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The low-energy, pion-nucleon scattering is studied by including the p-meson contribution to the axial-
vector amplitude. By using a different treatment for the p contribution and the q extrapolation, the results
for the aI scattering length and ho+ effective range are improved while the results for the ao+ and a1+
scattering lengths are preserved. An explanation is also given of why there is no double counting of the
p-meson contributions in pion-nucleon interactions when considering current-algebra and p-exchange models.

while the on-the-mass-shell S-matrix element can be
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In Eqs. (1.1) and (1.2), As&(x) represents the axial-
vector density with isospin index b, f. is the pion decay
constant, and p„and m are the pion and nucleon masses,
etc. Neglecting Schwinger terms and the 0- term, the
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I. INTRODUCTION
' 'N recent years, many low-energy pion-nucleon calcu-
' ~ lations' ' have been performed using the current alge-
bra of the chiral SU2(3SU2 group, partial conservation
of axial-vector current (PCAC), and an off-the-mass-
shell extension of the Lehmann-Syrnanzik-Zimmermann
reduction formula for the reduction of two pions. The
usual method involves letting the pions go off the mass
shell while leaving the nucleons on. It is assumed that
the extrapolation back on the mass shell for the pions is
smooth. The off-the-mass-shell amplitude can be de-

fined by an expression of the form
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off-the-mass-shell expression can be written as
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where the vector-current —density-matrix element can be
written as

&p I
v.-(0)p,)

tt(P2)l 'y Fl(t)+$a (ps pl) Fs(t)]r N(pl) ~ (1 4)

Here, Fi(t) and Fs(t) are the nucleon isovector form
factors with Fi(0)= s and Fs(0) = 1.85/2rN.

The earliest calculations' ' neglected the q„k„ term,
but they enjoyed only limited success in reproducing the
experimental scattering lengths and effective ranges.
The axial-vector term was included in later calculations
by authors such as Schnitzer, ' Raman, ' and Levin. '
The X and N ~ contributions were included by Schnitzer,
while a more thorough study of the baryon resonances
along with different extrapolation procedures was
carried out by Raman. The results of these studies are
listed in Table I and can be regarded, in general, as
successful, except for the I'-wave scattering length u1

with Raman and the 5-wave effective range ho+ with
Schnitzer.

In this article, we wish to study the effect of the p
meson in the pion-nucleon system at low energies. Ke
begin with a non-current-algebra off -the-mass-shell
extension of the LSZ reduction formula with the p meson
included as an intermediate state. The basic equations
for this model are presented in Sec. II.

In Sec. III, we return to the current-algebra model of
Eq. (1.3) and study the p contribution to it. We find
a relationship between the non-current-algebra model,
the current-algebra model, and the concept of weak p
dominance. A discussion is then presented on why a
p-exchange Feynman diagram and a current-algebra
model yield the same results for the 5-wave scattering
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TABLE I.The results for the S- and P-wave scattering lengths and the S-wave effective range for the two diBerent sets of form factors
(dipole and HH) along with the contribution from the terms R, and R~ (taken from Raman). For comparison, we include the results of
Raman and of Schnitzer and the experimental results of Hamilton and Woolcock (Ref. 15) and of Roper, Wright, and Feld (Ref. 19).

ap+
bp+

R p

(dipole)

0.079
0.031—0.005
0.026

R, (HH)

0.079
0.027—0.004
0.027

Rg

0.001—0.020—0.084—0.029

Total
(dipole)

0.080
0.011—0.089—0.003

Total
(HH)

0.080
0.007—0.088—0.002

Raman

0.100
~ ~ ~

—0.083
0.012

Schnitzer

~ ~ ~

—0.148'—0.075—0.005

HW

0.086
0.010—0.081—0.021

0.086
~ ~ ~

—0.081—0.016

a We have used PCAC in determining hg to calculate ho+ from Schnitzer's results.

lengths. An explanation is then given as to why there is
no double counting of the p contributions.

In Sec. IV, we present our calculations of the 5- and
and I'-wave scattering lengths and 5-wave eRective
ranges using the q' extrapolation procedure presented in
Sec. III.

