partially
from experimental measurements; for the TRV term,
this dependence may be calculated from some theory
such as Lee's phenomenological Lagrangian for the
"u" particles. ' We have taken all the Ii,'s constant for
this work, since we do not expect the one-pion —one-
photon —exchange potential to depend critically on the
factors F,(q'), at least beyond r=p ', where it has a
chance of being valid.

TABLE I. Conditions forced on the form factors of Eq. (1) to
satisfy Hermiticity and violate T invariance. All form factors
vanish on the mass shell.

We first study the properties of the current under
Hermiticity and time reversal. The condition of
Hermiticity is J~=J or

(P'I~" IP&=(PIJ"IP'&*

Symmetry
under p" ~ p'

Real (E) or
imaginary (I)

odd odd even

"X.R. Lipshutz, Phys. Rev. 158, 1491 (19$').
"A. M. Bincer, Phys. Rev. 118, 855 {1960).

"A. H. Hu6'man, thesis, University of Washington, 1968
(unpublished).
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Our model current must contain both T-normal and
TRV terms, since a detection of T violation requires an
interference of normal and violating terms. For the
T-normal terms we take the Ii~ and Ii2 terms of Eq.
(3), which are known to contribute. The conditions of
Eqs. (4) and (5) then require that the functions
Gi(P",P') and G2(P",p') be real and symmetric. Since
only the lowest-order term in the expansion of off-shell
momentum dependence, p"—p', is likely to have any
validity, we take

The next step is to apply the restrictions of current
conservation or Ward's identity,

q~J"=0.

For an "improper" vertex, Ward's identity can be
expressed" as

q N(p+v)r" (p+0 p) =N(p+v)q (7)

An "improper" vertex is distinguished from a "proper"
vertex in that it has self-energy corrections on the
external legs. The second term of Eq. (3) does not
contribute to Ward's identity, Eq. (7), but for the first
term, we must add a counterterm so that Ward's
identity will be satisfied.

Possible counterterms are

ol

where I'=p+p'. The second possibility is ruled out,
since it has a pole on the mass shell. Such a pole is
unphysical because graphs like one-photon exchange
would be infinite. (Higher-order terms of Gi can cancel
the pole, as we will see below. ) The first possibility has
been used in calculations" and agrees with Ward's
identity. .

"Thus, a satisfactory T-normal current is

We can nom choose TRV terms from the conditions
of Table I. The three candidates are

Term (2) automatically leaves Ward's identity satisfied
in Eq. (7), but term (1) needs a counterterm. The only
possibility is —qPI",

Term (3) is more complicated. It first must have a
counterterm for Ward s identity. The only possibility,

has a pole on the mass shell which is unphysical, -",s
discussed above; however, a proper choice for G3' can
be made to cancel the pole. Since G3' must be symmetric
and real for T violation, the simplest possibility is

G i—(p'2 p2)2

Then the whole Ii3 term vanishes on the mass shell as
expected from Ward's identity. It must be emphasized
that the choices of the G s above represent only the
behavior close to the mass shell. "In fact, these choices
lead to divergence difficulties in the potential which
will be discussed in Sec. III. The three candidates are
now

Each term has something to recommend it. The first
arises naturally in Lee's theory of T-violating a par-
ticles (see Ref. 12).The second has appealing simplicity
and was chosen by I ipshutz. "The third turns out to be
easiest to use in calculations, since it never involves
component sums of Dirac matrices across two spinor
products (like LN(Pi')y&u(pi)]LN(p2')y"N(p2))). We let
simplicity in calculation be the overriding factor and
choose the term (3).

Finally, notice that we have not kept strictly to the
three terms of Eq. (3) in the choice of our complete
T-violating current. The F& counterterm qq& is actually
one of the other 12 terms"" of the full off-the-mass-
shell current. The TRV counterterm P&, on the other
hand, is related to the y& and a.&"q„ terms through the
mell-known Gordon decomposition of the current.

III. SUMMARY OF CALCULATION

The primes on these form factors serve to ren1ined the
reader that they are diferent functions from the T-
normal form factors. To violate T, Table I says that
G&' and G2' must be imaginary and aetisymmetric in
p" and p', and Ga' must be real and symmetric. The
simplest choices for (1) and (2) are

3L. K. Morrison, Ann. Phys. (N. Y.) 50, 6 (1968); thesis,
University of Washington, j.967 (unpublished).

In this section we discuss features of the calculation
of the nucleon-nucleon TRV potential and summarize
the results.

