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A convenient method is introduced to analyze the requirements imposed by the analyticity of the full
helicity amplitudes on the structure of Regge poles and their residues at 3=0 for two-body-to-two-body
reactions with general masses and spins. This method enables us to visualize the structure of daughter
trajectories and conspirators clearly. Also, in practice, this method enables us to make the following deriva-
tion easily for reactions with arbitrary spins. (1) The most singular parts of the daughter and conspirator
residues at 1=0 are calculated for unequal-mass —unequal-mass reactions and unequal-mass —equal-mass
reactions. Then, through factorization, the nonvanishing parts of the daughter and conspirator residues
are obtained for the equal-mass-equal-mass reactions. They are identified with a one-Lorentz-pole expan-
sion. (2) In calculating the daughter and conspirator residues, the analyticity requirements of both the
t-channel and the s-channel helicity amplitudes are satisfied. Therefore, the conspiracy equations are
shown to be satis6ed explicitly. (3) The restrictions on the slopes of the daughter trajectories are also
obtained. Their independence of the external masses and spins is shown. (4) The restrictions on the slopes
of the conspirators are also calculated. We obtain an interesting new result: For a trajectory of quantum num-
ber 3II, at t =0, the trajectories o.+(t) and n (t) are equal, and likewise their derivatives up to the (3f —1)th.
Before carrying out all these calculations, all the t factors of the Regge residue have to be determined. By
introducing a quantum number 3f in the unequal-mass —unequal-mass reactions, the t factors of the parent
as well as the daughter residues are uniquely determined using the conventional method of analyticity
and factorization. This quantum number IrI is identified to be the O(4) 3f in the equal-mass —equal-mass
reactions. We note that if the definition of the quantum number M is not aQ'ected by the coincidence of
a. (t) with an integer at t =0, then the trajectory n(0) will choose sense if 3I(n(0) and choose nonsense if
34 )n(0). At the end of the paper, a discussion is given on the implications for the group-theoretical ap-
proach to the Regge-pole theory.

INTRODUCTION

HE Regge trajectory n(t) and its residue p(t) in
equal-mass spinless reactions are real analytic

functions having only the dynamical cuts starting at
threshold. ' Both n(t) and p(t) are analytic at t= 0 In the.
general two-to-two reactions, the Regge-pole structure
at /=0 is complicated by two features: high spins and
unequal masses. In the unequal-mass cases, ' the high-

energy expansion of each Regge term is singular at
3=0. This behavior is in contrast with the analyticity
property of the full amplitude. Consequently, an in-

6nity of integer-spaced trajectories must exist in order
to cancel the singularities at 3=0. These are the
daughter trajectories. In the case of high spins, addi-
tional singularities exist in the residue functions Px„(t);
these singularities can be found by first analyzing the
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kinematic singularities' ' of the full amplitude fq„(t)
and then imposing factorization on pq„(t). Factoriza-
tion is a result of unitarity and the simple-pole assump-
tion. However, this analytic approach appears to miss
two important properties: erst, the conspiracy rela-
tions ' and how they are satisfied; and second, the
additional 0(4) symmetry at t=0 in the equal-mass
reactions. ' "With the one-Lorentz-pole assumption at
1=0 in the equal-mass reaction, many specific results
can be obtained —for example, the existence of a parity
doublet and the daughter trajectories, and the way they

s Y. Hara, Phys. Rev. 136, 8507 (1964).
4 L. L. Wang, Phys. Rev. 142 1187 (1966).
e H. P. Stapp, Phys. Rev. 16$, 1251 (1967); W. E. A. Davies,

Nuovo Cimento 53A, 929 (1968).
e L. L. Wang, Phys. Rev. 153, 1664 (196'/); Phys. Rev. Letters

16, 756 (1967).
7 M. L. Goldberger, M. T. Grisaru, S.W. MacDowell, and D. Y.

Wong, Phys. Rev. 120, 2250 (1960); D. V. Volkov and V. N.
Gribov, Zh. Ekperim. i Teor. Fiz. 44 1068 (1963) /English transl. :
Soviet Phys. —JETP 17, /20 (1963)

G. Fox, Cambridge University thesis, 196/ (unpublished);
G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N. Y.) 46, 239 (1968); H. Hogaasen and Ph. Salin, Nucl. Phys.
82, 657 (1967); J. D. Jackson and G. E. Hite, Phys. Rev. 169,
1248 (1968);J. D. Stack, ibid. 171, 1666 (1968).' G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 (1964).

'e M. Toiler, Nuovo Cimento 37, 631 (1965); University of
Rome Report Nos. 76, 1965 and 84, 1966 (unpublished); Nuovo
Cimento SBA, 671 (1968); 54A, 295 (1968); A. Sciarrino and M. '

Toiler, J. Math. Phys. 7, 1670 (1967).
~~ D. Freedman and J. M. Wang, Phys. Rev. 16{},1560 (1967)

663



J.—M. WANG AND L. —L. WANG

collaborate to satisfy the conspiracy relations. However,
the one-Lorentz-pole approach cannot be used directly
for unequal-mass cases. Therefore, these two approaches
(Lorentz-pole and analyticity) were used in a com-
plementary way": first using the one-Lorentz-pole as-
sumption for equal-mass —equal-mass reactions (EE re-
actions), and then using factorization and analyticity
for unequal-mass —unequal-mass reactions (UU re-
actions) and unequal-mass —equal-mass reactions (UE
reactions). This approach has been used to make experi-
mental predictions for some reactions. " However, in
all these works, the t factors are determined for the
residues of only the leading one or two trajectories. How
the daughter trajectories sum in general reactions has
never been fully understood. Only in models has this
been dealt with completely. ""But they all have the
drawback of specifying too much, e.g. , (1) they have
parallel trajectories, (2) they can only specify that a
trajectory's coupling does or does not vanish at the
equal-mass vertex at t = 0. There is no way of recovering
a trajectory and its coupling from t=0.

Recently, attempts were made to use the original
analyticity and factorization method to study the
problem thoroughly. The analysis involved can be di-
vided into two categories.

(1) Studying the t factors of the residues of the lea, d-

ing one or two trajectories: The existence of conspirators
in the UU reactions can be establi'shed in this way. '
Results have been obtained for many specific reactions. "
A neat and general solution was obtained by Frampton"
for the parent trajectories.

(2) Calculating the daughter and conspirator residues
explicitly: It is found that the most singular part of the
daughter residues in the VV and the VE reactions can
uniquely determine the nonvanishing parts of the
daughter residues in the EE reactions. It is shown that
the result is just a one-Lorentz-pole expansion. For the
spinless case this was done by Taylor" using parallel
daughter trafectories, and later by Bronzan and Jones"
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without assuming parallel daughter trajectories. For the
total spin-one case, it was done by Drago and Di
Vecchia" and by Bronzan. " This is a major break-
through in understanding the problem.

Weiss" takes a diferent approach. Assuming that
particles of arbitrarily high spin exist, he shows that to
satisfy all the conspiracy relations of all the equal-mass
reactions with arbitrarily high spins, a one-I. orentz-
pole expansion is one of the two possible solutions.
However, the other solution can only be eliminated by
considering 6rst the UV and the VE reactions. ""
Using analyticity in the UU and the VE reactions,
conditions on the slope of daughter trajectories can
also be obtained. "However, the methods so far used
are quite complicated and are almost impossible to
generalize to high spins. Also because of the complexity,
it is not very easy to see the structure.

In this paper, we introduce a convenient method of
analyzing order by order the analyticity requirements
of the full helicity amplitudes on the structure of Regge
poles and their residues at t=0 for two-body-to-two-
body reactions of general masses and spins. A qualita-
tively different property develops for reactions of total
spin greater than 1: The most singular part of the
original helicity residues of the daughter trajectories
cannot uniquely be determined in the UE and the EE
reactions. Kith the help of the constraint equations
only the new daughter residues P„,,z defined in Eq. (3.38)
can be uniquely determined. Our main purpose is to
give a clear and complete picture of the structure; there-
fore, many results previously derived in the spinless
and total-spin-1 case are also included in the paper. '4

The organization of the paper is as follows.
In Sec. I, we demonstrate the method in the spinless

case. We show the relation between the number of ad-
ditional zeros in the residue at t=-0 and the number of
arbitrary parameters needed to determine the most
singular parts of the daughter residues. Using this
method, the most singular parts of the daughter resi-
dues are calculated in the UU and UE reactions, then
through factorization the daughter residues in the EE
reaction are obtained. They are identified with the one-
Lorentz-pole expansion. The conditions on the deriva-
tives of the daughter trajectories are obtained. These
conditions are shown to be consistent in the VV and
the UE reactions.

In Sec. II, the t factors of the parent as well as the
daughter trajectories are derived. The results are sum-
marized in Fig. 1. As indicated in Refs. 14 and 18, the

2~ P. Di Vecchia and F. Drago, Phys. Rev. 178, 2329 (1969);
J. B. Bronzan, ibid. 178, 2302 (1969).