The Bjorken-Drell metric and p-matrix conventions
along with the units of A= c= 1 will be used throughout
this paper.

Using Eqs. (2.4)—(2.6), we have
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II. g CONTRIBUTIONS TO NON-CURRENT-
ALGEBRA Rf;

We de6ne the oR-the-mass-shell three-particle reduc-
tion amplitude as

R .=-z d'xd yd'~ e"'e '"~e ''P"

where Q=-', (k+q), v=- p&k/m,
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The baryon contributions can be expressed as
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where n, (x) and X(x) are the pion and nucleon source
terms satisfying the equations

( 2gt. ')p, ( )x=n, (x),
(iy&8„—nz) P(x) = X(x) .

(2.2)

Separating all the single-particle p, Ã, E~. . . contribu-
tions correctly, Rf; can be separated into two parts,

Rf; Rp+Rz2, —— (2.3)

where R, represents the p contributions and R~ repre-
sents the baryon contributions. Rp can be expressed in
terms of the EEp and xvrp form factors which are de-
fined by the equations'
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where j refers to the possible baryon states, m&,. de-
notes the mass of each state, 8,= P2+ q, 8 = P2 k, —
s= (P2+q)', zz= (P2 —k)', and we have taken k'= q' for
convenience. We will return to R~ again in Sec. III.

III. g CONTRIBUTION TO NUCLEON-
AXIAL-VECTOR SYSTEM

Let us rewrite Eq. (1.3) in the form
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' K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255
(1966).

where t= (P2 —Pz)' and J, (s) is the p-meson source
satisfying the equation (q"—t -')(k' —t -')

Rv= — —(k+q) 2.g,
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The term Rz can be easily shown to be
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and R»& represents the baryon contributions to RAA
and has the form

Any direct p contribution would have to appear in R».
By reducing the incoming nucleon, we have
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Expanding the time-ordered product, we have
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The matrix elements can be calculated as in Sec. II by
correctly inserting the appropriate intermediate states
p, J, S~ .

In order to evaluate the p contributions to RAA, we
must specify matrix elements of the form (P2 I

X(0) I p,"&,

&p,
b

I
Abp(0) It'z, &, and (k, l

A "(0)
I
0). The matrix element

&kplA, "(0)lo) can be expressed as

&k, I A."(0)
I 0&= —&2k"f (k') 8.,.. (3.7)

where f (tz ') = f . We shall assume that f (k2) does
not vary from 02=0 to p,,2. The matrix element

q„&p,"IAb"(0)lk,& can, with the help of the PCAC
relationship
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where 8;=p2+q, 8 = p2 —k, and j refers to the possible
baryon states. As an example of R»&, let us calculate
the contribution of the nucleon with four-momentum
E. Using the nucleon matrix element for the axial-
vector current density

&pz I
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= zzz(P2) [y"gA(q')+(N P2) "hA(q—')]ybrbzz(iver) (3.13)

and the PCAC relationship of Eq. (3.8), we have
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where g„~~(q2) is the pion-nucleon. form factor defined
tz.zf V2i —

b
o, b„P .p(t)(k+q) —o.". (3.9)

q' —t
' " '
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The last term &p2IX(0) I p, "& can be specified with the
help of Eqs. (2.4') and (2.6). Using the above equations,
we have

RAA RAA p+RAAB z (3.10)

where RAA, represents the p contributions to RAA and Rfz RV+RAAB+RAA p ~ (3.16)

and we have again taken k2= q2 for convenience. The
above results agree with Schnitzer's' determination of
the nucleon contribution to RAA.

We can now write Eq. (3.1) as
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R,+Ra = Rv+RAAa+RAA„ (3.17)

which reduces to

In comparing the above equation with the work of
Raman' and Schnitzer, ' the difference is the term JRQQ p.

It is of interest to note that with the help of PCAC, the
term Rggg can be shown to be identical to the term
R [Eq. (2.9)].

