
FHYSICAL REVIEW D VOLUME 1, NUMBER 2 1 5 JANUAR Y 1970

Origin of the Weak-Interaction Angle. II
N. CABIBBo

L. MAIANI

Sottosesione Sanita, Roma, Italy
(Received 22 May 1969)

We present a theory of the origin of the weak-interaction angle 0, based on a self-consistency condition
linking weak, strong, and electromagnetic symmetry-breaking eGects. The value of 0 is related to the ob-
served pattern of breaking of SU(3) SSU(3), and depends upon the value of a new parameter P, which
gives the strength of the weak corrections to strong processes. A characteristic result of the theory is the
prediction of a nonelectromagnetic isospin breaking. This solves the g —+ 3x puzzle and accounts for the
observed deviation from the Dashen sum rule: mIk+ —mIk0'=m +2—m 0'. Although we are not able to give
a theoretical evaluation of g in a realistic model of weak interactions, a phenomenological determination of
( is proposed, based on the observed isospin-breaking mass splittings among pseudoscalar mesons. In this
way we get the prediction 8=0.25, which is in good agreement with the experimental value.

I. INTRODUCTION AND OUTLINE

ECENTLY, we presented a theory of the weak-
interaction angle 8.' In this paper we intend to

discuss this theory in greater detail and to present some
of those aspects which were only outlined in I, as well
as further developments of our ideas.

Our theory is based on the idea that the angle 8,
which determines the relative orientation of the weak
forces and of the SU(3) breaking, should arise from a
dynamical interplay of weak, electromagnetic (e.m.),
and strong forces.

To enforce such a philosophy we assume that SU(3)
breaking arises from a theory where weak and e.m.
forces are the only explicit sources of breaking. This is
essential: Since we want to obtain the direction of the
breaking as an output, we cannot include informations
about the breaking itself as an input.

First attempts to determine 8 along these lines' '
considered a SU(3)-synunetric theory of strong inter-
actions giving rise to asyoimetric solutions, on which
the effects of weak and e.m. interactions were super-
imposed as small perturbations. In the absence of such
perturbations, nonsymmetric solutions of the sym-
metric theory appear in families of physically equiv-
alent solutions, formally obtainable one from the other
by SU(3) rotations. However, only a finite number
among these solutions are a good starting point for
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the actual solution in the presence of the small perturba-
tions. The first effect of the e.m. and weak corrections
thus consists in choosing the direction of the breaking.

Unfortunately, in the actual solutions, the direction
of breaking is such that 0=0' or 90', and it has been
argued' that this result follows quite generally if weak
interactions are treated as a small perturbation.

In I a new approach was proposed in which weak,
e.m. , and strong breakings are treated on the same
footing, and are required to satisfy a consistency
condition which leads to a definite value of 8, in good
agreement with the observed value.

The starting point of the work in I is the consideration
that higher-order weak corrections to hadron processes
can, in principle, give rise to large effects, and cannot
be treated in a purely perturbative framework. The
existence of such large effects is suggested by the
formal appearance of divergences of increasing order
when the usual Feynman-diagram technique is applied
in the evaluation of such corrections. These divergences
should only be taken as an indication of the failure of
the usual treatment and of the fact that in a better
computational scheme large, but finite, results will be
obtained. This point has been especially stressed by
I.ee, ' who also showed in a particular example that the
summing up of all the cutoff perturbation series, before
letting the cutoff parameter go to infinity, leads to
sensible results.

We have based our work on a phenomenological
model of strong interactions which has been studied in
particular by Glashow and Weinberg, ' and by Gell-
Mann, Oakes, and Renner, ' in which the Hamiltonian
which describes the strong interactions of hadrons has
the form

H=Hp+h,
4 T. D. Lee, Nuovo Cimento 59A, 579 (1969).
~ S. Glashow and S.Weinberg, Phys. Rev. Letters 20, 224 (1968).' M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,

2195 (1968).
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bh w+5k™=0. (1.2)

In order to enforce this condition one had to rely on

' In a recent paper S. Adler /Institute for the Advanced Studies,
Princeton report (unpublished) j casts some doubts on the con-
sistency of such formal manipulations, indicating that, in order to
obtain a consistent theory, one might be forced to introduce
nonminimal couplings (e.g., allowing for m0~ yy) which would
spoil the expected symmetry.

where B is invariant under the chiral SU(3)8SU(3)
group and the breaking term h transforms as a (3,3)
Q+(3,3) under the same group. The use of such a
Hamiltonian, which explicitly includes breaking terms,
is not in contradiction with our previous requirement,
since we shall assume that the structure of h is deter-
mined by a self-consistency condition.

In order to specify completely the symmetry breaking
contained in such a theory, one shouM also have some
knowledge of the symmetry and symmetry breaking in
the vacuum. According to the investigations of Refs. 5
and 6, this is a very important portion of the breaking,
and accounts in particular for the large mean masses
of baryon multiplets. In the limit h ~ 0, one would have
a spontaneously broken SU(3)SU(3), with particles
organized in multiplets of SU(3), and the conservation
of axial currents would be achieved through zero-mass
pseudoscalar mesons. The finite masses of pseudo-
scalar mesons are thus directly connected with the
perturbation term h.

If one includes effects of the weak forces, one finds
that the strongest self-energy corrections (i.e., those
corresponding to the leading divergences at each
order) amount to a modification of h, bh~, which
depends upon h and belongs to the same (3,3)Q+(3,3)
representation.

Electromagnetic corrections can be divided in a
tadpole part 8h™plus residual (nontadpole) terms.
In a theory exactly invariant under SU(3)SSU(3)
(i.e., with k=0 and symmetric vacuum), one would

expect that bh' .=0, since the minimal e.m. interaction
is still formally invariant under the chiral U(2) 3U(2)
subgroup corresponding to U spin. 7 In general, one
expects 8h' to be different from zero both because of
the explicit breaking due to the h term, and of the
noninvariance of the vacuum under chiral transforma-
tions. Since the latter causes the largest deviations from
exact symmetry, we expect bh' to be mainly deter-
mined by the breaking of the vacuum, and to be, to a
good extent, independent of h. The arising of e.m.
tadpole contributions will be discussed in greater
detail in Secs. II and III.