~' J. H. Weiss, Phys. Rev. 176, 1822 (1968)."P.Di Vecchia and F. Drago, Phys. Letters 278, 387 (1968);
Frascati-Caltech Report (unpublished); J. B. Bronzan, C. E.
Jones, and P. K. Kuo, Phys. Rev. 175, 200 (1968). The mass
formula has also been derived in a completely different approach
by G. Domokos and P. Suranyi, Nuovo Cimento 56A, 445 (1.968).
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that S. Cosslett was also investigating the Droblem, using a some-
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quantum number M is introduced in the UU reaction
to fix the t factors of the residues. "The results for the
parent trajectories are the same as Frampton's and the
method used is the same as in Ref. 6. %e include the
discussions here for completeness and for discussions
in Sec. III.

In Sec. III, we calculate essentially the same things
as in Sec. I but for reactions of high spins. The structure
here is more complex. The conspirator and its daughters
must be included in order to satisfy the analyticity of
the t-channel amplitudes f,~,Dp' We. show that for
trajectories of quantum number M, the functions n„,+(t)
and n„, (t) are equal up to the (M —1)th derivative
at t= 0. In the UE reactions, the residues are explicitly
constructed so that they satisfy the further analyticity
requirement of the s-channel helicity amplitudesf. ..p'

in addition to that of f,~ ~b' Ther. efore, the way the
conspiracy relations are satis6ed is explicitly shown.

In Appendix A, we list some useful formulas. In
Appendix 3, we elaborate the Andrews-Gunson'
method of calculating the expansion coefficients of the
E functions. In Appendix C, we show that the conditions
on the slopes of the daughter trajectories in the UE
reactions are consistent with those in the UU reactions
for general spins.

I. METHOD OF ANALYZING STRUCTURE OF
REGGE TRAJECTORIES AND RESIDUES

REQUIRED BY ANALYTICITY AND
FACTOMZATION AT t=O:

SPINLESS REACTIONS

A. Residues of Daughter Trajectories at 1=0

The Regge-pole contribution to a spinless amplitude
is given by

f(s, t) =(1—e-'~ /sinxn)P(t)(Pp, p (zg), (1.1)
where

(Pp, p (zg) =—tannin Q ~(z~),

z,=$2st+t' —t Q m—s+(mss —m p')

X(m, ' m.'))/9'.—,v'pd,

1',.'—=pt —(m, +m, )')$t —(m —m,)') =4t(p)',
~'ps'=pt —(m p+mg)') jt —(m p

—mg)s) =4t(pg')'.

panded in terms of (z,—1). The t singularity of P(t)
is canceled only by the leading term (z, —1), which
gives an s~ term in f(s,t). All the lower-order terms,
(z& —1) ', (z~ —1) ', etc. , give terms like s (st) ',
s (st) ', etc. , which contribute poles to f(s, t) at t=o.
This violates the analyticity of f(s,t). The daughter

trajectories, ' n„=n —",where x = 1, 2, . . ., are introduced
such as to cancel these singularities at t= 0—that is, to
make Eq. (1.1) become

f( t) =7(t)t (1
Cos7l A

'(t)Q .. ~(z~), (1 4)
a&i «=0

so that there are no lower-order terms in (z& —1) ex-
cept (z~ —1) . Therefore, the daughter-residue a's are
required to satisfy

"(t=O)Q-..—( ) =L-:( -1)),
ail «=0

(1.5)

P~'( )-t(+ )t (1.7)

where the factor ~s in front of (z&—1) is just for conven-
ience in the definition of a". Notice that the a"'s are
regular in t. Therefore, all the daughters have the same
t factor as the parent. Also notice that even though
f(s, t) has only one term in (z,—1)~, f(s, t) does have all
terms s, s~ ' s~ ', etc., at t= 0. Obviously the daugh-
ters must have the same phase as well as the same
(parity) X(Jparity) as the parent, so the odd daughters
must have opposite parity to that of the parent. Also,
all the daughters must have the same quantum num-
bers as the parent. The expansion coe@cients a" of Eq.
(1.5) can be calculated using the method given by
Andrews and Gunson. "%e give the detailed calculation
in Appendix B.The result is

6"=go, p"' With CX
—Q« =K

= or ' tauon)F(n+I))'( —)"(2n+1)
X(I'(s+1)I'(n+n„+2)) ', (1.6)

where the general dednition of go, o" is given by Eq.
(B15) in Appendix B.

For EU reactions, similar arguments go through. The
only difference is in the kinematics. That is,

where

pUv(t) ~a

z, —1=st/s, +O(t),

sz ——~s ((m ' —m )(m&' —mP) ('".

The t factor of the residue is P(t) (P,P~'):

(1 2)
z,= (st)/ss+O(t), (1.8)

where ss ——
~smarm,

' —m s~. Since Q ~ &(z&) contains only
terms of s, s ', s 4, etc., only even daughters are
needed so that

b"Q-..—.(z~) =(sz~).. (1.9)For large energy s, the function Q ~(z,) can be ex- even «=O

sidered the t factors in the UU reactions for the parent traj t Actually, the Pauli PrinciPle and the conservati n of 6"M. Le BelIac, Nnovo Cimento SSA, 318 (1968).He also eon- ' ~ ~

"M. Andrews and J. Gunson, J. Math, Phys. 5, 1391 (f964). parity imply that the odd trajectories and the even
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trajectories cannot both couple to the same equal-mass
identical-particle or particle-antiparticle pair, because
the even and the odd trajectories have exactly the same
quantum numbers but opposite parity. In a UE re-
action, where only the odd trajectories can couple to
the equal-mass pair, their residues will have the f
ing t factor:

residue can have the most singular form allowed by the
kinematics given in Eqs. (1.2) and (1.7). If there happen
to be additional zeros of t in the residues (say, in the UU
reaction), then

(1.16)~(t)-t-.+"

O '(t)-(4t)-.+'.

The equation corresponding to Eq. (1.9) is

ollow
where n is a positive integer. Then the analyticity of the
full amplitude will allow lower-order terms in z, —1
on the right-hand side of Eq. (1.5), i.e.,

b Q -.—.(z~) =(os~)--
odd «=1

By factorization,

&"(t)0"(t)= L&"(t)7',

and from Eqs. (1.2) and (1.10), we obtain

P"()t- t,

"(t=o)Q--.-( )=L-'( -1)7+dL-:( -1)7-'
(1 11) all a=o

+ +d-I o(z~ —1)7 "~ (117)

where the d's are not determined. So the daughter
residues are determined up to the erst rt arbitrary resi-
dues. With the g's given in Eq. (B15),

+"=go,o"' +Ago, o"' '+ ' ' '+dngo, o"' " (1 18)

Similarly, in the UE reaction, if
1.13

for odd trajectories. Therefore, the odd daughters de-
couple from an equal-mass pair at t=0 irrespective of
whether the internal quantum number allows the cou-
pling or not. We shall see in Sec. II that our solution here
corresponds to the 3I=0 solution. From Eqs. (326) and
(330) in Appendix 3, the solution to Eq. (1.9) is

P(t)-(vt)
then Eq. (1.11) changes to

&"(t=0)Q- .—~(z~) = (os~) +d~(2z~)
even «=0

(1.19)

g~(t —p) —h n, a

' tanvrnr (n+ 1)(-,') '(2n„+ 1)r(n„+ 1)
x Lr(x+ 1)r(2n„+ 2)7-'

XF(—z, n„+1; 2n„+2; 2)
= tanmnr(n+1)( )"~'(-,'—) +"+'(2n„+1)

xP(+1)r(-:-+l-.+!)r(—:+l)7-',
(1.14)

with n —0.„=~. Notice that b" is zero if ~ is a positive odd
integer.

For the EE reactions, we can 6nd the nonvanishing
part of the daughter residues by factorization'.

cx(t—0) —(gx)2/gc

tan (—')'& + +' (2 „+1)r(n+n,+2)
x(r(.y1)7- (r(-', +-', „+-',)r(—;.+-',)7-'.

(1.15)

+. . .+d (ls )a 2n (—1 2P)

and with the h's given in Eq. (326),

gc(t —p) —h z, a+d /t c,a—2+. . .+d Q c,a—Rn (1 21)

All these observations will be useful in analyzing re-
strictions on the slopes of the trajectories.

B. Slopes of Daughter Trajectories at t=O

We see now that the analyticity requirement on the
full amplitude uniquely determines the positions of the
daughter trajectories n„(0) and the most singular part
of their residues in terms of e(0). Obviously, there are
also restrictions on the slopes of the trajectories and the
less singular parts of the residues. We shall show that
n„'(0) is determined in terms of n(0), n'(0), and nq'(0).
We do not discuss the higher-order derivatives here.

The condition on n„'(0) comes from the following
terms. From the re resentation

Notice that c'=0 if I(: is a positive odd integer. This is
consistent with Eq. (1.13). Checking with Kqs. (A9) 1Lr(—~ )7'
and (A10), one Ands that Q--.-~(«) =- H(« —1)7 ""'

2 I'( —2n, )

c"(t=0)Q „z(sg)
even «=0

is just proportional to an M=O O(4) pole. Therefore,
via factorization, the analyticity requirements in un-
equal-mass reactions necessarily lead to the one-
I.orentz-pole solution. This was first shown in Refs.
19 and 20.