Let us next equate the two different methods for de-
termining the amplitude RI;. From Eqs. (2.3) and
(3.16), we have

rent density is proportional to the p field, ""
V.p(x) =- (m, '/f, )C.p(x) . (3.24)

RI4 Rv+RAA p ~ (3.25)

In deriving Eqs. (3.23) from Eq. (3.24), it is not neces-
sary to have q' approach zero, so we may regard Eq.
(3.23) as a general statement, true for all values of q2.

Let us next neglect the term R~~~ as was done in the
earlier calculations for the S-wave scattering lengths,
but include the term RAA, . Equation (3.16) becomes

Rp —RP+RAA p ~ (3.18)
If we next make the assumption of weak p dominance in
the form of Eqs. (3.23), we have

In the limit as q' approaches p, ', we have the identity
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m —t —ie2
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But in the limit as q' approaches zero, we have
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(3.19) —(2mv+'2t)F2'(t)$'2[vs, r.]u(pr) . (3.27)

Next, let us compare the results of taking the limits as
q2 approaches zero and t4, 2 in Eq. (3.26). In the limit as
q' goes to zero, we have

m p lim Rr;= U(v, t,0),
g2~0

(3.28)

[y QP '(t) —(2mr +-,'t)F '(t)], (3.20)
2

which reduces to

while in the limit as q' goes to p, ', we have

lim Rt, = U(v, t, t4 ') .
q2 ~tu 2

(3 -'9)

Fr(t) =f.'F...(t) F1NN p(t)

m —t —iep

I'2NN p(t)
F2(t) =f.'F...(t)

m P

(3.21)

A point to note here is that we have for simplicity of
notation neglected to include in the form factors
Fr 2NN p(t), Fr 2(t), and F,(t), a possible q2 dependence,
for example, F,(t,q2). We now make the assumption
that the q' dependence of the above form factors is
negligible in the range q'=0 to p ', for example,

If we make use of the assumption" that F,(t) varies
very slowly over the range from t= 0 to m, ' and can be
replaced by the constant m, /f which in turn can be
rewritten as f„where f, is the universal p coupling
constant de6ned by the relationship

&0I I'.(0) It.")= e( m'/f. )h. ..,

then Eqs. (3.21) become

(3.22)

Fr(t) = mp PrNNp(t)

fp mp' t ie——
mp P2NN p(t)

, F,(t)= —.(3.23)
fp mp2 —t —ie

Equations (3.23) are just a statement of what, is gen-
erally known as weak p dominance which can be derived
from the more general statement that the isovector cur-

' From weak. p dominance of the pion isovector form factor, we
have F„,(0) =m, /f =5.64. XVe also have (see Ref. 7)

F~~ (m ') =L4vr(12m ')1' /(m '—4p4, ')'"J'-'~5 53

F p(t, 0) F, p(t, tr, ') =F p(t) . (3.30)

With this assumption on the form factors, we can see
that

U(v, t,0)= U(v, t,t4, 2) .

We can now understand in another way why current-
algebra calculations give exactly the same results for
the S-wave scattering lengths as the calculation using
a Feynman diagram with a p exchange. ' A p-exchange
model is an on-the-mass-shell calculation and would
give exactly Eq. (3.29), which comes originally from the
term J'gg„while the current-algebra calculations are
performed at q2= 0 and would correspond to Eq. (3.28),
which comes originally from the term R~. The ambigu-
ity of being able to add any term which is proportional

"M. A. B. Beg and A. Pais, Phys. Rev. Letters 14, 51 (1965).' N. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376
(1967)."J.Sakurai, Phys. Rev. Letters 1/, 552 (1966).
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IV. CALCULATION OF SCATTERING LENGTHS
AND EFFECTIVE RANGES

In this section we present our calculations of the 5-
and P-wave scattering lengths and the S-wave effective
range, using the results presented in Secs. II and III.

