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Effect of Annihilation on Matter-Antimatter Separation
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The eBect of the annihilation of nucleon-antinucleon pairs upon the process of matter-antimatter separa-
tion in blackbody radiation is considered. It is shown to be negligible if annihilation is correctly described
by the statistical model.
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Herc Qp is the free-particle grand potential, E the total
energy, and S the on-energy-shell S matrix

Sf;=Sf; 2ms5(Ef E;)Tf;—. . —(2)

A is a permutation operator, so that the trace opera-
tion may be applied to unsymmetrized states if neces-
sary. Finally, the index c means that only connected
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' 'T has been proposed recently that a phase transition
-- could exist in blackbody radiation at very high
temperatures. ' This effect could have very important
astrophysical consequences. The phenomenon follows
from the assumption that mesons are bound states con-
sisting of nucleon-antinucleon pairs.

When treating this problem, it was necessary to
make several assumptions, of which we shall mention
only the ones that are critical:

(1) The effect of the mesons as bound states was not
included in the calculation of the virial coefficients after
they had been included in the calculation of the free
energy as free particles. This exclusion was made in
order to avoid double counting, but had no fundamental
justihcation.

(2) The annihilation reactions were neglected when
treating the equilibrium of nucleons and antinucleons.
This approximation was extremely disci. cult to accept,
since it is known that the annihilation cross section is
very large and the elastic cross section almost purely
diffractive.

(3) The phase transition was studied by using a
virial expansion cut off at the second term.

In the present note, we want to show that approxi-
mation (2) is indeed justified, at least in a well-defined
model for annihilation. Our discussion is based on an im-

portant recent work by Dashen, Ma, and Bernstein, '
who have written the grand canonical potential 0 in
terms of the S matrix as

operators should be retained. %e refer to the original
work for more details.

Let us now review the main effects which determine
the second virial coefficient, a factor of the product SX
of nucleon and antinucleon numbers. According to (2),
one has to compute
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where the index 2 relates to nucleon-antinucleon pair
states.

(1) The effect of N Nstates w-ith angular momentumJ) 1 in the second term of (3) is zero if the correspond-
ing amplitude is purely diffractive, i.e., pure imaginary.
It was already shown before that the real phase shifts
introduced by nuclear forces have negligible effects.

(2) It is well known that the statistical model cor-
rectly describes the spectrum and multiplicities of anni-
hilation, and is, in fact, the only model at our disposal.
In this model, the amplitudes for annihilation into a
well-dehned anal quantum state are real and depend
only upon energy. Furthermore, they are the same for
diff erent orthogonal states.

In the framework of this model, it is obvious that the
second term of (3) is zero. Accordingly, the contribu-
tions of annihilation to the second virial coeKcient
could come only from refined phase effects which will

be difficult to observe experimentally.

(3) Finally, where there is a bound state, there will

be an effect of a decreasing real phase shift, in spite of
the annihilation, but it will be multiplied by e "' for
the first term of (3) and by e 4" in the second term,
where e "' is the inelasticity. Our approximation is,
therefore, only that the inelasticity ie the S ma~es is not
too large in a region of c.m. energies around 300 MCV.

Furthermore, let us recall that Dashen, Ma, and
Bernstein have completely justified the first approxima-
tion we mentioned.

This simple analysis allows us to recover the results
of Ref. 1 with only very slight corrections.

Eote. Let us mention that it is possible to compute
the size of the condensations after a time t by using the
fluctuation of velocity as given by the Maxwell dis-

tribution. A subsystem of nucleons of radius R and

723



R. OM NES

density p will be displaced by a distance E. in the
time f if

R =P kTPy (4)

leaving and creating nucleon-antinucleon separation.

In the Gamow universe, kT=400 MeV, p=10" g/cm',
and t~10—' sec, so that 8~10 cm.

I wish to thank R. Balian and C. de Dominicis for
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Planar duality amplitudes are shown to have Regge asymptotic behavior when ~s~
—+" at any non-

vanishing angle to the real axis with t axed. The asymptotic behavior of the amplitudes in the same s limit
with I 6xed is also investigated.

A PROCEDURE has been formulated, ' based on
the extension of the Veneziano formula' to S-

point functions, ' for incorporating duality into a
perturbation expansion of scattering amplitudes. In
this work the authors showed that each of the E-loop
four-point planar diagrams has Regge asymptotic
behavior in the limit Res —+ —~ at fixed 3, and that the
sum of planar diagrams has Regge behavior, controlled
by a complex output trajectory function, in the same
limit. In this paper we establish the validity of two
additional asymptotic properties of the planar diagrams,
which were left unsettled in Ref. 1.' The first is a
demonstration that Regge behavior continues to hold
at fixed t in the half-plane Res) 0. The second property
we suggest is that each planar diagram decreases faster
than any power as ~s~ ~" at fixed u, the channel
free from Regge singularities.

The methods used to study asymptotic limits in this
paper are best illustrated with the Veneziano (zero-loop
planar) amplitude, for which one has the possibility of
using Stirling's formula as a simple check. Therefore,
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4 This implies that we include only the same Gnite set of factors
as in Ref. 1. Possible modifications of the reasoning required to
include infinite products are not considered here.

we consider 6rst
1

Ip(s, t)= Chx &'& '(l —x)

for fixed t and large s." Introducing the variable
q= —lnx, we have

Ip(s, t) =

Since n(s) is a straight-line trajectory and the intercept
does not matter at large s, we set u(s) = ~s~e'e. Setting

-~j, )(

FIG. 1. Integration contour for the Gxed4 asymptotic analysis.
The singularities of the integrand in Eq. (2) are displayed.

' Similar techniques for studying asymptotic properties of
integrals were used by S. Mandelstam, Phys. Rev. Letters 21,
1724 (1968); M. Suzuki, ibid. 23, 205 (1969}.