Notice that we have just discussed a case where the

XI'( ~., —~.; —2~.; 2/(1 —zt)), (122)

we see that all the n(t)-dependent power of sp~ is in
L~~(s& —1)7 ~o . We can expand this u„(t) in Eq. (1.22):

Q . ,(.,)= V . ,(.,)
x (1+Ltd'(0)+t'~" (0)+ 7 ln-,'(s, —1)
+[«'(0)+t'~"(0)+ " 7'

Xt ln-,'(z, —1)7o+" }, (1.23')
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where Q—.—i(s~) is the same as Q, i(s~) except that
the n„(t) of Lip(z, —1)j ~"& in Eq. (1.22) is replaced by
n„(0).

Let us consider the term with ta'(0) ln-,'(z&—1) in the
UU reaction. Because of this extra factor of t, the con-
straint equation due to analyticity will be of the form
of Eq. (1.17), instead of Kq. (1.6):

Since the a"(0)'s are known, we can calculate di ..

dk=n'(0)uo(0)Pi +ni'(0)a'Po '
= Ln'(0) —ui'(0) $a'(0)Pi

=
l
u'(0) —ai'(0)]&&-,'n, (1.25)

where Pi is the coefFicient of Ps(s, —1)j —' in Q i(s,),
and Po & is the coefficient of Ls(s, —1)j ' in Q ~, r(s&).
The relations a P ~p=+-,'n and a'P ~+g'Pp&=0 are
used. So the calculation of the condition on n„'(0)
amounts to calculating the coefficients of the following
expansions:

+-'nl n'(0) —ni'(0) jL."(s —1)j "&-'. (1.26)

Using Eqs. (1.17), (1.6), and (815), we obtain the
solution to Eq. (1.26):

u"(0)n, '(0)= n'(0) go, p"

+pal:u'(0) —ni'(o) jgo.o"" '.
From Eqs. (1.6) and (815), which gives

go, o"' /go, o" = —x(2n x+ 1)/n, —

we obtain

(1.27)

(1.28)

'(m —'(0) =l: '(0) —'(0)3
)&xL2n(0) —x+1//2n(0). (1.29)

This is so-called mass formula for M=O trajectories
derived in Ref. 23. Similar calculations can be made for
Ltn'(0) j"Dn-,'(s, —1)j".It is left to the reader to show
that the results are consistent with Eq. (1.29).

Obviously, the restriction on the slopes of trajectories
ought to be independent of the external masses. Here
we are going to calculate the restrictions on the slopes
of the daughter trajectories in the UE reactions; then
we shall see if they are consistent with those obtained
in UU reactions. If they were not, the daughters might
be forced to be parallel to the parent. However, we shall
show that the restrictions are, in fact, consistent. By an
argument similar to that for the UU reaction, we find

a(0) u'(0)Q--. (i-z)i»-'s( s—i 1)
ali «=0

=u'(0)P, (s,—1)g &P& ln-', (z,—1)

+dil -', (z, —1)j &o&—' ln-', (z, —1) . (1.24)

II. t FACTORS OF PARENT AND DAUGHTER
RESIDUES AT t=0

From the discussion in Sec. I, we see that the calcula-
tion of the daughter residues depends crucially on the
t factors of the residues. Therefore, we have to discuss
the 3 factors of the residues first.

A. Helicity Formalism

Throughout the paper we shall use the helicity for-
malism. "Ke first review some of the well-known prop-
erties of the helicity amplitudes. " Since we are con-
cerned with Regge poles in the t channel, it is natural
to use the t-channel helicity amplitudes

f ~ D p'= (v2 sin-', 0,) ~& r'~(K—2 cos ', 0,)~p+@f„„—', (2.1)-

where

fu,.'= Z(2~+1)P.,—.'d. ,.'(si)--
J

(2.2)

d„„-~(z,)=—d„,„-~(s,) (K2 sin-'8 )-~z-p~ X (v2 cos-', 8)-~z+p~.

"See Eqs. (3.81)—(3.83) and Appendix C.
"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
~ The Reggeization formalism is from M. Gell-Mann, M.

Goldberger, F. Low, E. Marx, and F. Zachariasen, Phys. Rev.
133, BI45 (1964), Appendix B; we use the same convention as in
Refs. 4 and 6.

the equation for the slopes of the daughter trajectories

h'u„'(0) = hp, p"'u'(0)+dihp, p" -',
«=0, 2, 4, . . . (1.30)

In Kq. (1.30),

d =La'(0)P h "+u '(0)Pp 'ho o' )
=

l
—n'(0)+as'(0))Po"ho, o'"

'(0) —'(0)j
&& ( —1)/g(2 —1), (1.31)

h ' '/h " =x(2n —x+1)/2(2n —1), (1.32)

so Eq. (1.32) becomes

n.'(o) -n'(o) = Lup'(0) -n'(o) j
&(x(2n x+—1)/2(2n —1) . (1.33)

To check consistency, we substitute the ~=2 solution
from Eq. (1.29), i.e., ns' —n'= (ni' —n')(2n —1)/u, into
Eq. (1.33):

n„'(0) —n'(0) = Lni'(0) —n'(0) )x(2n —x+ 1)/2a.

This is just Eq. (1.29). Therefore, the consistency is
condrmed. Ke see that the daughters are not forced
to be parallel to the parent. In Sec. III and Appendix C,
we shall demonstrate that Kq. (1.29) is correct for
arbitrary M and independent of external masses, "ex-
cept for M = 1, where Eq. (1.29) is correct if we replace
the n's by the corresponding sums for the parity
doublet, n++u .



J.—M. WANG AND L. —L. WANG

To be specific, we consider the case p ~& p ~&0 and use the
p.'s as the total helicities for the unequal-mass vertex.
The parity-conserving helicity amplitudes are

f~, '+=f, '~itf—-, '=Z(2J+1)F-. '+(t)d, - '+( )
J'

+Q(27+1)F„-,„+d„,p —(,) (2.3)

and

p»+ or p„-„-+ or both. ' After applying this discussion to
all possible p and p, one will find that there is always
one used only one diagonal residue that can resume its
most singular form t . As indicated in Refs. 14 and 18,
a quantum number M' (always positive by convention)
can be uniquely defined for a Regge trajectory e, as
follows: A Regge-trajectory 0, has a quantum number
3f if its coupling to the helicity state p= p, =M has the
most singular form allowed by analyticity, i.e.,

where
&= ( )y+Prt &&( )44+4'

(2.4)

From Eq. (2.11),

psr, ~+=y3r, itr+t (2.13)

B. UU Reactions

The full t-channel helicity amplitudes f' of the UU
reactions are analytic at t=O. But the f', which are
analytic in s, do have singularities at t=0, due to the
vanishing of sin-', 8, or cos-', 8, «at t= 0.If" (rn, ' —ns, 2)

X (nil nsJ )&0, then ei= 0 at t= 0. Therefore, the
kinematic singularities at t= 0 are

and

f„&+~(«) IP+vt-

f „„~(«)—Iri—sl

f~ „i~(Qt) t1 +II—
(2.5)

(2.6)

(2 7)

Notice that the most singular parts of both fr, „'+ and. .
f„„' are from -f „-—

,„', so they are correlated

1. t Factors of Parent Trajectory

From Eqs. (2.5)—(2.7) '8'5 the residue Pp, „+(t) of
F„„~+(t) for a R-egge trajectory n has the following
singularity:

nz= g.n~( )"+"—.
The amplitudes FJ+ contain only the normal spin-
parity states LP(—)~=+7; the amplitudes F~ con-
tain only the abnormal spin-parity states LP(—)~= —j. p +—y +t—mt' p— (2.15)

Similar arguments can be applied to all possible values
of p and p. One finds that both analyticity and factori-
zation are satisfied if

pP
'= PP't («) ~ I" («) ~ "I (216)

here the p's are analytic and without zeros, by the
definition of 3I. Therefore, the behavior of P„,„+at t = 0
is uniquely determined by M. Notice that in addition
to p~is+, the p~„+ also have the most singular t factor
allowed by the kinematics.

Here we should recall the following point": For given
n and 3E, the P„-,„+ and P„-,„have the same t=0 be-
havior. But notice that Pp, „=Pp,„++Pp,„has a less
singular factor than P p, „=gq(P„-,„—P„-,„).To be
specific, we consider P~~+ t From Eqs. . (2.5) and
(2.6), we find

Petr its t +, but P ~as t (2 1")

This means that P~, ~+ and P~, itr must be correlated,
4

l.e.)
(2.18)

In general,

y„,„=y„„++y» -the le-ss singular of

Petr, „+=y~,„+t- («) -". (2.14)

Then by factorization, y»+ must have a zero of the
form t~ ~; therefore,

where the y's are analytic in t. The first part of the
singularity is from the full helicity amplitudes, and the
second part is from partial-wave projection. The singu-
larity in Eq. (2.8) is the most singular behavior allowed
by analyticity. Considering the following residues:

(«) I I +~ I I ~ P I I sl—I I———

so that

p„-,„=y„-,„&(the less singular of

(2.19)

p

p +—+ +~a

p;,."=v;,.+t (v t)" ",

(2.V)

(2.10)

(2.11) But

t
—~(«) I I +~ I

(2.20)
t
—~(«) I ~ pl («) I ~—vl—

(p;. )'=p; p..' (2.12)

Some analytic zeros in t must be introduced to either

we clearly see that they do not satisfy factorization,
i.e., it is not the case that

p ;,,=7 .,.t («—)~ " (—«-)~ "I (2 21)

The main point here is that for any trajectory o, with
M) 0, we can find a helicity amplitude (such as fmm)
relating the plus amplitude and the minus state. Thus
there must exist another trajectory with opposite spin-
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parity, which is usually called the conspirator of the S&~X&~p, we have
former. Only an 3f= 0 trajectory does not have to have
a conspirator.