We can now introduce our main hypothesis, which
links dynamically the strong, weak, and e.rn. interac-
tions. This consists in requiring that II give a complete
description of the hadron dynamics (mass spectra, etc.),
which is not further modified by inclusion of weak
and e.m. tadpole corrections. In I we interpreted this
condition, as implying the equation

the fact that nondiagonal terms in 8k~ (i.e., parity-
and strangeness-violating terms) could be discarded,
since they can be reexpressed as divergences of currents,
by the use of the equations of motion implied by Eq.
(1.1). It has since become clear to us that this pro-
cedure, although justified in second-order calculations
of the weak corrections, is generally not valid; non-
diagonal terms must be retained and properly inter-
preted. This led us to a new interpretation of the
self-consistency requirement.

We will give here a brief outline of the new formula-
tion; Sec. V contains a more detailed and formal
treatment.

We first note that the violation of parity and strange-
ness caused by bh~ is only apparent. In fact, after
inclusion of weak corrections, the breaking term in the
Hamiltonian h is changed into h:

h= li+bh~(h),

and h can always be rediagonalized by a change of
frame of reference which is equivalent to a SU(3)
SU(3) transformation and to a redefinition of both
parity and strangeness. On the other hand, the vacuum
state cannot fail to be affected by the weak corrections
embodied in the transition from h to h, and, barring
pathological situations, the new vacuum will be invar-
iant under the parity and strangeness operations defined
by h. This is made plausible by the following argument.
In the absence of any explicit breaking term, if the
vacuum is not symmetric, we would have an infinity of
possible degenerate vacua, corresponding to as many
different definitions of parity and, if SU(3) as well as
SU(3)SSU(3) is broken, of strangeness. When the
explicit breaking term is turned on, the degeneracy
should disappear and one solution only be chosen, most
reasonably the one which points in the same direction
as the breaking h or h. This situation has been explored
in Refs. 2 and 3 in the case of a spontaneous SU(3)
breaking.

The e.m. correction bh' - has then to be computed
in terms of the dynamics defined by h and the new
vacuum state, and will therefore conserve the same
parity and strangeness. We thus see that, although we
expect the strength of bh' to be roughly independent
of h, its direction via that of the vacuum state is
determined by h.

In the light of these remarks we may formulate our
condition as the requirement that h+8h' in the new
frame of reference be equal to h in the old frame. If
this requirement is Inet, the net effect of the inclusion
of weak and e.m. tadpole corrections to B simply
consists in a change of frame in the SU(3)SSU(3)
space. This condition will be seen to determine the value
of 0, both in the old and in the new frame, which will be
identified with the physical one.

The value of 0 is found to depend upon a new param-
eter $ related to the strength of the weak corrections
to h. A characteristic result of our theory is the appear-
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ance of an isospin breaking which is not of an e.m.
origin, whose strength directly depends upon P.

Although we have not been able to compute the value
of $ in the frame of a realistic model of weak interactions
the appearence of this new source of isospin breaking
opens the possibility of a phenomenological determina-
tion of $. In this respect, a very favorable process
appears to be the g —& 3x decay which in the soft-pion
limit cannot proceed via a conventional e.m. interac-
tion. ' Moreover, Dashen' has recently pointed out that
a purely e.m. interaction should give rise to the mass
formula

m~& —m~o' ——m„+'—m~0'.

We will show that the discrepancy, which is quite large,
can be explained by this new isospin breaking, leading
to an approximate evaluation of $.

We close this introduction with a brief summary of
the contents of the following sections.

Sections II and III are devoted to the study of
symmetry breaking in the vacuum and to the emergence
and structure of e.m. tadpoles. This will be done with
the aid of a simple generalization of the 0- model. "
Section IV contains an analysis of the structure of bh~.
We will argue, using different models, that the form of
Ns ~ is essentially unique, apart from the scale parameter
$. In Sec. V we apply our consistency condition to
determine the value of 0.

In Sec. VI we discuss the problem of isospin breaking.
Finally, Sec. VII is devoted to a discussion both of the
present state of our program and of lines of future
development.

The transformation law of BR is

5K —+ UBRVt, 5Rt —& V5KtUt. (2.4)

The subgroup with U= V generates the usual SU(3)
transformations; pure chiral transformations correspond
to V~= V.

The natural definition of parity, according to Eq.
(2.2), is

PSRP '=SRt, P(U, V)P '= (V
—

U) (2.5)

Actually, there are infinitely many possible definitions
of parity, all equivalent up to a group conjugation.
These parity operations are defined in terms of a
unitary, unimodular matrix X, as

I'x9RI'~ ' ——XI~X
Px(U, V)Px '= (XVX",XtUX). (2 6)

This parity operation leaves invariant the SU(3)
subgroup whose elements are (U,XtUX). IInder
conjugation with an element (U, V) of the group,
we have

X—+ X= UXV~. (2.7)

If SU(3)SU(3) is an exact symmetry, all these
definitions are physically equivalent; we could not
tell a 0- from a x. If the symmetry is broken to a definite
SU(3), defined as above by a given X, Px is singled
out as the only possible parity operation.

We also introduce a spinor 6eld lt, which for simplicity
we take to belong to the quark representation (3,1)
Q+ (1,3). This transforms according to

II. SYMMETRY BREAKING IN THE VACUUM.
GENERAL EQUATIONS

where
(2.8)

Following the authors of Refs. 5 and 6, we consider a
model Lagrangian of the form

L=Lo+L', (2.1)

SR=+(a+&")—.
i=p

(2.2)

L,' will be assumed to be a linear combination of these
fields

(2 3)L'= Tr (SRht+SR"h) .

A transformation of SU(3)tmSU(3) can be character-
ized by a pair of unitary, unimodular matrices (U, V).

8 D. G. Sutherland, Phys. Letters 23, 384 (1966).
R. Dashen, Phys. Rev. 183, 1245 (1969).

"M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).

where Lo is formally invariant under SU(3)SSU(3)
and L' is a breaking term. The model will be based on
two nonets of scalar and pseudoscalar 6elds 0-, and x;
(i=0, . . ., 8), transforming as (3,3) O+ (3,3). These
fields can be put together to form a 3&3 matrix:

To be definite, we shall occasionally use a specific model
for the invariant Lagrangian Lp, constructed, for the
meson fields, out of the bilinear invariant Tr (SRSRt), the
trilinear forms detSR and detSRt (which should appear
symmetrically if Lo has to be invariant under parity), the
quadrilinear forms Tr(SRSRt)' and (TrSRSRt)2. We will
then write

~&0, p& —X, (2 10)

which ensure that the Hamiltonian derived from Lp
is bounded from below.