The S- and P-wave scattering lengths and effective
ranges are defined by'5

Refp~+ ——ap+++bp„+I k
I

',
«fi~'= ~i~'I k

I
'+&i~'I k

I
', (4.1)

"J.Schechter and Y. Ueda, Phys. Rev. , 188, 2184 (1969)."J. Hamilton and Vil. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

to q' to the R~ contribution was first noticed by
Tomozawa. ' We have just observed that the p contribu-
tion to R~~ comes in naturally as a q'/p ' term and,
together with the concept of weak p dominance, gives
exactly the same results as the current-algebra calcula-
tions if we let q'=p, . Furthermore, the p-exchange
model is identical to the Rgg, term in the limit as q
approaches p '. The amplitude is never twice as large'4
since one of the two terms is always zero at the limits of
q'=0 and p '.

The procedure of calculating the scattering lengths
and effective ranges by first letting q' —& 0, then hoping
that the scattering lengths and effective ranges extrapo-
late smoothly back to q2= p ' may be erroneous for the
R~ part of the amplitude and may be the reason for the
difhculties behind the calculations of ay and bp+ .
However, if we include the R~~, term along with Ry,
the two terms from Eq. (3.18) can be replaced by R,.
From Eqs. (2.7), (2.8), and (3.21), R, is expressible in
terms of the form factors Fi(t) and Fp(1). With the as-
sumption on the form factors of the form (3.30), the
amplitude R,(v, t,q') has a very smooth q' dependence in
the region from q'=0 to p, ', not mattering if we let
q'= 0 or p '. The following procedure should then assure
us of a smooth extrapolation for R,. First we break Rp
into the A and 8 amplitudes where

Rg;
——~(2pr) '8'(pi+ &

—pp —q)u(pp)

&&I A(v, f,q')+y QB(v, t,q')ju(pi). (3.31)

We then extrapolate A(y, t,q') and B(v,t, qP) to q =0.
We extrapolate back on the mass shell by demanding
that v satisfies the equation

I k I
'= ~'(P 1')/—(2~&+~'+I ') (3 32)

From Eq. (3.32), we see that v approaches p
' as

I kI
'

approaches zero. The above procedure is of course
equivalent to letting, q2= p ' directly, as can be seen
from Eqs. (3.27)—(3.29). The procedure is different from
that of Schnitzer' and Raman and would, for example,
avoid the large derivatives with respect to q' which gave
rise to the difficulties that Schnitzer had with the 5-wave
effective range.

where f~~+ are the amplitudes of Chew, Goldberger,
I.ow, and Nambu" for the even and odd crossing
amplitudes.

The contributions of Rg~~ to the S- and P-wave
scattering lengths and S-wave effective range have
already been determined in detail by others and need
not be repeated here. We shall just adopt the values
given by Raman~ for our determination of the contri-
bution of R~ to a~ and b~.

The contribution of R, can be easily calculated by
using the relationship F (&) m,/f, where we have
used the value f =0.94', and by using the weak p-
dominance assumptions of Eq. (3.22) together with the
empirical isovector form factor fits. Two different fits
were used, one by Hofstader and Herman (HH)":

Fi(1) = —0.10+
3.70

F (t), (42)
0.60

Fp(t) =
1—&/20 2no

and the simple dipole fit" for the electric and magnetic
form factors:

Gg(t)=, GpI(T) =4.70GE(1), (4.3)
2 (1—t/36. 2)'

where t is in units of the pion mass square. G~(t) and
GpI(t) are just a linear combination of F&(1) and F&(1)
with the form

G. Chew, M. Goldberger, F. Low, and Y. Nambu, Phys. Rev.
&06, 1337 (19'57)."R. Hofstadter and R. Herman, Phys. Rev. Letters 6, 293
11961l.' Proceedings of the Fourteenth International Conference on High-
&sergy Physics, Vienna, 196h', edited by J. Prentki and J. Stein-
berger (CKRN, Geneva 1968).

~9L. Roper, R. Wright, and B. Feld, Phys. Rev. 138, 8190
11965}.

Gs(t) = Fr(1)+(1/2m)Fp(1),

G~(t) =Fi(1)+2mFp(1) .