+(+t) N—(+t) &—S }—s„—} (2.27)
Z. f Factors of Daughter Trajectory where

q„= j. if p is odd

=0 if p is even

For those helicity amplitudes whose residues have
the most singular behavior allowed, such as ft&t,„'+, the
t=O behavior of the residues of the daughters is uni-

quely determined by that of the residues of the parent.
A detailed daughter cancellation mechanism is given
in Sec. III. Just as in the spinless case, it turns out that
all the daughter and conspirator residues Psr, „"+ should
have the same t factor as the parent &(fst, „+. Then by
factorization, all P„-,„"should have the same f factor as
the parent, i.e., (2.29)p +=+ +f—nfl jrsl

(2.22)
The t factors at t=0 for EE reactions are4

P„- „& + t
—~(gf) I}&c—lsll(+t)lsr —I}&II

C. UE and EE Reactions

1. t Factor of Parent

if ( )X+V—+
if ( )X+V— (2.30)

The second factor in the singularity shown in Eq. (2.27)
is from the kinematic singularity given in Eq. (2.24).
The 6rst factor is a result of the partial-wave projection.
From Eq. (2.16), the t factor of the UU residue is

Ke consider 6rst the VE reactions with equal-mass
pair m~=m~. The main difference between the t=O
singularity of UE and that of UU is that the full
helicity amplitudes f„}, do have singularities at f=O.
The quantities" sin —,'0& and cos-', eg are 1 at t=0; there-
fore, the f„},"s have respectively the same singularities
at t=0 as the f„},"s. But notice that in the UF. case,
t=O is never inside the physical region. 1A'e shall use
) to denote the total helicity at the equal-mass vertex,
i.e., X=—D—b. In accordance with the definition in Sec.
II 8, p, is used for the unequal-mass vertex. The kine-
matic singularities of the helicity amplitude are"

f„, '"=f „, '+rtf „, ' (Qt) r+, (2—.23)

where the rt is the same as in Eq. (2.4). For boson-boson

(BB) reactions,

=S——L1—(&)„„„(—) +"+" $, (2.24)

Therefore,

is constant at t= 0. Factorization requires

(2.31)

(2.32)

Notice two things in this equation. First, the left-hand
side is always more singular than the right-hand side,
so additional zeros must be introduced into the UE
residues. Second, the right-hand side has the same t

factor for plus and for minus states, but the P„,},+ on the
left differ by a factor Qt Therefore. , either for the plus
or for the minus states, the two sides of Eq. (2.32) may
differ in odd powers of t. In that case, a factor of t

must be introduced in P},},. (It cannot be in P„,„, since
its t factor is fixed by the convention for the quantum
number M.) From Eqs. (2.27)—(2.29) and (2.32), one
can reach the conclusion that for the EE reactions

where S is even; whereas for fermion-antifermion (FF)
reactions, where

p~~+~ ff (&+s}

( )S—}+M

(2.33)

(2.34)

where S is odd. Here X =max(tt, ) ), t&&~0, )&&~0, S—=ss
+ss. For definiteness, we put ss ——ss. The singularities
of the full helicity amplitudes are

f„}', f „,}'-, (gt) -
(2..26)

We consider separately the following cases.
a. Case of S&~M. For a boson-boson system with

'o If the masses are such that (m, s —m s)(ms' —m&,s) )0, then
Of=+ at 0,=0, Of=0 at t=O, and t=0 is outside the s physical
region; here, f„„'~(gt) &I' » an-d, f „,„'~(gt) &&+» for -t&&~t&&~0.
If (m '—m ')(mq' mb') (0, the—n 8& ——0 at 8,=0, 8&

——s at t=0,
and t=0 is inside the s physical region; here f„,„'~(gt) &I'+»

and f „„'~(gt) &&» If m-&, =ms and m, W. m, then 8&=-',s at
t =0, Hf =m. at 0,=0, and t =0 is outside all physical regions.

"Appendix A of Ref. 6.

Therefore, the parent trajectory and its conspirator
cannot both couple to a given helicity state X of the
equal-mass pair. For the other cases of S&p&X and
tt&S&)&, the same result as in Eqs. (2.33) and. (2.34)
holds. For fermion-antifermion (FF) system in the t

channel, owing to the difference of Eq. (2.25) from Eq.
(2.24), we find

p~ ~+~ff&1+s} (2.35)

Combining the results of Eqs. (2.33) and (2.35), we have

}M+x+1} (2 36)

b. Case of S~&M. The same argument as given in
Subsec. a will hold. Equations (2.33) and (2.35) are
still true for the cases M&S&'A&p, M&S&p&X, and
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Z. t Factor of Daughters af f= 0

The original t factor of the daughter trajectories
n,=—n —x ls

P. &"+=V.&"+L(«) '(«)""j(«) "+', (2.40)

where the subscript p, refers to the unequal-mass state,
and X to the equal-mass state. Unlike the parent
residue, the daughter p„,z" + may still have poles' in
1 at f =0 Equation (2. .40) says that the even daughters
have the same evenness or oddness in the power of gt
as the parent, but the odd daughters have the opposite.
From factorization,

p xa, k —
p xkp~ ~s,k, (2.41)

The t factor on the right-hand side is the same for all ~.

Using the argument we used in Sec. II C 1, and also
checking with the discussion in Sec. III, it turns out
that the even daughter residues P„,&,

"+ (or P„&,"-)
should have the same t factor as the parent residue

P„,&+ (or P„,&, ). But the odd daughter residues should
have the same t factor as the conspirator residue. There-
fore, we obtain the following 3 factors of the daughter
residues in the EE reaction:

for M(~S,

for M~&5,

P &" =V& &"+f "+""'
—( )sr+&+1+a ~

t&
~ —( )s+l+t+c

(2.42)

M&p)S&A. Hut in the case of p, &M)S)X, we need

p. ,x+=v..~+(«) («) " " *''"' '"""» (237)

which will give more zeros in t on the left-hand side in

Eq. (2.32) than those on the right. Therefore, more
zeros than those in Kqs. (2.33) and (2.35) must be in-

troduced, and the result is

P&„x+ P' s+'t'+t &
+'l for the BBsystem (i.e., Seven)

(2.38)
and

P&, &,
+ f~ s+fl'+t &"l for the FF system (i.e., 5 odd).

(2.39)

Checking the consistency for all cases, we see that this
is the solution for S~(3I.

From all these results, we see that the most singular
factor that a trajectory of quantum number 3EI can give
to its residue in UE reactions is for M =p and S&M:

pysr, x («)
One of the P~sr, &,

+ will have («), and the other

(Qf) ~'. From Eqs. (2.27) and (2.28), we see that only
when X=5 does one of P~sr, s+ have the most singular
t factor allowed by the kinematics. From the discussion
of Sec. I, we foresee that only for this amplitude

f~&rr, e' can the most singular part of the daughter
residue be uniquely determined from that of the parent.
This will be further discussed in Sec. III.

t t
"f. s M-,

(~)M s+& () +'g )

for S& M;

A

Fio. 1. $ factors of Regge residues p„.q(i) and P„.a, (i): Here

ms md=, , m, ~m, ; for p, , q(t), s=S=sq+sq, for Pl„a,,(t), which is
delined in Eq. (3.38), s is the total spin de6ned in Eq. (3.33); K

is the daughter number, s„=—(—)~+"+"+', s„'=—(—)'+"+"+'; notice
that the t factors at the equal-mass vertex are dependent on ff: as
well as on 3f, s, and X.

For a fixed helicity state X, either the even or the odd

trajectories can couple to the equal-mass vertex at t= 0.
As discussed in Sec. I A, for equal-mass vertex of iden-

tical particles or particle-antiparticle, this fact is con-

sistent with the Pauli principle and 6-parity conserva-

tion, because the even and the odd trajectories have

opposite parity. We summarize all the results in Fig. 1.

D. Comments on the Situation When
n(t= 0) Is an Integer

For integer o., the sense and the nonsense channels

must decouple, "i.e, ,

p„- „+ (n —n)'I' for p) n) p) 0. (2.43)

This behavior should be displayed also at t=o, if

n(f= 0) =n. Namely, there should be an additional Qf
factor for those sense-nonsense amplitudes. This ad-

ditional gf factor might complicate the already coin-

plicated t= 0 behavior we have just discussed. However,
we argue that in the UU reaction the t=0 behavior

of psrsr+ should not be changed by the fact that the

n of quantum number M also passes through an integer
at 1=0. Namely, Psrsr+ should still have the most
singular behavior allowed by the kinematics, i.e. ,
psrsr+ t ~ In this way. , the quantum number M is

still a physically well-defined quantity. The trajectory
n of quantum number 3E still contributes its full

strength in the forward direction. Once the behavior
of the psrsr+ is fixed, in addition to the behavior given

by Eq. (2.43) the f =0 behavior for all other residues is

fixed, including those of EB and UE reactions. If
M ~&n(0), the P~sr+ are sense-sense. Therefore, all the
trajectories n with M&~o.(0), and n(0) =e, will choose

sense in all channels, i.e., all the nonsense-nonsense resi-

dues should have an additional factor of t to that given

in Fig. 1. But if M) o.(0), and n(0) =n, the trajectory n

~'The possibility of having a multiplicative fixed pole at a
nonsense wrong-signature point of o. can be ruled out at t=0,
upon the following basis: The daughter residues become singular
if the parent residue has a multiplicative fixed pole. For references
and a detailed discussion of the n factors and fixed pole in the
parent residue, see C. S. Chiu, S. Y. Chu, and L. L. Wang, Phys.
Rev. 161, 1563 (1967); S. Mandelstam and L. L. Wang, gbg~d. 160,
1490 (1967).
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will choose nonsense in all channels. In this case, the full
amplitude can never have a pole at t= 0 corresponding
to this particle. Therefore, this particle decouples from
all physical reactions.

