
INTERFERENCE BETWEEN TWO LASER BEAMS

storage of energy over a period of 9X10 ' sec. In their
experiment the relative phases were doubtlessly ran-
dom; they do not claim that the laser was operating
in a single mode; also, the phase relations between the
two beams could not be adequately controlled because
of mechanical vibrations arising from the rotating-
mirror system (private communication) . In the Pfleegor-
Mandel (PM) experiment the phases were also random.
The required memory span in the PM case was some
15 times longer than in the JN experiment. We must
conclude that in the PM experiment there was no
cathode memory which could give rise to interference
effects when the photons, as particles, arrived at the
cathode an average 1.4X10 ' sec apart. Indeed, if
there were such memory, the assumption of a Marko-
vian process would be false. The concept of the photon
as a particle here becomes manifestly untenable. 4 The
semiclassical description gives an entirely adequate
explanation, the only requirement being that the co-
herence length of the laser radiation shall exceed
3X10'0 cm sec 'X1.4X10 ~ sec=4200 cm. That re-
quirement explains the need for single-mode lasers in
this PM experiment.

4 Note the parenthetical remark in Ref. 2: "(insofar as particle
concepts are applicable to photons). "

The distinction between (a) interference of two light
beams from a small single source and (b) interference
of beams from two wholly independent separate sources
should be emphasized, for in (a) it is possible to think
of each single photon as being "partly in both beams, "
i.e., in a superposition, whereas in (b) turbo wholly inde-

pendent photons are involved and physically there is
no ground for thinking that each such photon can
partly impose its state on the other, especially when
the two photons are well separated irt time, i.e., super-
position in the sense of (a) is impossible in (b). On the
other hand, in the quantum-optical treatment of (a)
and (b) it is essentially the classical ftelds which are
superimposed, at least in that representation in which
the basis states are eigenstates of the annihilation
operators whose eigenvalues are just the Fourier corn-

ponents of the classical fields. Thus a superposition of
classical fields enters the quantized treatment by the
back door. It is not surprising, therefore, that the
classical and quantized theories of these effects gen-
erally correspond very closely. '

I thank Dr. M. Janossy who informed me of the
experiment of Ref. 3 before publication.

' This point was brought out in the review article by L. Mandel
and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
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Weinberg s approach to the high-energy behavior of chiral Lagrangians is applied to the process m. +u—+

2'-+P, and it is shown that the algebraic relations required to give good asymptotic behavior in this process
are the same as those which give good behavior in the reaction qi-+n~qt. +p.

ECENTLY Keinberg has been looking at alge-
braic aspects of chiral syDUTietry. ' He has ex-

arnined the process n.,+n ~ srs+P from a chiral
Lagrangian point of view and, by demanding the
cancellation of terms in the amplitude for this process
whose high-energy behavior is experimentally unac-
ceptable, he has derived the following restrictions on
the axial-vector coupling matrix XP), the vector cou-
pling matrix T(X), and the mass matrix ms:

[X.(X),xs(X)]=i e.s,T„(1)
[X.() ),[Xs(X),m'j) ~ 8.s, (2)

where ) is the helicity.

t Work supported in part by the U. S. Atomic Energy
Commission.' S. Weinberg, Phys. Rev. 177, 2604 (1969l.

The application of conservation of isospin allows
him to write further that

(3)

In this paper, Weinberg's' calculation is repeated for
the process sr,+n~srs+sr, +P, and it is shown that
(1)—(3), which are required to give good high-energy
behavior in the two-pion case, are also the relationships
needed to ensure good asymptotic behavior in the
three-pion case.

The process under consideration is

sr (q, tt)+n (p,X) ~ 7r (q', b)+ sr (q",c)+p (p',X'),

where n and P label the type and isospin of the initial
and fina target particles; X and X' are their helicities;
a, b, and c are the pion isovector indices; and q, q',
q", p, and p' are the respective four-momenta. The
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pion mass is neglected and only the forward direction
is considered. To simplify matters, the coordinate
system used is that in which all the momenta are
collinear. Under these conditions angular-momentum
conservation implies helicity conservation, and so the
Feynman amplitude for the process can be written

Mb'/bc;baa(p g g j pg) 4b'Mpbc; «(~~ ~ li) ~

This amplitude is now written

M=MH&+M& &,

where both M(+' and M& & are even under interchange
of co and —~', i.e.,

M dbg;~~(MqM qM )li) = g[MPbg;~~(M)M )(d qX)

+MP~g ~b(ct&)M )M qX)j q

M& &db, ,(cv,(o',cd",li) = [1/2((d+(o') j[MPb, ;., ((o,co',id",li)
—Md, , b(co,&o',a&",X)j.