The final equations for the effective range and scatter-
ing lengths are relatively insensitive to the precise form
of the form factors, depending only on Fi(0), Fp(0),
and BF&(0)/81. Any form-factor fits with roughly the
same derivative for Fi(1) at 1=0 should give similar
results. Equations (4.2) give BFi(0)/N = 0.030, while the
dipole formulas (4.3) give BFi(0)/@=0.018 (t in p '
units). They give similar results for the scattering
lengths and effective range.

The numerical values for Qp+ bp+ ay+ and ay

for the two sets of form factors are listed in Table I
along with the results of Raman and Schnitzer and the
experimental results as given by Hamilton and Wool-
cock" and by Roper et al."

The isospin-even results u+ and b+ were not listed
since the R„ term does not contribute to them and our
model would give the same results as those given by
Raman. There is a possible contribution coming from
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the e isoscalar meson" to the isospin-even amplitudes;
however, since the a+ and 6+ results of Raman which
neglected the contributions of the ~ meson were in excel-
lent agreement with experiment, the contribution is
probably negligible and was omitted in our calculation.
As can be seen from Table I, the results are in agree-
ment with experiment except perhaps for the a~ scat-
tering length. The difficulty which Schnitzer had with
ho+ has been overcome, while a~ is about the same
as Schnitzer's calculation but is an improvement over

' B. Dutta-Roy. I. Lapidus, and M. Tausner, Phys. Rev. 177,
2529 (1969).

Raman's value. Ke note that the o- term mentioned in
Sec. I would not affect our calculation if we adopt the
usual symmetric form' for it. It would then contribute
only to the isospin-even amplitudes.
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Nucleon-Nucleon T-Violating Force from Electromagnetic Interaction

ARTHUR H. HURRMAN*$

Department of Physics, University of Washington, Scuttle, Washington 9gl05
(Received 25 June 1969)

A T-violating nucleon-nucleon potential is calculated with a model in which the basic violation is in the
electromagnetic interaction. The conditions of Hermiticity and current conservation are applied to choose
a T-violating matrix element of the nucleon electromagnetic current. Since current conservation requires
that the T-violating term vanish on the mass shell, the longest-range force comes from diagrams correspond-
ing to the exchange of one photon and one pion. In leading nonrelativistic order, there are three spin-
dependent T-violating forces of range roughly equal to the Compton wavelength of the pion and of "strength"
about 0.01'P~ of the one-pion-exchange potential.

I. INTRODUCTION

N 1964 Christenson eI, ul. ' found evidence for the 2w

. . CP-violating decay of the E&0 meson. If the TCP
theorem is valid, as is generally assumed, this experi-
ment implies that T must also be violated. Various
suggestions have been made that the violation is in the
weak interaction, ' in a "superweak" interaction, ' or
in the electromagnetic interaction. ' ' Extensive experi-
ments, especially with E mesons, have not been able
so far to distinguish which of these theories is correct.
Indeed, experiments involving searches for transverse
polarization, polarized y correlations, polarization-
asymmetry inequality, static electric dipole moments,
and violation of reciprocity in scattering have so far
produced no direct evidence for T violation.
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One of the more elegant theories of T violation is
that of Lee and co-workers, ' ' who propose that the
violation is in the electromagnetic interaction. One
basis for this suggestion is the fact that the ratio of the
rate of the T-violating E decay to the normal decay is
of the order of o./2~. In Lee's theory, each fundamental
interaction is separately invariant under its own T, C,
and P operators. The product operator TCP is the
same for every interaction. Violations can arise when
the operator of one interaction is defined differently
from that of another interaction. Thus, T (and C)
violation arises because of the mismatch of the C
operators for the strong (C,t,„„s) and electromagnetic
(C~) interactions, just as P is violated because of the
mismatch of the parity operators of the weak (P„„k)
and electromagnetic (P~) interactions. The mismatch
of the operators could arise because of the existence of
hypothetical "u" particles5 which satisfy

C~a+C~ '=a

+/ —& —+Cstrong~ C strong

or from the minimal electromagnetic interaction of a
system of vector mesons. '

This electromagnetic violation of T will manifest
itself in nuclear forces by time-reversal-violating (TRV)