The one-Lorentz-pole result for the BE reaction says
precisely this. " Assuming that the pion has a mass
equal to zero and has M equal to 1, Mandelstam"
first used this group-theoretical result to derive the
Adler self-consistency relation for the soft pions. '4 But
the diKculty associated with this theory, as was real-
ized earlier, " is just that mentioned in the last para-
graph. Once the fact is established that the M= 1 pion
couples only to the nonsense channels, it is clear that
the soft pion decouples totally from all physical reac-
tions. Thus, no physical consequences can be deduced
from this type of soft-pion theory.

p, t" + (Qt)' if (—)~+"=+1
if ( )sr+a (2.44)

Ptpa, +~Qt independent of M and a, (2.45)

E. Discussion

(1) From Fig. 1, the t factor of the residues in the
EE reactions is P&, , &,

" + Qt if (—)"+~'= —1, for any
M&S (P&,. &,

"+ t~ 8+t for M)S). The kinematic
factor of the full t-channel helicity amplitudes is also

fq, q
' Qt. Therefore, our result is consistent with the

analyticity of fz z' Qt, though we did not impose it
in advance.

(2) We apply the results of Fig. 1 to the much-
studied reaction EE—& ÃE. The t-channel reaction is1'—+ IVY. The total intrinsic spin is S=—',+ sr = 1.The
behavior of the 6ve amplitudes for M& S, i.e., M = 0 or
1) is

even conspirators can couple to Fpp . But their odd
daughters totally decouple from the EX system in
either case, owing to internal symmetry. Notice that
the nondependence of Pr p+ gt on M and Ir is consistent
with the kinematic behavior of F&p~+ Qt. Trajec-
tories such as A& can only couple to F&,&~ . Being a
parent trajectory, A~ can couple to Fj.,~~ at t=0 if it
has Sf=0. Then its odd daughters would couple to
Fp, p

' . However if A& were the first daughter of some
trajectory, it can couple to F&,& only when it had
M= 1. The pion trajectory couples to Fp, p . If it is a
parent trajectory, it can couple at t=0 only if it has
3f= 1. Its odd daughters can couple to F~,~~ . Its even
conspirators can couple to F~,j +; its odd conspirators
totally decouple from the EX system. However, if the
pion happened to be a first daughter trajectory, with
M=O, it could couple to the EX system in Fp, p~ at
t= 0. But then its parent n(0) =n, (0)+1 would couple
to FJ,~~, and its importance for high s ~ould be second
only to that of the Pomeranchon np. This is not ob-
served in experiments. Therefore either this possibility is
out of the question or the parent trajectory just hap-
pens to decouple from the EE system.

(3) In the case of M)S, the trajectory totally de-
couples from the equal-mass system. This is a well-
known Lorentz-pole result, ' "but the analyticity ap-
proach also gives the vanishing power.

(4) We see that the quantum number M' cannot be
uniquely introduced in BE reactions by the analyticity
approach. Hence, we may appreciate the powerful re-
strictions due to analyticity and factorization in the
unequal-mass reactions. But the identification of the
quantum number M with the 0(4) M can only be made
after considering its role in the EB reactions, which we
shall discuss in Sec. III. The exact symmetry origin of
3E in the UU reactions is still unclear.

p a,-~ (Qt)s

if (—)~+"=+1
if ( )pr+L—

if (—)r+"=+1
if ( )M+L—

(2.46)

(2.47)

III. STRUCTURE OF REGGE TRAJECTORIES AND
RESIDUES AT f=O: GENERAL SPIN

A. Residues of Consyirators and Daughters at t=0

if ( )M+s —+ 1

if ( )ilr+a (2.48)

"S.Mandelstam, Phys. Rev. 168, I884 (1968).
'4 S. Adler, Phys. Rev. 139, BI638 (4968)."R.F. Sawyer, Phys. Rev. Letters 21, 764 (1968); S. Mandel-

stam (private communication).

The first four amplitudes have G=(—)I+~, and the
last one has G= (—)'+~+' However, Prp =—0 due to the
total decoupling of the singlet and the triplet state.
Notice that the coupling at t=0 depends not only on
M but also on the evenness or the oddness of I(: for a
trajectory.

Consider now the plus parent trajectories, such as
I', I", p, ~, and A2. If they have M=O, they couple to
Fpp +; if le=1, they couple to Fi~~+at t=0, andtheir

From the discussion in Sec. I, we see that the way
to generalize the calculation to general spin is quite
obvious. Instead of Q ~ r(s,), we use E ~ (s,) in Kqs.
(1.5) and (1.9), where Ep, p (sg)=Q r(sg). The only
complication is the additional requirement of a con-
spirator and its daughters. Ke shall show how the
analyticity is achieved by the collaboration of the
daughter sequence and its conspirator daughter
sequence.

l. UU Reactions

As we have discussed in Sec. II B for a trajectory of
quantum number M, the residues P„,sr+ with arbitrary
p. have the most singular form allowed. Thus, the
daughter coeKcients can be uniquely determined from
the analyticity of f„,sr+(s, t) like in Eq. (1.5). To be
specific, we consider 3f ~& JM, &~ 0. The parent contribution
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ls

f,sr'+(»t) =P,sr+(t) Esr, +'+(» )
+p. , ~+(t)E~,; («) (3 1)

where n~(0)=rr (0) Bu. t we know that the singular
parts of psr, „+ and ps', „are related, i.e., 7„,sr+(t)

y„,s—r (t) u—p to the pth derivative, and

p„,sr(t)=p„, sr+(t)+p„, ~ (t) t (Qt)~—+s

instead of t "(Qt)~ ".As far as the most singular part
is concerned, p„,sr+= —p„,M . At t=0, Eq. (3.1)
becomes

(3.2)f„,~'+(s, t) =P„,sr+(t)Esr, „(s,),
where Z~, „=E~,„+—Z~,„.Using the argu-
ment of Sec. I, the daughter coeScient for a trajectory
of quantum number 3f is such that

u sr~ "(t=0)Esr, „(z,)=I-'(z —1)7 &'& ~ (33)
all «=0

The detailed calculation of asr, „~"(t=0) is given in

Appendix 8, Kq. (814) and Eq. (816). For M &&p&~0,

a„,~~ "——g „~"~, with o, —o.„=g,
= (—)~+" tanvr(n —3I) I'(n —xV+1)I'(n+p+1)

2n„+1 I'(n„+M+1)I'(ct„—p+1) '"
&&(-)

I'(~+1) I'(n„—&+1)I'(o.„+p+1)

n'=m»(k(r+p —I~—pI —I~—pl) o)

and the d' are determined. The additional terms on the
right are just allowed by the additional zeros in the
residues.

Z. UE and EE Reactions

In the UV reactions the analyticity requirement is
solely from the t-channel helicity amplitudes f' which
are analytic at 3=0. Once the analyticity properties
of the f"s are satisfied, the f"s are automatically
analytic at t= 0, since the crossing matrix' is analytic
at t=0. But the analyticity requirement in the UE
reaction is much more complicated. First, the f"s have
a ddinite singularity structure at t=0 that has to be
satisfied. Second, the f"s are analytic at t= 0. But this
is not automatically given, since both f"s and the
crossing matrix are singular at t= 0. This gives the well-

known constraints' on the f"s We s. hall show how
these constraints in the UE reactions help to determine
the daughter residues. First, let us discuss the analy-
ticity requirement due to the f"s.

a. Analyticity requirement due to f,z,zb'. As discussed
in Sec. II C, in UE reactions only the residue with
X=S sb+s=—g and p, =3I, and S&~M have the most
singular t factor allowed by the kinematics. Also as
given in Sec. II C for X=S and p =3f, one of ps', s+ and

psr, s has (Qt) and the other has (Qt) +'. To be
specl6c) we discuss the case

)&I I'(n+n„+2)7 '. (3.4)
p~, a+-(v't) (3 g)

br, aE a(z ) d Ll(z 1)7a—s+. . .
all «=0

+d L-'(« —1)7 " " (3 6)

where nkLI-V —pI+IM —pI —(p —p)7. The d's are
explicitly known, since all the a„-,„~"are known from
Eq. (3.5). For fs,„',

"E;,. (z ) =de'L=.'(z —1)7 -"+
all «=0

+d- 'Lk(« —1)7 (3.7)

For other values of p, the value of a~,„~"can be ob-
tained from the symmetry property of the E„,~ given
by Kqs. (82) and (83).