M'+& and M( ' are now evaluated from a general
chiral-invariant Lagrangian and the terms which go as
co' as co~ are picked out using the techniques of
Sec. III of Ref. 1, with the additional assumption that
the odd final pion is soft, i.e., q" —+0.' The various
isospin states are then projected out, giving the coeffici-
ents of id' in M & '(co,li) ' as follows:

—(8/3)EF '{«.b[Td(li), x,P)j+«,.[Td(P ),Xb P )]
+«„[T.(l ),X.(li)$) for T=o, (4)

2FF '{(Bb,«g. 8.,«gb)[Td—(X),xg(X))
—2i[8b,x, (X)—8„xb(X)$) for T= 1, (5)

——;ZF.-&{2«„[T,P),X.(X)j+2«..[T.(l ),X,(Z)]
4&dab[Td (li)yXC(li) j+3«gb'4C[Td (~)yXg (l~))

3«5b [T (li) X (X))) for T= 2. (6)

For the T=3 part of M +&(cv,X), the coefficient of aP

is zero because of the symmetry properties of the pro-
jection operators and the Lagrangian. The T=2 part
of M&+& (id, li) has the following coeKcient of co:

F.—'{2«,.[[xb(li),m'), Td () ))
+2.„b[[x.P,),m23, T.P,)j
+(«„S..+«.,h„—2.d.,c.b)[[X,(~),~'),Td(~))) . (7)
' In the t channel all pions are emitted pions. If M(+) and 3f& )

The T=1 amplitude does not yield any algebraic in-

formation, for reasons that are given below, and so is
not written down here.

If P(T) represents the projection operator for an
isospin state T, then Regge-pole theory predicts the
following high-energy behavior for a particle of isospin
T exchanged in the 3 channel:

P(T)M~ idb, «(m X) ~id~~ib~ (8)

P(T)M'+&Pb, .(N, X) ~Gl""', (9)

where ur (0) is the value of the dominant trajectory of
isospin T at 1=0.

Now the condition is imposed that the asymptotic
behavior of 3f which has been calculated from tree
graphs not be worse than would be predicted by Regge
behavior.

Since nz(0)(1 for all Regge trajectories, Eq. (8)
gives P(T)M& &db, , , (ao,li) -+0 as &o~ ~. So the co-
eflicients of aP in M& ~ (co,li) [i.e., (4)—(6)$ are all equal
to zero. These conditions are all satisfied if Eq. (3) is
true.

For T=2 there are indications that' n2(0)(0, so
Eq. (9) gives P(2)M'+&db, ,„,(cd,X) —& 0 as cd ~ ~, which
implies that the coe%cient (7) is zero, which holds if

(2) and (3) are true.
For T=1,ui(0))0 (andiparticlecanbeexchanged),

so that this component of M&+& does not yield any
algebraic conditions.

So Eqs. (2) and (3), which were derived by con-
sidering the two-pion amplitude, are the conditions
which must be imposed on the three-pion amplitude
to ensure that its high-energy behavior not be worse
than that predicted by Regge behavior.

I would like to thank Professor S. P. Rosen for his
guidance and encouragement, and Dr. G. Barton for
a valuable discussion. I am grateful to the members of
the Physics Department at the University of Sussex,
where most of this work was performed, for their kind
hospitality.

are dered such that they are even under the interchange of u
and —co", then 7l-f, must be taken as the soft pion.

3 Since co"=0 and co is related to co' by conservation of energy,
31(+) and 3f ( ) are functions of u and ) only.

4 It is assumed that there are no Regge trajectories with 7=2
and n(0) &1. See R. de Alfaro, S. Fubini, G. Rossetti, and G.
Furlan, Phys. Letters 21, 576 (j.968).