There are four possible graphs of pion-photon ex-

change with the TRV vertex on the first leg and four
more with the TRV vertex on the second leg (Fig. 1).
There are also eight other graphs with the final particles
exchanged which must be subtracted from the first
eight for the proper Fermi-Dirac symmetry. The net
result can be expressed as the operator 1—P,„ times
the result obtained from the first eight where P,
exchanges the particles in the final state as in OPEP. '
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In addition to the graphs enumerated above, there
are other graphs in which there is a TRV vertex in the
electromagnetic self-mass corrections on the nucleon
legs and in the correction to the pion vertex part. For
simplicity, all diagrams of these types have been omitted
from the calculations and only x-y exchange diagrams
are included. The calculation is still gauge-invariant,
since the TRV verticies I" satisfy q„I"I'=0.

Since all possible TRV potentials" contain the
momentum variable p, it is necessary to ascertain how
this dependence arises in M(q). Referring to Fig. I in
the c.m. frame, we have y~ ———p2 —=p and p~' ———y2'

=p+q. The amplitude M(q) in general will be a
function of all four momenta pi, pj', p2, and p~', since
the spinor products are reduced to their nonrelativistic
limits. When M(q) is summed over the four diagrams
of Fig. 1, the expression can be written in terms of the
variables

Pl P1 P2 P2 q, )

pl +pi = —(pz+pz') =2p+0=—P.
(The second equality holds only in the c.m. system. )
Then P is the variable in M(q) to represen. t p in the
potential V(v). The q term is needed for Herrniticity
of the potential. Thus, for the "simplest" TRV po-
tential, "V(r) can be written

V(r)=p rF(r)+F(r)r p
= —2iF(r)r V zTW (rF—(r))7.

In the last form of this equation, the second term is the
q term, i.e., the gradient acts on the potential only; the
first term is the 2p term, i.e., the gradient acts only
beyond the potential (on the state functions).

The T violation appears through a remarkable
cancellation of the fermion propagator in each graph.
This cancellation is most easily seen for the second
TRV term of (8):

(2) (p" p')F '(q'—)~""q'—

For one particle on the mass shell, the factor p"—p'
equals p"—11z' exactly, canceling the propagator for the
internal leg. Such a factor (or the propagator itself)
equals

(p"—p') = (p' —p) (p'+ p) ~ r p in the potential

(for the vector parts). A factor like this occurs in every
TRV term and shows how the violating potential
arises. It is noted that in the set (8), term (3), one power
of (p"—p')' cancels the propagator and one power is

left over; however, it is easy to show that the factor q&

itself acts to cancel the other propagator, leaving an
odd number of r p-like terms. In evaluating the TRV
diagrams, we must therefore be careful not to throw
away the momentum dependence in making the
standard nonrelativistic approximation to the propa-
gators,

1

(pz+k) 1Ã +zE 2m%

where ~ is the fourth component of k&. This term
actually cancels in the TRV diagrams when the dia-
gram with the photon and pion crossed is added.

With this summary in mind, we proceed to the actual
results of the calculation. One great simplification is
that in all the diagrams of Fig. 1, the I'I" term gives
contributions of the order of Iz'/11z' relative to the q"
terms. We can see how this comes about as follows:
Note that the factors P.q and p"—p' both equal the
propagator p"—m', which will be denoted by P&, where
the subscript indicates the erst nucleon line. From a q&

term we get a factor like

+1 +2/+1+1 +1~

(The (Pz in the numerator comes from the q4 factor
itself. ) From a P4 term the same factor is

6'y (Pg5'2 6'g

We have mentioned that the propagators (P consist of
a large term 2nzcv which cancels in the cross diagram
and a small momentum-dependent term which forms
the T-violation factor. It is seen that in the q& term)
the large part of 6' cancels in the numerator, but in the
I'I' term it remains as an extra factor of m ' in the
denominator.

If these terms of order p'/zzz' are neglected, there is
only one term in the complete current

gg~
J4=Fzy4+zFno4"q„+ (I—F1)

—'

g
2

+ll', (4"—p')'(q"—

which contributes to T violation in the four diagrams
of Fig. 1, the term in which the TRV vertex is ~ I 3gI'

and the T-normal vertex is ~ Ii ~pj". The potential
resulting from this term for the four diagrams of Fig. 1
in which the TRV vertex is on the first nucleon leg is

V(r) =—
(21r)'

CO (F2' q
d'kd'k' e'&"'+ ' "' dm o'] 'k — ey'P

2m 2m

[2(k' —q k)Fz"F&'"'(—1)(~zX~z)*+2P Ariz'"V'1'"'(~1 ~z ~1'~:)7
(9)

(co M4 +1E)(GD k +16)
'4 P. Herczeg, Xucl. Phys. VS, 655 (1966).
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Here col, = ~p an' —k2~ ' d we have used the standar
"trick" as in TPEP' of letting (q —k) r=—k' r —+ k r,
where the limit r' —+r is to be taken after doing t e
integral. The factor in square brackets can be written
symbolically as