Here it is seen that the analyticity property of

f„,~'+(s, )tis achieved by collaboration of a+,„and
n, „for all positive integer values of z. Also, ap, „~" can
be obtained uniquely by factorizatioii, i.e.,

sr, z g~ sr, co~ sr, c/g~ ~sr, a (3 3)

even though we cannot start with f„,„'+ to calcula-te
the daughter coeKcient. Without proving them ex-
plicitly, we expect the following results for f p, „' with

p ~@~0 ~

p~, s -(V't) +' (3.9)

psr, s"+-(v't) +' or pbr. s"+=
for Ir = positive odd integer. (3.11)

The odd daughters of the minus trajectory should have
the same t factors as the even plus trajectories, i.e.,

Pw, s" (Qt) for K= positive odd integers (3.12)

and

p ."-(t)-(4t)--" - p,"
for z=positive even integers. 'r (3.13)

' T. L. Trueman and G. C. g ick, Ann. Phys. (N. Y.) 26, 332
(1964); I. J. Muzinich, J. Math Phys. .5, 1481 (1964); G. Cohen-
Tannoudji, A. Morel, and H. Navelet, ibid. 46, 239 (1968).' In the other case, P~,."+~(gt) o for s =positive odd integers,
and pbr, ." ~(gt) ~ for s=positive even integers; n, =o„,+ for
ff =positive odd integers, and a„=a„, for tf: =negative even integers.
See Refs. 4 and 5.

As also discussed in Sec. II C, the daughter residues
must be

psr s"+ (Qt) for s = pos—itive even integer (3.10)
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%'e now look at the contributions by the parent and
the first conspirator to the f'+,

Now, adding Eqs. (3.16) and Eq. (3.19), we obtain

f~ s'+(s, t) =P~,s+(t)Es, ir +'+(«)

+P~ s"=' (t)Es ~'=" (s~) (3 14)

where n~(0) =n (0). Therefore, for large s and t= 0,

even tt=0
b~.s" +Es,~"+ Q b~, s" Es ~ "

odd tt=l

= (-'s ) (3.20)

even tt=0
b~ s" +Es,~ "+(«)

+ E b~, s" Es,~" («)=(-',s~) ', (3.16)
odd tt=l

where all the P's and n's are their values at t= 0.
We do the same thing for f~,s,

f ."-(,t)=p,."='-(t)E.
,
'—"'( )

+p~.s+(t)Es, ~ " (s~) (3.17)
=p~ s =~ (Qt) (st)— —

+y~, s+(v't) .(sv't). '-s (3.1-8-).

From this equation we observe two things. First, both
terms in Eq. (3.18) have a (Qt) &s+'& factor, which ex-
ceeds the singular form of the full amplitude f~,s'
~(Qt) & '~ by a factor of t '. Second, as already
mentioned in Sec. II C Z, the P~,s"=' (t) must have the
same t factor as P~,s+(t); otherwise the singularity in
the second term cannot be cancelled. Therefore, there
must be a total cancellation between the two terms.
All these facts require that

odd tt=l

f~.s'+(s, t) y, s+(gt) (s4—t)

+y, ' (gt)—(sQ—t) s '. —(-3.15)

The leading s s term has a (Qt) s singularity, which is
just the singularity of f~,s+. But the second term has
1/t additional singularity, so it must cancel with the
(sQt) s ' term from Es, ir +(st) and Es, ir '+(s~). The
net result is

bm, s" +Es, ~ " 2— bus",
even tt=0 odd «=1

XEs,-~"= (-'s,) s. (-3.21

Equation (3.20) can also be rewritten in the form

where

bjr, s~ "Es,~ "=(-',s)
all tt=0

(3.22)

~M, s ' = ~M, s"'+ for Ii:=positive even integers

~Ms ' =hMs '
p

with o' &tt=K~

=(—)~+s m
' tann-(a+5) r(a —S+1)

X(-,') "(2a.+1)XLr(~+1)r(2n„+2)7—'

r (a.+5+1)r (n,+M+ I)r (n„—M+1)- &I&

X
r(o,„—S+1)

XE(—&, &,—M+1; 2n,+2; 2). (3.23)

bM. s '"= bM, s"' «r &= positive odd integers.

So we see that the analyticity property of f~~,s' is
achieved by the collaboration of the even trajectories
of one spin-parity (n+ in our case) and the odd trajec-
tories of the conspirator (n in our case). From the
symmetry property of Es,~ in Eqs. (B2) and (83) in
Appendix 8, we easily show that the b's obtained from
Eq. (3.22) atuomatically satisfy Eq. (3.21). The solu-
tion to Eq. (3.22) is calculated in Appendix B t see
Eq. (B26)7:

+ g bir, s" +(t)Es, ir " (z&) =0. (3.19) By factorization we can 6nd the daughter residues of
even ted=0 the EE reactions at t= 0, using Eqs. (3.4) and (3.23):

~s,s™x=bs,~~ "bs,~~ "/~~, ~~ "

tan7r(++5) tanm(a+5') r(n —5+1)r(n —S'+1)
S+S'~—l (—x)"(2~.+1)

tanm (a—M) I"(n —M+1)r(n+M+1)

r (n„+M+1)r (n„—M+1)r (n+n, +2) r (n„+5+1)I"(n„+5'+1)-'i'
X

r(~+1)Lr(2~„+2)7' r(~„—s+1)I (~„—5'+1)

XLF(—~, nx —M+1; 2nx+2; 2)7'. (3.24)

Comparing with Eqs. (A9) and (A10), we see again that this is proportional to

ds....s~"+'(f~/2)ds .«.,s I"+'(fs/2).
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all «=0
cs,s "&s,s"(ei)- Z ds ..s +'(i~/2)

all «=0

Xds ...s "(i~/2%'. s "(ei) (3.»)

Therefore, the sum of all daughters just corresponds to
a one-I orentz-pole expansion

to more regular terms of the Regge pole. So we Gnd

cosXb= 2—m'(m, ' m—.')/(sgt) X4m
= —m(m, ' —m, ')/2sgt = (—coso,) '= cosX, (3.28)

cosxs= 2m—(m, ' m—.')/st= (—cos8g) '
—= cosX, (3.29)

cosx.= s(—m ' —m ')/s
~
m '—m '

~

= —1, (3.30)
Notice that if ~ is a positive even integer, c8,8 " are
the residues of even trajectories with the same spin-
parity, but if ~ is a positive odd integer, ea, q "are the
residues of odd trajectories with spin-parity opposite
to that with ~ positive and even.

For other UE amplitudes f„,b', the daughter residues
can be determined in terms of the firsts= 5 —X +M —ti
arbitrary daughter residues, where l).

—=max((p, ), ~l((),
as already defined in Eq. (2.25). The equation corre-
sponding to Eq. (3.22) becomes

b ~ "& "(s ) =do(-'ei) ""+di(-'si)
8,11 tt=o

+ +d„(-;s,) "" " (3.26)

where n= 5—X +cV—p, and the d's are undetermined.
We foresee that the analyticity requirement from f' can
eliminate some of the arbitrariness. Ke shall discuss it
in the next subsection.

b. Analyticity requirement due to f,s, ,b'. The s-channel
helicity amplitudes are related to the 3-channel helicity
amplitudes by crossing":

f,„„'= p d;. ."(x.)d, .b'b(xb) d..."(x,)
~l bl gr dr

Xde s"(Xs)f;;;d b'. (3.27)

For mb= md= m, the crossing angles are given by

cosX.= L
—(s+m.' —m')(t+m ' —m, ')

—2m. '(m, ' — m'))/S. qb,

cosx,= $(s+m, ' m') (t+—m. ' m.')—
—2m, '(m, ' —m '))/s. sq ...

cosx, = $t(s+m' m.') —2m'(m—.' m.'))/—
8.,P(t —4m'))'t',

Therefore,
cosXc —1. (3.31)

db, b"(X)dd s"(X)= (—)'—'d b , 'b(X)d„, „' (X)
—

( ) (sb—b)—(sb—b') g c(& & s. d& bl)
S

Xc(ss, sb, s; d, —b)d), ,b'(X), (3.33)

where A.'=d' —b', l.=b —d. The introduction of sb into
the phase in Eq. (3.33) is just to conform with the con-
vention in Ref. 11. Substituting Eq. (3.33) into Eq.
(3.32), we obtain

f "; .b'=2 2 d-~, "—(X)(-)"'

Xc(sd, sb, s; d, b)—
b', d', d'—b'=X'

( )-(Sb-b')

N'otice that Eqs. (3.28) and (3.29) are also true as far
as the singular part at 3=0 is concerned. Substituting
Eqs. (3.28)—(3.31) into Eq. (3.27), we obtain

f s; b'=—( —)" +"—g db b b(x)
br d/

Xds d "(x)f... s b '. (3.32)

(2) In Eq. (3.32), the functions on the right-hand
side are singular at t=0, but the f,s, ,b' are regular.
As we vary b and d, we shall obtain all the constraint re-
lations on the f"s for fixed c and (b. It turns out that it is
much nicer to use the irreducible form of the crossing
matrix db b"(X)dg, s'"(X), which will be dependent on
b —d and b' —d', since the daughter coeKcients depend
only on b —d, not individually on b or d. So we shall
transform Eq. (3.32) to its irreducible form. "

X 'd' —bcosXs = (t(s+ m' mg') 2m'—(mg' —mg') )/—
S,sLt(t —4m'))'12, Using the orthogonality property of the Clebsch-

where Gordan coe@cients, we have
(I,b)'= Ps —(m.+mb)')Ls —(m.—mb)').