Lo=giy olp+gf(SRap+SR"a )P
—

~ Ti (BvSRol„SRt)+ v Tr(SRSRt) —X/Tr(SRSRt)]2
—1i Tr( SRSR)'t+r(detSR+detSRt) . (2.9)

If 7 =0 Lp is actually invariant under the larger group
U(3)U(3) (i.e., we may drop the condition detU
=det V= 1, and at the same time the condition detX= 1
in the definition of Px). We can for the moment consider
~, p, p, and r as free parameters. One might wish to
impose the stability conditions
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8„$~ 8„$ —ieA„QQ,

cj„BR—+ B„BR i—eA „[Q,DR],

cj„BlIt~ cI„BKt—ieA„[Q,BRt],&= (0 i
BlI

i
0). (2.11)

The symmetry properties of the theory are character- this can be done via the substitution
ized by the matrix h appearing in Eq. (2.3), as well as
by the symmetry properties of the vacuum, described
by a matrix p:

8
[Gp(~)]*'=—Sp(~) (i,j=1,2,3).

8'gi j'
(2.13)

Even in the limit h=o, g can be different from zero.
This situation is usually referred to as spontaneous
breaking.

The general conditions to be imposed on g have been
discussed in Ref. 11. One erst introduces a displaced
field

3f(x) =m(~) —~.

In terms of 3f, the Lagrangian will have the form

L=Li (iV,g)+L'ni(M, i1)+Tr[Mt(Gp(q)+h)+H. c.]
+Sp(q)+Tr(ght+gth), (2.12)

where Li (3f,g) is the free-field part, with masses
depending upon j. L;. «(M, it) contains terms of third
order or more in M as well as the interaction of 3f with
the fermion fields, with coeKcients again depending
upon g. If Lp is the one given in Eq. (2.9), fourth-order
terms will in fact be the same as in the original
Lagrangian. We have written explicitly the terms linear
in M and the c-number terms; the matrix Gp(g) is
related to the c number Sp(g) through the equation

a Tr(qitt)+b Tr(gQgt)+ (2.18)

where Q is the 3)(3 matrix corresponding to the charge
operator. The new term in the Lagrangian is then

L' = eA„Py„QQ+ ',i Tr(-[Q,BIZ]8"BRt+8"BR[Q,BR"]}
—c'A.A" Tr([Q BI~][Q,Bll']) (2»)

This term is still formally invariant under the [U(2)
SU(2)]ri subgroup whose elements are pairs (U, V)
such that

[U,Q]= [V,Q]=0,
and is invariant under a parity operation I'~, provided
that

[X,Q]=0.

The effect of I.e™will be to add new terms to the
vacuum-vacuum amplitude S(g,h), which can be written
now as

S(g 6) = Sp(tf) +Tr( hrl+tm ht)+ S(p) +S' (&,Q) .

The new term (obviously of order e') must be a function
of g, invariant under the [U(2)g U(2)]r group defined
above, i.e., it will contain terms of the kind

8 8
[Go(n)]'+ S'(~)+ S' (~,Q)+—h' =o (2.19)

t9'gij' 8'gij

The new term will cause a shift in the value of q, and
(2 14) if we put(o~m~o)=0.

We will then have (2.20)g=g+brl, 8q=O(e'),

Equation (2.16), accordingly, will be modified into

complete, proper, connected vacuum-to-vacuum ampli-
tude S(g,h). In computing S(q,h), one has not to include
contributions from graphs where an M line ends in
the vacuum because Eq. (2.11) implies that

S (rl, h) =Sp(q)+ Tr (ght+rlth)+S'(g), (2.15)

where S'(q) arises from graphs containing loops and
does not depend upon ii (in fact, h appears only in
the term linear in 3f, which contributes to the graphs
that we have previously excluded).

Equation (2.14) implies the vanishing of the proper,
connected one-meson —to—vacuum amplitude, and leads
therefore to the equation"

where g is a solution of Eq. (2.16), the new solution g
will be then determined to order e' by the equation

8 8
[Gp(n)]'~+ S'(~)+ S' (n,Q) p-p+&~J=0 (2 21)

~gij- ~g'j.

Equation (2.21) shows that the effect of electromagnet-
ism is equivalent to a,dding a new term Bh™(g)to h.

which gives the desired condition on q.
With the same method one can study the effect of

the introduction of minimal e.m. interactions. For the
Lagrangian equation (2.1), with Lp given by Eq. (2.9),

"J.Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965
(1962).

III. STRUCTURE OF VACUUM BREAKING; THE
ARISING OF e.m. TADPOLES

In this section we study the structure of solutions to
Eq. (2.19). The nature of the stable solutions (i.e.,
those yielding real masses, etc.) in general will depend
upon the values of the free parameters of the model
[i.e., i, X, p, r for the model Lagrangian equations
(2.1) and (2.9)]. However, instead of attempting a
general study of all possible solutions, we will accept
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the indications given by phenomenological analyses of
the experimental situation. '

The suggestion one derives from these analyses is
that the vacuum breaking rt is essentially a SU(3)
singlet, and accounts for the major part of SU(3)
gSU(3) breaking. This causes the appearance of large
values for hadron masses. The pseudoscalar mesons, in
the limit h=0, would act as an octet of Goldstone
bosons. The smallness of pseudoscalar octet masses as
well as the success of the hypothesis of partially
conserved axial-vector current (PCAC) can be taken
as an indication that the effect of h is relatively small,
and can thus be treated as a perturbation. We therefore
focus our attention on solutions of Eq. (2.19) of the
fol m

rt = t)p+btf,

where rts is a SU(3) singlet solution (rts
——stol) of the

equation
(3 1)

Fquation (3.1) admits, in general, nonzero solutions,
which appear in degenerate families because of the
underlying SU(3)SU(3) symmetry: Given a solution
sto, UstoV will also satisfy Eq. (3.1). This degeneracy
will be removed at least partially in the solutions of the
complete Eq. (2.19).

The removal will be complete, i.e., we will have only
isolated solutions (possibly only a single one), if the
addition of the e.m. perturbation and of the h term
reduces the symmetry of the Lagrangian to that of the
solution, i.e., for the physically interesting solutions, to
the combined gauge groups of charge and hypercharge.

In exploring the structure of the solutions to Kqs.
(2.19) and (3.1), one can use the model Lagrangian
(2.9) in the phenomenological approximation, "which
consists in neglecting the loop term S'(rt). This can be
justified by noting that the Lagrangian (2.9) already
has enough complexity for the phenomenological
approximation to cover the range of solutions one
might have to deal with in the exact treatment. In
fact, many properties of the solutions we shall prove in
this context can be shown to hold in general, as will be
discussed elsewhere. Equation (3.1) then becomes"

Ge(rt) = vrt —2' Tr (rtrtt) 2ttrtrttrt-
+ rP'Qtrtt+ rs (Trrtt) rtt Trrft —rsTr(—rtt)s)=0. (3.2)

Equation (3.2) is covariant under SU(3)SU(3) trans-
formations of q, so that we may, without loss of general-
ity, assume p to be diagonal. '4 Furthermore, upon

"S.Coleman, J. Ness, and B. Zumino, Phys. Rev. 17i, 2239
(1969).