(~iX ~2)'(T-even factors)

+P k(~i. ~2—ri'r2') (T-even factors) . (10)

The denominator of the integrand is even in co, so in
the I' k term the vector part goes with el. k to form
p.r terms, whereas the time part =2m' goes with the

(—co/2m)ei P to form (si r)(e~ p) terms.
What of the first term of (10)P The factor (~iX ~2)*

is itself odd under T'4 (because of the imaginary rr's),

diagrams with the violating vertex on the other eg
are added on, these terms are cancelled; this is as it
should be, since they have the wrong symmetry un er
the exchange of particles 1 and 2 (the other factors are

The entire effect of the four diagrams with the TRV
vertex on the second nucleon line can be added to the
previous resu ylt b making the correspondence s own
in Fig. 1. It is easy to see that we can get the resu t

'
h th TRV vertex on the second nucleon line y

inE. 9:making the following substitutions in q. ( ):
1 —+2, ].' —+2', k~ —k,

1
Pl Pl P2 P2 ~ q, )

P=pi+pi' ———(p2+p2') ~ —P (in c.m. system only),

P'—2m ~ I".
Then all the terms with (~iX ~,)' vanish, since they

are antisymmetric under 1 —+ 2. Th'2 This is true even
though one term is (oi k)(e2 q) and the other is

~ k& since q essentially equals 2k when the
gradient operators are pulled out of the integra . e
terms like (ei p)(e, r) are symmetrized in 1 and 2.
Terms like r y are merely multiplied yd b

The integrals which determine the radial dependence
of the potential are

I(r,r') = d'kd'/~' e'"'+~' "

This integral does not converge and the divergence is
worse when several derivatives are taken with respect

with the dependence (p"—p')' may be correct near t e

large ', since the form factors satisfy dispersion re a-
tion s 111 p' " A possible choice which approac es

(p"—p')' near the mass shell is

5'Z Go

This factor effectively cuts the integral off at cv~nz,
where the nonrelativistic approximation and potentia
theory become invalid, and allows us to take up to
three derivatives with respect to r o
vergence difficulties. The corrected integral,

(2m)4i- & do~ sin&or' exp[ —(p' —o~')'~'r]

do~ sint (cu' —p')'~'r+~r']

(m'+o)') '

which must be evaluated numerically, is asymptotic to
e I'"/r' as expected.

Letting k ~ —iV, k' ~ —i V', as in a TPEP calcu-
lation, and performing the required operations, we
obtain the result

V(r) = (p'/m)$g'/(2ir)']Fr&"&F, ~"~(~i ~p ri'r;)—
X$(iri o'2) (r p)Qi(x)+ I'»Q2(x)

+Zi,Q3(x)]+H.c. , (13)
where

X=A )

P»=(~i r')(~2 p)+(~~ r)(~i p) —3r p(~i 2)

Z» —(~, ')(~, r)(r p) ——,'L(~, r)(~, p)
+(" ')(- p)+(' p)(-'-.»,

(11) and Q, are certain combinations of the dimensionless
(oi2 oak'+i e) ((o' —0"+ie)— integrals

d n d m
d 8and its various derivatives with respect to r and r y

using complex-variable techniques, the expression above
can be reduced to

(2~)4i

I(r,r') =
2rr'

doo sinu&r' exp/ —(p,
' —(u') "'r]

do& sint (co' p') "'r+(o—r']

0

sino.x' expL —(1—o') '"x]
do

(49+o2) 2

sing(o'
—1)"'x+o;~'j

do — —. (14)
(49+o') '
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I"~2 and Z~2 are traceless tensors of ranks 1 and 3,
respectively.

If the TRV force, Eq. (13), is written in the approxi-
mate form

g p I'P
I TRV Fi F3 Q(yr),

(2ir)' 2m r

its strength can be compared to the spin-spin part of
OPEP, V

The spin and isospin factors have expectation values of
the order of 1. Furthermore, these dependences of
OPEP and the Qi term of the TRV potential are quite
similar. The expectation value of r p is also approxi-
mately 1 by the uncertainty principle (at least for a
tightly bound state). The T-normal form factor may
be approximated by its value at g'=0: F&'"&(0)
= (4irn)'~2, where n is the fine-structure constant
[= (137) '). The TRV form factor F3&'~ is completely
unknown, but a reasonable guess is Fa= (4')"'m ', to
be compared with the anomalous magnetic moment
term F2(0) = (4m.n)' '(i~/2m). These approximations give
the ratio of the forces, F, as
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The "strength" of the radial dependences can be corn-
pared by means of the area of the potentials

FrG. 2. Radial dependence of the T-odd potential
form factors Q1, Q2, and Q3.