Notice that cosXb and cosXd are singular at 3=0. The
f"s are also singular at t=0. But the f"s are analytic
at t=O. Therefore, the f"s are constrained at t=0
through Eq. (3.27). Let us make the following observa-
tions:

(1) For the crossing angles, we need only keep the
(Qt)s terms at t=O and s —+~. All the other terms,
such as ts, can be dropped, since they will correspond

b, d;d—b=X
( ) (" "c—(sd—, sb,

—s; d, b)f „s, „b'=f „—,)*. —

=p d), ),'(x) (—) " "c(sd, », s;d', —b')
br dr+dr bl ) r

Xf..;s b'—=Z A, ) '(X)j,;.b' (3.33)

'8 This performance is hinted at the 0(4) expansion in R.ef. 11,
or the Lorentz expansion in Ref. 10.
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ol

f, ."=2db, ~'(x)f,;.b'=2 d'."(x)

Xg(2&+1)),;.).'d), y'(zt) . (3 36)

The implications of these equations are interesting.
The left-hand side is still analytic at t=0. As with the
original helicity amplitude, we can use this crossing
relation to discuss the analyticity properties4" of the
new set of amplitudes f„,,), ' by studying the inverted
crossing relation corresponding to Eq. (3.36):

fp, s).' =Q O', x (x)f—p, s), ~

X

(3.37)

d' 5'd' —5'=)'
(—) (" b')c(sg, sb, s; d', t)')—

XP...,., +. (3.38)

Notice that P„,,), still satisfy factorization. Therefore
the results given in Fig. 1 apply to the P„,,q. Again we
see that for s&M, the equal-mass channel totally de-
couples from the trajectory n. For M(~ s, the daughter
residues are uniquely determined in terms of the parent
residue only for fbr, „'. For fixed s=M, the daughter
residues are also uniquely determined for all f~,),

' with
arbitrary X.

From the discussion in Sec. III A Z a, and Eq. (3.26),
the daughter cancellation will mean

The result is precisely the same as the original helicity
amplitudes as given in Eqs. (2.23)—(2.25) of Sec. II C
with the replacement of 5 by s. Therefore all the argu-
ments for the original helicity amplitudes and residues
discussed in Sec. II C and III A 2 a go through. The new
residues are related to the old ones by

we obtain from the kinematics

f @ bs —(~2 sin1g )i (a b—) (—c d—)i

X(v2 cos ,'8,)-' '+—' " —f,„
= (%2 sin i 8,) i ~ "i (K2 cos i 8,) i (~ b)+ (' d) (f „.

(3.42)

where f' are analytic and zero-free wherever sin-,'8,=0
or cos~g, =0. In Eq. (3.40), both sin2g, 1, cos-'g
as s ~~ for t40, but at t=0 sin-', 8, (gs)—'. It follows
that for p —P =0 only, we have

f,g, b' s (gt) z,
—at t =0. (3.43)

The same is true for the f„„)„i.e.,

j„,,) ' 8„)s~+0(s~') at t =0 (3.44)

But from Eqs. (3.36) and (3.41), tb must be equal to M
to make the s term survive. In conclusion, basically
there are two requirements due to f'. First, the analy-
ticity requires that

f" sr;.) '-(gt) (-,'«) (3.45)

Second, the additional symmetry at t=0 requires that

f-~; ~'-gb, -~(v't) (2«) (3 46)

Substituting these into Eq. (3.37), we obtain

7;"'-d',— '(x)(V't)- (lz) . (3.47)

Using Eq. (3.39), we obtain from Eq. (3.47)

P~;1 L2(z~ —1)]'i" '(I:k(«+ 1)]*'i""'
XPb(lz~)" ""+di(kz~) "" '+" +d-(kz~)

= ( M)d — '(x)(v't) (l ) (3 )
where c(s,M) is the proportionality constant. Notice
that c(s,M) depends only on s and M', not on V; so the
V dependence of P))r,,),. is explicitly taken care of by the
d(X)'s. Thus, p1r, ,1. is V-independent. We then use the
representation

f;. '=P, . E-'( -1)]'*'Cl( +1)]' '"(
XLd (1z )a—xm+d (1z )a—x~—).

+ +d. (-',z,) '],
d), ))r'(X) =L:', (1+cosX)]li"' ~(P(1—cosX)]-'*( '+ bibr

t r (s+) '+1)r(s+M+ 1)i i12XI, ! ! r(1+&'+M)]-i
( r(s —7+1)r(s —M+1)i

(3.39)

where n=s —lj, , and pbr, ,), (gt) . The d's are arbi-
trary constants at t=0 and are related to pbr, ,„" for
1(=0, 1, 2, , n. Notice that for all X in Eq. (3.39),
there is a leading asymptotic term of

XF(—s+&„,s+X„+1;1+) —X„;-', ——,
' cosx),

(3.49)

fM;Sb ~pM, S)« ~s, s~ X) ~

where X =max(M, l&'l), X„=min(M, !X'l), and X is
(3 40) the same as defined in Eq. (3.25). From the fact that

But for tbWM, p„,.b~(Qt) +(~ &i, the leading asym-
ptotic behavior is

j' g~sn —(br )I,i—(3.41)

Now we want to see if these arbitrary parameters d
can be determined by the analyticity requirement of

f „,,),
' from Eq. (3.36).

(3) In addition to the f"s being analytic at t=0,
because of total helicity conservation in the forward
direction the asymptotic behavior of f' changes at t=0;

cosX= (—z,)
—',

it then follows that

A -~'(x) =B(1—«)]'i"' ~iL-' (1+2«)]'i"'+~i

t'r (s+P,'+1)r (s+M+1)) ')'
X(-:)'-(-:z)-""I—

Er(s —X'+1)r(s—M+1)j
X!r(1+X'+M)] 'F(—s+X, s+X +1;

1+) —X;12(1+1/z,)) . (3.50)



J.—M. WANG AND L. —L. WANG

Since s, )(, and X„are all integers, F is a finite power series in —,'(1+1/s, ),

(—s+)( )(s+X„+1)
I'(—s+X„, s+X +1; 1+)(„—X; —,(1+I/st)) =1+— —,'(1+1/st)+

i+)( —)j.„
I"(—s+X +n) I'(s+) +1+st)I'(I+)( —) „)+ [l(1+1/ )j' ""

I'( —s+)( )I'(s+X +1)1'(1+)I —X„+n)(s—)( )!
where n=s —X . From Eq. (3.51), we can calculate the f"s are constrained at t=0, i.e.,
explicitly the asymptotic expansion in s& of

(s~) ""dv,-M'(&)—=&o(s«) "-+&t(s&t) "" '

+ + "( " ' ' The fact is mentioned by Bitar and Tindle" that using
S() Eq. (3.48) is their addition theorem, one can show that Eq. (3.56)

does satisfy the constraint equation (3.59). The Bitar-
Tindle addition theorem" says that

+ ' '+f'a(sent) 'j~ (3 5 ) g d „, b +'(irr/2)d „bM +'(isr/2)eb ), a~(s,)

Xd, bM +'(isr/2)eb, g "(s,), (3.56)

where the e's are the second-kind functions" correspond. -
ing to db, b "(s,). The explicit definition of the es is
given in Appendix B.

(1) f' is related to P by crossing:

f,,„.,„'(s, t =0) = g db ."(7r/2) db, '(sr/2)

Xfs ), ;.b'(s, t =0) ~ (3 57)

(sin-fI, ) I
—'I (Qt) I 'I, (3.58)

where the b's can be explicitly calculated from Eqs.
(3.50)—(3.52). Then from Eqs. (3.26), (3.53), and. (B28),
the daughter residues are uniquely determined by the

A

parent residue pM, ,x'.

:bM,.) M "=doitM, b"'+dthM, x"' '+
+dJtM b" " (3.54)

where the it's are given in Eq. (B26), and the d's are
explicitly known from Eq. (3.53). However, notice that
the daughter residues pM, b" of the original helicity
amplitudes fM, ),' are not uniquely determined, since
the s dependence of pM, , is not known. Only in the
reactions of total spin 1 do the pM, ),

" happen also to be
uniquely determined. "

Using factorization again as in Eq. (3.24), one can
calculate the daughter coefficients p, b,, ), c,b., b

"M for
equal-mass reactions. They should correspond to the

' expansion of one I.orentz pole. We shall not show this
explicitly. (The identification is trivial for the cases of
),=s and ) '=s'. ) We quote the O(4) result and then
make two remarks to complete the discussions:

„., M (f,„,M, +1(isr/2)

Xda, s ~
M +'(iS-/2), (3.55)

f,.). ..„"(t=o) =P,b,;b p d.l. b "+'(i~/2)

=2 d. .'(—~/2)d, ,'"(~/2)D;. M -+'(~ ) (3.60)

where
cosh7'= —(s —2m')/ms

D, M, a+I(+s)~&a—IM—I@II for s

fed ab ~o f(a—b) —(c—d)ls (3.62)

This says that"" f,d;, b' s at t=0 only when (t —c
= b —d=3I.