"We have made use of the following identity, valid for any
3 &&3 matrix: det5K =5Ke—5Ks Tr5K+is5K)(Tr5K)s —Tr (5Ks)j
which can be easily derived from the characteristic equation of
5K /see S. Coleman, in IIadrols artd tttet'r Irtteracttoms, edited by
A. Zichichi (Academic Press Inc. , New York, 1968)g.

'4 This follows from the fact that any matrix p can be written
as q= W1XW2e'&, where X is real and diagonal, W1 and W2 are
unitary, unimodular matrices, and 3y=arg det g. A proof of this

multiplying Eq. (3.2), by tft one sees" that detrt is a real
number, so that g can be chosen as a real diagonal
matrix. 'e This means that any solution of Eq. (3.2)
allows for a definition of parity, i.e., the theory will be
parity-conserving. Moreover, from Eq. (3.2) one sees
that the eigenvalues of p satisfy a quadratic equation,
with coefficients which are functions of Try, Try', and
detg. " It follows, then, that we cannot have three
diferent eigenvalues, i.e., either q is a multiple of the
unit matrix corresponding to exact SU(3), or it pre-
serves an SU(2) symmetry. "

As stated above, we shall discuss briefiy only the
case where rt is SU(3)-invariant.

We then put
tip='gp' 1, 'gp 1'eal.

We have only two possibilities:

(1) sto=0, i.e., no spontaneous breakdown. All the
mesons have degenerate masses, equal to (—2v)'ts, and
the quarts remain massless. This solution requires v&0.

(2) rts&0. Equation (3.2) then implies that

r& t r'+4v (Q.+2tt) j't'

2 (6) +2tt)

In this case, the pseudoscalar octet becomes massless,
i.e., these mesons act as Goldstone bosoi1s. '~ The scalar
and pseudoscalar singlets and the scalar octet acquire
different masses and the quarks acquire a common
111ass —ggp. The parameters 'A, p, v, and v are restricted
by the requirement that all the boson masses are real.
One finds

v& 2r'/(6K+ 2tt),

which implies that t is positive by virtue of Eq. (2.10),
consistently with real qp.

Moreover,
gpr&0,

which, for a given sign of r, chooses one of the two
possible solutions for gp. If +&0, one must also require
that

gp7 +—2Pgp

We note, in conclusion, that for any given set of values
for v, A, p, , and r, there exists at most one solution.

theorem, which is certainly buried in the mathematical literature,
can be easily obtained following the arguments in N. Cabibbo,
R. Gatto, and C. Zemach, Nuovo Cimento 16, 168 (1960).
Transforming rt with the SU(3) SSU(3) element (Wrt, Ws), we
can then put g into a diagonal form.

"To obtain this result, one has to reduce the p' term in Kq.
(3.2) with the aid of the identity reported in Ref. 13.

'6 This is a particular case of the general rule that spontaneous
breaking of SU(3) tends to preserve a SU(2) subgroup. See
R. K. Cutkosky, in Parti cle Symmetries, edited by M. Chretien and
S. Deser (Gordon and Breach Science Publishers, Inc., New York,
1966)."Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 343 (1961);
124, 246 (1961);see also J. Goldstone, A. Salam, and S. Weinberg,
quoted in Ref. 11.
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Fro. 1. Electromagnetic contributions to mass splitting: (a) tadpole; (b) nontadpole.

M' =

O'S/atlatl�

.
We consider now the effect of the introduction of S(t)). Symbolically, we have

e.rn. interactions as well as of the explicit breaking
term h. We shall impose the conditions (3.5)

(3.3)

If we treat both k and 5h' as perturbations, i.e.,
negl. ect terms of order e4, e'h, h', etc. , then She™will

e uniquely determined by po and will have the form

[see Eq. (2.1&)7
Qe.m. g++Q (3 4)

and p being real functions of qo. Ke see then that
)he ~ is in this approximation U-spin-invariant. The
new solution q can be now easily computed to first
order in e' and h, in terms of go, A, 8, and h, and will

turn out to be of the form

n = rio+ ~n' +at)", .

where bg' and 6g" will have the form

=g'+ J3'Q ag"= C'+D'h.

Let us now discuss the e.m. corrections to the masses
of the various particles.

The e.m. shift to q, bg' . will cause e.m. mass
differences among both fermions and bosons. This
shift corresponds exactly to the contribution of tadpole

graphs, as shown in Fig. 1(a).
Further contributions come from other kind of

graphs, e.g. , those represented in Fig. 1(b), and will be
referred to as the nontadpole e.m. contributions. In the
case of scalar and pseudoscalar mesons, both tadpole
and nontadpole contributions can be derived from the
vacuum-vacuum amplitude (in the soft-meson limit).

In fact, the inverse propagator for these mesons at
zero four-momentum, i.e., the mass-squared matrix
extrapolated at zero four-momentum, is given by second
derivatives" of the total vacuum-vacuum amplitude

deth is real, [h,Q7=0.

The first condition ensures' that, by a suitable

SU(3)SU(3) transformation, 7s can be diagonalized to
a real matrix, so that the Lagrangian conserves parity.
The second condition guarantees charge conservation.

The eRect of e.m. interactions is displayed in Eqs.
(2.19) and (2.21), and consists in adding a new term
ah™(tiQ) to h:

The e.m. corrections thus have two effects.
First, they introduce a new term in S(ti), i.e.,

S'™(tl,Q); secondly, the presence of this new term
causes a shift bp' . The net effect can be symbolically
written as

(mls" —moos). = (m.+' —~.o'). (3.7)

This result has been first obtained by Dashen and
should hold if one neglects terms of order e'h. We note
that terms of this order have been neglected in deriving
the very successful Coleman-Glashow relation for
baryon mass differences. The failure of Eq. (3.7) to
rnatch the experimental mass differences could then
only be understood by introducing a non-e. m. isospin
breaking in h.

As we shall see in Sec. V, such a term arises naturally
in our theory; in Sec. VI we shall refer again to Eq.
(3.7).

In the next section we conjecture that the main effect
of weak corrections to hadron physics, as described by
the Lagrangian equations (2.1) and (2.3), consists in a
modification of the explicit breaking term, h —+ h.