The explicit forms of the Q; in terms of the P(e,m) are

Q, = (4/3x') (P (0,0)—x[P (1,0)+P (0,1)]
+x'[P (1,1)+P(2,0)+P (0,2))}—(2/3x')

)&[P(1,2)+P (0,3)+P(3,0)+P (2,1)],
Q2(x) = (1/5x') {P(0,0)—x[P (0,1)+P(1,0)]

+x'[4P (2,0)+P (1,1)+10P (0,2))
—x'[5P (0,3)+5P(1,2)+2P (3,0)+2P (2,1)]},

Q (x) = (1/x') (36P (0,0)—x[36P(1,0)+6P (0,1)]
+x'[6P (1,1)+14P (2,0)]—x'[2P (3,0)

+2P(2,1))}.
Graphs of the Q; are shown in Fig. 2.

IV. DISCUSSION

The potential derived in this work, Eq. (13), consists
of three of the six possible types of nucleon-nucleon
parity-even TRV potentials. '4 Each of the three terms
is spin-dependent, as might have been expected from
the spin-dependent pion-nucleon coupling. The terms

V(r) dr.

b=1.0p, ',
b=0.75@ '

b=0.5y ',

F=0.004%;
F=0.012%;
F=0.10%.

This critical dependence on the starting point of the
normalization arises from factors up to (pr)' in the
denominators of the Q's, and makes an evaluation of
the strength of VTRv dificult. Inside r~p ' there are
short-range TRV forces coming from the exchange of a
photon and turbo or more pions or a heavier meson.
These effects mill be at least partially masked by re-
pulsive-core effects, but the radius at @which the longest-
range forces become secondary in importance or the
calculation becomes invalid is ill defined. For definite-

The integration should be started some@&here near
r =p ' because neither of these potentials is valid very
far inside this distance. For three values of the starting
point 6 in the normalization integral above, the ratios
of the forces for the Qi term of Eq. (13) are



ness in the discussion of the following paper, we have
fixed on the value of F for b=0 75.p '~1 F, 5=0.01'//~.

The Q2 term is about 0.65 times smaller and the QB

term is about 8.5 times larger. In considering the
reliability of this estimate of the strength of UYRv, it
should be emphasized that the cutoff factor [Eq. (11)]
and F3'~ are totally unknown quantities, and that
certain graphs (e.g. , corrections to the pion vertex part)
have been omitted from this calculation.

At this point we may discuss the estimate of the
strength of VTH, V in Sec. I a little further. I et us start
with a T-odd vertex of the second type, since it is
somewhat simpler:

, ,(p" p') ~—"'i~

T-odd vertex o.'"—

For the p"—p' factor,

p'2 p&~P. —it~p.
(yr)'

The momentum transfer II is of order p, , so the T-odd
vertex contributes a factor of n"'(p'/m')(p/m). Thus
the oR-the-mass-shell character of the force contributes
a factor of p'/m'. Notice that this factor is larger for
heavier mesons in shorter-range forces. The other
vertices,

T-normal vertex o.'~',

pion vertices gp/2m each,

yield the estimate of Sec. I,

+TRv/ Vo PEp ~~ (p/m)',

which is about half the value of Ii for b= i.op, '. For a
T-odd vertex of the third type as was used in the present
calculation,

, ,(p" p')' v"—
T-odd vertex-o '~'-

m m

If we estimate as before

(p~2 p2)2~~4

we obtain
&TRv/VoPEP-~(~/m) '"

The reason why the calculation gives an answer two
orders of magnitude larger than this originates in factors
like

(~i v)(e2 v)(p v) ~

For instance, in the quantity

(A v) (B v) (C v)e--"/yr

the coeHicient of (A r)(B r)(C r) a,t r= p ' is about 40.
A final interesting point is the isospin dependence of

the potential, Eq. (13).Both the Fi and F~ form factors
are assumed to have isoscalar and isovector parts [Eq.
(2)j, but only the isovector parts contribute (to this
order in p'/m'). For instance, one form of Lee's theory"'

of a particles assumes that the u's are unitary singlets,
in which case the T violation is purely isoscalar. The
results of our calculation for an Ii3 T-violating form
factor show that the nucleon-nucleon TRV force would
be reduced by an additional factor of p,'/m' in this case.

Also note that

eq vq —rq'rq-=z rq r2+ rq+r~

(~iX~2)'= (1/2i)(ri rg+ —r,+r2 ),
so the TRV forces are charge-exchange forces, a fact
also true of the parity-violating force."
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