The effect of this change will reAect on the vacuum
breaking rl through Eq. (2.19). As we shall see, if we

, star. t from a diagonal h, h will io. genej;al not be diagonal,

~aS(„)~ aS'-(„,Q)(m')'- =a& ™
~ ~+ (36)
5 agagagl agag

The first term on the right-hand side is the tadpole
contribution [in fact, the third derivative of S(rl) is
connected" to the vertex function), and the second
term is the effect of nontadpole graphs.

Note that since the total vacuum-vacuum amplitude
including the e.m. contributions is formally invariant
under chiral U-spin transformations, the neutral
pseudoscalar mesons would still act, were it not for the
presence of h, as Goldstone bosons, so that their e.m.
mass shifts vanish. One can check explicitly that the
two terms in Eq. (3.6) cancel for vr', tie, E", and K'.
Moreover, due to the same symmetry, the e.m. shifts
to z+ and E+, which lie in the same U-spin multiplet,
must be the same. One then expects the following
relation among the e.m. contributions to isospin-
breaking mass shifts to hold:
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i.e., will not conserve the same parity and strangeness
operations as h. Ke will find, however, that h conserves
charge and has a real determinant, if h has these
properties. h can then be diagonalized through a
$U(2) 8U(2) )U transformation. The previous analysis
for the solutions of Eq. (2.19) applies unchanged in
this new frame. The new starting solution gp has to be
chosen diagonal and SU(3)-symmetric in the new frame,
and as a consequence She™,a function of qp, will also
be diagonal. In other words, if hD is the diagonal form
of h in the new frame, all the arguments of this section
apply unchanged, replacing h with hz. This change of
frame will be studied explicitly in Sec. V.

IV. WEAK CORRECTIONS TO SYMMETRY
BREAKING) THE PARAMETER $

This section is devoted to the study of the weak
self-energy corrections. We assume a Lagrangian of the
form (2.1), where the breaking L' will be specified with
respect to its transformation properties under SU(3)
SSU(3), i.e., we shall assume I.' to belong to a (3,3)
0+ (3,3) representation. We can again formally write L'
as in Eq. (2.3), without necessarily a,ssociating with
physical particles the local fields contained in BR. For
example, in a pure quark model, one would identify
0-, and m, with the usual scalar and pseudoscalar
densities. The matrix h will be parametrized by its
eigenvalues n, P, and y. In a pure quark model a, P, a,nd

y would correspond to the masses of p, e, and X quarks.
This picture, mnemonically very useful, can, however,
be completely misleading if taken literally.

For example, in the more realistic model previously
discussed, quark masses are directly related to the
vacuum breaking p, and only indirectly to h.

Let us consider the weak corrections to an hadronic
process. At each order in perturbation theory, one meets
with different kinds of divergent terms. The most
divergent ones are proportional to (GA')" and are
followed by terms the G(GA')" ' G(GA')" 'lnA, etc.
According to the philosophy proposed by Lee, 4 one
should sum all the divergent terms of the same kind,
before letting the cutoff go to infinity.

In this way the sum of the most divergent terms
should give a definite function f(GA') which, if the
procedure is consistent, has a finite limit as A —& ~. In
this limit, the sum is independent of the weak coupling
constant G. On the other hand, the next divergent terms
should add up to something like GM'g(GA'), M being
some finite mass, and when A ~ Qo, tend to GM'g(~).
Logarithmic divergences should be treated separately
and resemble the divergences found in electrodynamics.
We thus see that only the leading divergences appear
to give corrections competitive with strong-interaction
effects, and are precisely those which will enter our
self-consistency requirement, as discussed in the Intro-
duction. We will present different arguments suggesting
the general validity of a conj|:&ter|: advanced in I,

Coejectlre: If the hadron Lagrangian has the form
(2.1), the eRect of the leading weak corrections to strong
processes consists in adding a further breaking term
8h~, represented, as in Eq. (2.3), by a matrix of the
form

0 0
5h~= —$ 0 P cos'8o &P sin28o

.0 —',y sin29p y sin'Op .
(4 1)

The first case has already been considered in I and
in Ref. 18, and gives (=GA'. In this case, when A ~ ao

one would have (= ~. As we have stated before, the
second order by itself does not give a meaningful result.
However, until now we have not been able to go beyond
a second-order computation in a realistic theory, i.e., a
theory which allows for strong interactions and where
weak interactions are mediated by charged vector
bosons.

The conjecture can be proved" for the case of the
weak self-energy corrections to free quarks. The
argument runs as follows.

We start from a Lagrangian I. defined as

L=P[ip 8 (ha~+h—ta )]P
+2ggX+y„a~fWI'+H. c.]. (4.2)

This Lagrangian has the structure of Eq. (2.1), with
the breaking appearing as a quark mass term. X+ is a
3)&3 matrix of the form

0 cosep sinep
P+= 0 0 0

.0 0 0
(4.3)

' R. Gatto, G. Sartori, and M. Tonin, Phys. Letters 288, 128
(1968).

"This argument has been presented by one of us (N. C.) in a
seminar given at CERN on October 23, 1968. We would like to
thank B.Touschek for an enlightening discussion on this subject.

where f is a real parameter, related to the value of the
limit of f(GA') as A —+ ~

Equation (4.1) is valid in a frame where h is diagonal,
and ep is the weak-interaction angle in this frame. As
discussed in the Introduction, Op is not the observed
weak-interaction angle, which is instead the angle of
the weak currents in the frame where h—=h+bh~ is
diagonal. An immediate consequence of this conjecture
is that h is a real matrix, i.e., an SU(3)SU(3) frame
can be chosen, such that h is a real and diagonal matrix.
This result means that, at the strong level, weak
interactions do not cause breakdown of parity and
strangeness.

This conjecture will be proved to be true for the
following cases:

(i) second-order calculation,
(ii) self-masses of weak interacting free quarks (to

all orders),
(iii) models with weak interactions mediated by a

neutral vector boson.
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If we start from a diagonal h,

0 0
h= 0 P 0

.0 0
(4.12)

Fio. 2. Weak contributions to the proper self-energy part Z(p).

Z={X+,X }, X =P.+)t. (4.3)

The SU(3) structure of Eq. (4.4) follows from the fact
that each diagram with n positive and e negative boson
lines leaving the main quark. line contributes a term
proportional to (X+X )"+P. X+)"={X+,X }.The y pa+
term arises from the structure of the interaction, and
{' depends only upon GA. ' since we are considering only
the most divergent contributions.

The effect of Z(p) is equivalent to modifying the free
term of L to

Lr„,=g)zy B(1 {Za~)—(ha~+—hta )7P. (4.6)

At the same time, we have to consider the higher-order
corrections to the weak vertex. The most divergent
part of the proper vertex will be written as

A„+= 2y„apX+X, (4.8)

and X is again a cutoff-dependent number. We then get

Ln, =2g(1+X)(fX+y„apfWI+H. c.). (4.9)

If we transform the field P as'

4 = («++a-)4", (4.10)
where

&= (1—kZ) &=1—1/(1 —{)"' (4 11)

the Lagrangian L=Lr„,+L;„~ is brought into the form

L=P'P~y 8 (ha++&+a )7$'—+2gL(1+X)/(1 —{)7
)& (P'X+y„a+/'W&+ H.c.),

where
h= hR= h —tkZ.

~
¹ Cabibbo, R. Gatto and C. Zemach, quoted in Ref. 14.

We consider the amplitude —fZ(p), defined as the sum
of all the proper and connected self-energy graphs of
the kind shown in Fig. 2, where the bubble indicates a
set of connections of boson lines, possibly including
closed fermion loops. Because of the triplet structure of
the quark multiplet, the charges of the boson lines must
alternate along the quark line.

Since we are interested in the most divergent part of
this amplitude, we can write down immediately the
most general form of Z(p):

(4.4)

where { is a (cutoff-dependent) number, and

we get the result of Eq. (4.1).
It is interesting to remark that if Z(p) diverges, i.e.,

{'~ oo, we get $= 1.
The exact calculation of even the most divergent part

of weak corrections looks a formidable task in the
realistic case of weak interactions mediated by charged
H/' s. The main difhculty consists in the non-Abelian
character of the algebra generated by the corresponding
currents. Even in the very simple case of free quarks,
we have not been able to evaluate $.

Furthermore, we observe that apart from the mass
renormalization h —+ h, there is also a renormalization
of the weak vertex by a factor

L=Lp+L'+gW&g2Vy„a+/jr' Tr (ORX'B„ORt—B„BRVBRt)7
—2g'W W TrLOR(X')'OR7+Li

=L,+L'yL;.,(W)+L&... , (4.14)

which also cannot be computed in this model.
The situation is completely diferent in a model of

weak interactions transmitted by a neutral vector boson.
In I we have considered a situation of this kind, with

the neutral 8' coupled to a current J„',corresponding to
the third component of weak isospin. In quark notation,

J„'=tv„(1+7,)~y, ~s=P+,l-7. (4.13)

This interaction, in the context of a free-quark
model treated along the lines indicated above, leads to
the relation X= —{,which implies no renormalization
for the weak vertex. In fact, the most divergent parts
of the proper vertex A„' and of the self-energy part
Z(P) are related by a Ward identity of the form

(p' —p) "~.'(p' p) = —C&(p') —&(p)72&'

This identity arises from the fact that, in this model,
the neutral weak current is conserved to all orders
apart from mass terms, which are, however, irrelevant
for the most divergent contributions.

In a model of nonleptonic weak interactions mediated
by a neutral vector boson, ~the explicit summation of
the most divergent terms can be carried out. This result
can be done with current-algebra techniques without
any reference to the detailed structure of the strong-
interaction Hamiltonian, except the requirement that
it has the forms (2.1) and (2.3). For the sake of brevity
we will not report here this general proof (to be con-
tained in a further communication) and will restrict
ourselves to strong interactions described by the
generalized 0. model introduced in Sec. II. We will
choose the Lagrangian
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where Ls and L' are the same as in Eqs. (2.9) and (2.3).
Using the Stuckelberg formalism, 4" it is possible to
express the weak-interaction part in terms of two
fields 8'„and 8 such that the propagator of 1/V„ is simply

i—g„„/(q' m—w'),
and that of 8 is

V. EFFECT OF WEAK INTERACTIONS
AS A CHANGE OF FRAME;

DETERMINATION OF 8

In Sec. IV we have seen how the weak corrections
induce on a Lagrangian, which includes a breaking
term characterized by a matrix h, a modification h ~h:

i's= hR= is—)hZ. (5.1)

This corresponds to writing

W„=W„+(1/ms)8„8

in the interaction term in Eq. (4.14) and to a suitable
modification of I.f„,~. The most divergent contribu-
tions to weak corrections arising from 8 exchange can
be formally extracted by means of a Dyson transforma-
tion4 on the fields BR and f. If we let

The physical content of the modified Lagrangian is
best described in a frame where h is diagonal. The new
frame can be obtained from the old one through an
SU(3) C3SU(3) rotation, which transforms h into hn.

(5.2)

In the new frame the weak current is described by a
matrix X+:

gq' —gq'~e(Rig(mW) Aa, f, e(2ii7/m W)a+Kg, I,~

7 V' 7

then I. goes into

Ls($',Sit')+L; i(W P',OT/')+Lr„. (W)+Lr„,(8)

+Tr(~ e(2ig/m s ) gx 7it+H c )

(5.3)
(4.15)

This transformation will cause a change of the weak-
interaction angle, from 80 to a new value 8, which we
will identify with the angle measured in semileptonic
processes.

The explicit form of h is

The dangerous field 8 is now only present in the explicit
breaking term.

Following the analysis of Ref. 4, the effect of the most
divergent 8 corrections is obtained by the substitution

n(1 —$) 0 0
0 P(1—

$ cos'8s) -',P$ sin28s
0 stye sin28s y(1—$ sin'8s).

(5.4)

This takes care of all insertions in Feynman graphs of
8 loops starting and ending at the same point. In the
limit A. ~ ae, Eq. (4.17) reduces to Eq. (4.1) with
)=1, since (X')'=Z.

It is interesting to compare this result with the
previous analysis of the free-quark model. The Dyson
transformation carries with it a wave-function renormal-
ization. In fact, we can read Eq. (4.15), in the limit
A' —+ ~, as

lt = [1—P, ')'a~]P'
+ (e

—(sag/ms isx3 (e
—i2ig/mir)//x~) )Pl (4 lg)

and we see that the first term is equivalent to the
wave-function renormalization (4.10), with /=1.

It must be observed that the models (4.14) and (4.16)
contain (apart from the leading divergences because of
8 loops, which we have discussed) quadratic divergences
due to H/' exchange. The latter are in fact similar to
those which appear in the electrodynamics of spinless
bosons and their origin is connected with the failure of
the Bjorken limit. The model therefore does not satisfy
all the requirements we impose on the theory, which
include the validity of the Bjorken limit. The use of
this model here is only intended as an illustration of the
treatment of leading divergences due to 8 exchange.

This matrix can obviously be diagonalized with matrices
U and V with the same block structure. We can then
restrict ourselves to the relevant 2)(2 submatrix H
of h, which we can rewrite in terms of Pauli matrices
0; as

H= isa�(2—])+$e cos28sj+io s

issue

sin28s
—as 4Le(2 —j)+$8 cos28sj —oi s)8 sin28s, (5.5)

where
(5.6)

By the transformation (5.2), IJ can be put in its
diagonal form

where
(5.7)

8=-', (Lb(2 —$)+$e cos'8s)'+Pe' sin'28 )"' (5 8)

e= rs(Le(2 —$)+$8 cos28 $'+PS sin'28 )'/' (5 9)

To achieve this, it is sufficient to choose

(5.10)

U= e'&~'. (5.11)

The angle it, which is relevant to the evaluation of 8,
can be easily computed by noticing that h~h is diagonal-
ized by the unitary transformation:

"E.C. G. Stiickelberg, Helv. Phys. Acta ll, 225 (1938); ll,
299 (1.938). hth —+ UhthV~, (5.12)
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as a consequence of Eq. (5.2). One finds

f=-,' tan '

Equation (5.16) is equivalent to the equations

&e.m. (5.17)

(5.18)8+2Pe.m.
$ (2 —()(8'+ e') sin28p+ @le sin48p

and from Eq. (5.3) one sees that the physical value
of His (5.20)

xi
k8 (2 —5)'+((2—$)(8'+ ') cos2go+8 $ cos49~) (5.19)

From Eqs. (5.18) and (5.19) and (5.8) and (5.9) one
easily gets

8=8p (5.14) 1 sf—
For )=1, one obtains $=8p, i e., 8=0."We have already
seen for the free-quark case that )=1 implies that the
weak self-energy term Z(p) diverges. The result 8=0
is then not surprising; weak interactions become
infinitely strong in the limit )=1, so as to drive the
breaking comp/etely along their own direction.

In fact (=1 is a limiting case. It is possible to prove
that the substitution $~2—

& leaves unchanged the
physical content of the theory, so that we may always
choose )&1. This circumstance is suggested by Eq.
(4.11), which shows that in the free-quark model, the
substitution $ —+ 2 famou—nts only to choosing the
opposite sign for (1—()"'.

To prove this symmetry in general, we note, looking
at the block form (5.4), that under this substitution,

detH(&) = —detH(2 —&),
TrH" (()H(() =TrH(2 —[)"H(2—g) .

These equations imply that, by a suitable SU(3)
SU(3) transformation, h(2 —$) can be brought into
the same diagonal matrix hei as h($). Furthermore, the
Anal value of 8 obtained after this transformation can
be proved (with some tedious algebra) to coincide
with the one obtained in the diagonalization of h($). In
the following we shall then be able to assume (&1,
without loss of generality.

As discussed in Sec. III, bh' is expected to be
diagonal in the same frame as h and, furthermore, to a
good extent, to be U-spin-invariant. We shall then
write

Pe.m. —Z8(1 L1 P(8s es)/8s7&/&) (5.21)

We shall consider n, 8, and e, i.e., n, P, and y as input
parameters to be obtained from the hadron mass
spectra. As explained in I, to this purpose we have used
the analysis of Ref. 6 (which in this respect gives results
in substantial agreement with those of Ref. 5), as well
as the tadpole analysis for "electromagnetic" mass
splitting of hadrons. "This analysis indicates that o, and
P are actually much smaller than y (this will be discussed
in more detail in Sec. VI). We note that Eq. (5.20)
is consistent only for values of $ such that

(5.22)

On the other hand, Eq. (5.21) states that p™is a
monotonically increasing function of ~$~, which for
small values of

~ $ ~, i.e., ~ $ ~
((2(y —P)/P, gives

(5.23)

and suggests
~ & ~

to be small. We shall restrict ourselves
to this situation, where, neglecting terms of order
(p/y)', we can write

(5.24)P= $8p,

8= (P/V)" (1 5) (1 sf)—"—(5.25)

While Eqs. (5.17) and (5.23) essentially coincide with
the corresponding ones given in I, Eq. (5.25) gives 8 as
a function of $.

We shall show in Sec. VI that $ can be obtained from
a phenomenological analysis of isospin-breaking effects.

We simply note here that for small values of ~$~,
Eq. (5.25) gives the result

&e.m.

Qe.m. 0
0

0 0
pe.m. 0

0 pe. m.
(5.15)

8= (P/y)'"=0 22 (5.26)

which is in good agreement with the observed value.

Our self-consistency condition requires the combined
effects of weak and tadpole e.m. corrections on hadron
dynamics to cancel —i.e., we shall require

hD+8h™=h. (5.16)

"This is true with the exception of the cases 8= a, 80=90' or
8 = —e, 80=O'. Both of these situations correspond to the patholog-
ical cases k=0, where P and q are completely undetermined.

VI. NONELECTROMAGNETIC
ISOSPIN BREAKING

In this section we discuss the nature of isospin-break-
ing effects in our theory.

sP S. Coleman and S. L. Glashow, Phys. Rev. 134, 8671 {1964);
R. Socolow, ibid. 148, 81221 (1965).
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The key parameters, from the point of view of hadron
dynamics, are the eigenvalues of the breaking matrix k:

a 0 0) 1
h= 0 P 0 i=—— (n+P+y)Xo

0 0 &i
n+P —27

~,+-', (~—p)x„
2v3

where X,= (g-,')1. This corresponds tsee Eq. (2.3)j to
a breaking Hamiltonian

&= (1/~~) (~+0+7)~o+L(~+0 27)l—&63~8
+L(n —p)/v2]0. 3. (6.1)

If n/P, h includes a breaking of isospin. From the
arguments presented in Sec. III, as well as in Refs. 2,
3, and 16, one would not expect this term to arise from
a purely symmetric strong-interaction bootstrap.
However, this term is needed in order to satisfy our
consistency condition, and, in particular, Eqs. (5.17)
and (5.21). In the following we shall assume

~ &
~

to be
small with respect to 2(y —P)/P (which, according to
the phenomenological analysis we are going to present,
is about 40), so that Eq. (5.23) can be used instead of
Eq. (5.21), allowing us to write

(6.2)

This equation shows how the isospin breaking in h

arises from a combined effect of e.m. and weak interac-
tions. For )=1, the effect is actually of a purely e.m.
origin.

However, this value of g would lead to an incorrect
prediction for 0, i.e., 0=0. On the other hand, if

~ $ ~((1,
then Eq. (6.2) indicates that a substantial portion of
the experimentally observed isospin breaking is not of
e.m. origin.

The computational scheme in any given situation of
isospin breaking which emerges from this picture
consists in adding to the effect contained in h, the
contribution of the nontadpole e.m. effects, i.e., those
effects not contained in bh'

An alternative procedure to compute isospin breaking
is to add the complete contribution of the purely e.m.
correction to that part of isospin-breaking term in h
which cannot be ascribed to electromagnetism. The
two procedures can be described by the following
symbolical equations:

isospin breaking = $ (1/W2) (n —P)0 3/+ (nontadpole
e.m. corrections), (6.3)

isospin breaking=L(1/V2)(n —P)(1—$)0. j
+ (total e.rn. corrections) . (6.4)

'4 In this connection, we note that if one were able to compute
separately (cP .—P' .), one could obtain, via Eqs. (5.16) and
(5.22), an estimate of the very important parameter g.

The first procedure closely corresponds to the tadpole
picture of Coleman and Glashow. "The first term of the
right-hand side corresponds to their tadpole contribu-
tion." The same authors gave a successful fitting of
baryon mass differences. From this fit, one can obtain a
measure of the ratio:

~—p 1 (Z- —Z+),.&
n+p —2y 2

1
C ( )+(p n)]

2 2—A

1 ((~—p)+(="—"-)]~"
2 +cV—2Z

(6.5)

The first two determinations give for this ratio, respec-
tively, (i) 0.0091, (ii) 0.010. The third determination
gives a much larger value, i.e., 0.045. However, this
discrepancy can be ascribed to a near cancellation in
the denominator, which makes this determination less
reliable than the others. We will therefore choose

Rg ——(n P)/(n+—P 2y) =0—.010. (6.6)

It is clear that this determination is subject to an error,
which might be quite large, especially due to the
uncertainties in the separation of nontadpole contribu-
tions. We shall also use the analysis of Ref. 6, which
determines the independent ratio:

1 n+P —2yR2=-
V2 n+p+7

(6 7)

Finally, we can combine these two ratios to obtain up
to an arbitrary normalization (to be reabsorbed in the
arbitrary normalization of the operators o.,):

+=0 087, P=.0.140, y= 2.77. (6.8)

(E+ K') (~+—~')— —

2(K—m.)
=R~(1—(). (6.9)

Using the experimental data, we find

Rg(1—$) =1.2X10 ',
which, compared with Eq. (6.6), gives $ the value

$ = —0.2.

Coleman and Glashow and Socolow also made an
analysis of pseudoscalar mass differences which could
be used Laccording to the picture outlined in Eq. (6.3)$
as an alternative way of determining the parameter R&.
A better scheme for using these data is suggested by
the result obtained by Dashen, ' which we have discussed
in Sec; III, Eq. (3.7).

In view of this results, using Eq. (6.4) we find the
following equation for masses squared:
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In view of the uncertainties in the determination of
Ei, this can only be taken as an indication that

l $ l
is

small compared to 1,which leads to a good prediction for
the angle 8. In particular, the value of g given above
leads to

8=0.25.

An interesting case that can be treated by the same
procedure is the p —+ 3x decay. Sutherland has shown
that, in the soft-pion limit, the e.m. contribution to
such decay vanishes because of current-algebra com-
mutators. This has been considered as a baAiing result,
in view of the fact that similar hypotheses give excellent
results for nonleptonic E-meson decays, and prompted
various authors" to propose the possibility of non-
electromagnetic isospin-breaking interactions as the
source of the p —+ 3m- decay.

As we have seen, such an additional SU(2) breaking
is provided quite naturally by our theory. In the light
of Sutherland's theorem, Eq. (6.4) states that

&3~l T l~) = l (~—0)/~~j(1 —6)(3~l ~3(0) le& (6 1o)

When treated with standard soft-pion techniques,
Eq. (6.10) is known to reproduce the correct slope of
the Dalitz-plot distribution" as well as the correct
order of magnitude for the rate. We shall give a more
complete analysis of p —+ 3w decay in our theory
elsewhere.

It is interesting to note that the 0.3 interaction,
which was introduced before as an ad hoc assumption, "
is here derived directly from our self-consistency
requirement.

VII. CONCLUSION AND FINAL REMARKS

In this paper we have presented the state of our
theory of the angle 8 of which an outline was given in I.
In many ways the ideas discussed here represent an
evolution in respect to those contained in I. The first
difference consists in a more thorough treatment of the
large violations of both parity and strangeness induced
by weak corrections, which we have shown to be only
apparent. In fact, the main effect of the corresponding
terms consists in a redefinition, via an SU(3)SSU(3)
rotation, of both parity and strangeness. The necessity

"See D. G. Sutherland, Nucl. Phys. B2, 433 (1967), and
references contained therein.

"Y.T. Chiu, I. Schechter, and Y. Veda, Phys. Rev. 161, 1612
(1967).

of such a rotation is now at the core of our theory.
The amount of rotation necessary to reinstate parity
and strangeness conservation depends upon the impor-
tant parameter f, whose introduction is the second new

aspect of this paper.
This rotation modihes the actual value of the weak-

interaction angle 8. In particular, if )=1, the physically
observed value of 0 would be zero. This result is
independent of our consistency requirement. In fact,
(=1 was shown to result from any theory where weak
interactions are mediated by a neutral vector boson
coupled to the current corresponding to the third
component of weak isospin. It is unfortunate that we
are not able to compute the correct value of $ in a
realistic theory, with charged (or with both charged
and neutral) bosons, so that & has, at least at this
stage, to remain a phenomenological parameter. In this
respect, however, a happy circumstance is the emer-

gence, in our theory, of nonelectromagnetic isospin
breaking, which strongly depends upon the value of t,
and allows a phenomenological determination of this
parameter. As we have discussed in Sec. VI, an estimate
for $ can be obtained through an analysis of isospin-
breaking mass differences for pseudoscalar mesons. In
this respect, it is encouraging that in this way we have
found a value for $ in substantial agreement with the
experimental value of 0.

This nonelectromagnetic isospin breaking can provide
also the basis for an understanding of the q —+ 3w puzzle.

A very delicate point for the enforcement of our
program is the knowledge of the structure of bh'
As we have indicated in I, we expect bh' . to have the
SU(3) structure dictated by U-spin invariance, apart
from the relatively small effects of the SU(3) break-
ing. In Sec. III we discussed how a large vacuum
breaking, suggested by the phenomenological analyses
of symmetry breaking, plays a crucial role in enforcing
this condition, and actually allows such a situation to
apply in reality. In any case, a reliable computation of
bh; and the evaluation of $ remain a main challenge
for the future development of our program.
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