Therefore in this subsection we have shown that the
constraint relations on the f"s of the UE reactions are
determined uniquely by the daughter residues b~,,),",
but not the original helicity residue b~,g". It has also
been demonstrated that the conspiracy relations in the
EE reactions are also satis6ed by the calculated
daughter residues (presumably the one-Lorentz-pole
solution). From our discussion here and in Ref. 39, one
can easily show that around t= 0, the amplitude

"Notice that this result is also true for the UV reaction at t =0.
We give a brief derivation here. Using the relation given by Kqs.
(Bl) and (B2) of Appendix B of Ref. 4, at t=0, cosx, cosx,=cosXg cosX(E= cos6e = +1~ cosXN cosXf) =cosxg cosXol =cosOg = —1.
Therefore the crossing matrix gives f,q.,g' ——f, O.q~'+f „-„',
where p=c—a, ts=d b. But from Eq. (3.6), since sin—-,'e&~(ts)'",
f,s,,b*=f, , obt= (sin-,'e,) tT+r I(cos-,'e,) IT slf' „-

=Bp, f( ft) ( (I" ]
~

~ ~ ~~. For the UE reactions, this is also true
according to Eq. (3.46). This shows that the behavior of the f"s
at t =0 is independent of the external masses. The behavior of thef"s is dependent on the external masses, since their singularities

- at t=0 depends on the external masses.

Substituting Eqs. (3.60) and (3.56) into Eq. (3.57), we
obtain

f""-(s,t=0)=t3-,""~.,"D -+'b) (361)
Therefore the conspiracy equation (3.59) is satisfied.

(2) Notice that Eq. (3.61) also says that

s ~a—(~—
l pl I

g S t(t sSt(t

From Eq. (3.35), the original helicity amplitudes
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f,a, ~t,'~s~&i)~ i~ 'ii &i~ i~"i) independent of exter-
nal masses, as it should, even though the large-s be-
havior of the f"s around t=0 are strongly dependent
on the external masses.

and

fM, M = fM, M ' +fM, M '

=I+EM, M ++0 E~,sx (3.64)

f M, ~' p+E~ ))——I + t3 E))r,—u—
(3—.6.5)

Notice that f~,~' is analytic, but from the fact P+(t)
= t y+(t) and EiI,~ (s,) (st) , it follow—s that each
term of the right-hand side behaves like t ~(actually—
there are more singular terms, but they are cancelled

by daughters). So there are constra, ints on both P+ and.
u+ We e.xpand E~,M +(')(s,) in t; then Eq. (3.64)
becomes

f~ ~'=t (h+(0)+7 (0)jE~ ~ "'(s)
+tL + ' (0)+ — (o)+ „ (o) +(o)

+ -"'(0)v (0)l(~/~ )E . ( )
+pL&+. (2) (0)+7—.(2)(p)+u (i)&+.())(p)

»(o) —»(0)+,(' (o) +(o)
+u-"'(0)V (0)l(~'/~u')E~. ~ («)+ "
+ tML++, (Iv) (0)++—,(M) (p) +. . .
+u+ )(0)y+(0)+n (0)y (0)j

X (&/&u) ~E))r 3r (s~)+ ). (3.66)

The first term says that y+(t)= —7—
(t) up to the

(M —1)th derivative, so that P+(t)+P (t) t (~ ~),
though individually P+(t) t ~. This is just the result of
Sec. II B 1. The further terms of Kq. (3.66) imply that
u+(t) =u (t) up to the (M —1)th derivative, just like
the residues y+(t) and y (t). Similar argument ought
to be true for the daughter residues and trajectories.
Therefore,

u,+(t) =u .—(t)
up to the (M —1)th derivative.

(
~ a,+(t) — p ~,—(t)

However, in Eq. (3.65) the singularity on the right-
hand side just matches that on the left-hand side, so
there is no restriction like that just discussed.

B.Derivatives of Trajectories at 1=0

l. UU Reactions

In Sec. III A, we used the analyticity properties of the
parity-conserving helicity amplitudes f~,~ + to find
the daughter residues at 1=0. To 6nd the restrictions
on the derivatives of the trajectories, we shall consider
the analyticity property of the original helicity ampli-
tude f~M' and f ~))r'. The parent doublet contribu-
tions to the f~~'+ are

fM '+ t3+=E3rM" ,++p+E~)(( , , —{3.63)

where we omit the subscripts on the P's.

We are now going to calculate the restriction on the
slope of the daughter trajectories with respect to the
parent, using the same method as in Sec. I B. Cor-
responding to Kqs. (1.24) and (3.3), the analyticity
requirement of the 1ns& term in the expansion of f~, )(('

Eq. (3.64) would imply

Here no d terms like that of Eq. (3.2) are allowed,
because the right-hand side is already too singular.
Similarly, from the lns, term in Eq. (3.65), we obtain

Q &)(r)((™Lu, "(0)+u —"(0)iE)(r —)(( "(«)

=I: +"'(o)+ -")(0)]L-'( -1)1
+d,L (s, 1)i™1(3 69)

Notice there here the di term is allowed. The use of
Eq. (B14) in Eq. (3.68) gives

Lu. .+"'(o)—u. ,-"'(o)i/
Lu+"'(o) —u-"'(0)3=g~.~"" (3 7o)

Prom Eq. (3.4), we know that a~, M" ~ g))r ~"=~.

Therefore,

u. ,+"'(0)—u "'(0)=(gM M""/g M M" )
XL~ (o) — (o))=Lu, (o) — (o)j
XLI'(u —M+ 1)I'(u„+M+ 1)/I'(u+M+ 1)

X I'(u. —M+ 1)7)=0. (3.71)

But ve know that for M&1,

~")(0)=~")(0). (3.72)

So Eq. (3.71) has a nontrivial solution only for M= 1,
and

u. .+"'(0)—u. .-"'(o)= Lu+"'(o) —u-"'(o)j
Xu„(0)Iu„(0)+13/u(0)Lu(0)+ lj. (3.73)

Using Eq. (B14), Eq. (3.69) gives

' (0)+ „'(0)7=L ' (0)+ ' (0)j
Xg~, ~"'+dig~, ~"'-', (3.74)

where

dl Lu+ (0)+u— (0))+M, M ' +1
+I ui "'(o)+u -"'(0)i(i~ ~' ~~o" (3.75)

where Pi~ is the coefficient of (s,) ~ ' in E))r, ))r, and
po~& js the coeKcient of s& & jn EM M~&. Using the
fact that

g OMP a g 1' tx1

(i~,~™&&= —(u —M)'/2u,

+M, M ' gM, —M '

(3.76)

(3.77)

(3.78)

E ~))r~™Lu.,+"'(0)—u. .-"'(0))EM% "(st)

=Lu+"'(0) —~"'(0)jL-'(s —1)3 (3 68)
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for all M. Notice that Eq. (3.80) is independent of M.
Combining the results of Eqs. (3.'72), (3.73), and (3.80),
we obtain all the constraints on the slope of the daughter
and conspirator trajectories:

For half & I,
(i) (p) —~ &i) (p)

and .L2 (0)—,+1)
n„&')(0)—a&')(0) =

2().(0)

XI ~i"'(0)—~"'(0))' (3 81)
for 3f=I, .(0)L .(0)+1)..+"'(o)—..-'"(o)=

n(0) Ln(0)+1)

X[ay "(0)—n ' (0))
and

Ln„,p&')(0)+a„, "(0))—Lo+&"(0)+n ' (0))

«Ln(0) —«+1)
{L~i.+")(0)+~i.-")(0))

2-(o)
-L;()(o)+- &)(0))~; (382)

XL '"(o)—"'(o)). (3 83)

for M =0, there is no doublet, and

«L2n(0) —«+1)
o„(&)(0) a(i) (0)=-

2n(0)

As we have shown, all these constraints are independent
of the external spins.

g. UE Reactions

As in Sec. I 8, we again would like to check whether
the restrictions on a.,+&")(0) in the UE reaction are
consistent with those in the UU reactions. Again we

And they are consistent, and the conditions from the
UE reactions are less restrictive. Therefore, Eqs. (3.81)—
(3.83) are the restrictions on the n„+("(0).

The restrictions on the slopes of the e's from f~, '

and f)&r...' in the UE reactions are all of a form similar
to Eq. (3.74):

a, M& (i)(0)—&(l)(0)P c,a+&f Q a, a i

+d2h~„" —', (3.84)

gM, M"" 'IgM. ~""=«(2~ «+—1)l(~ ~)' (3 79)

one obtains

L . "'(0)+ .-"'(0))-t: "'(o)+ -'"(o))

«(2n —«+1)
f I: i,+"'(0)+~i.-"'(0))

"'(o)+ -")(0))) (3 8o)

where the h's are given explicitly in Eq. (326). The d's
can be calculated:

0, 3fp u&(1)+$ 1,Mp nz& (1)

0, ))rp a~(1)+$ 1,Mp ay (1)+$ 2, Mp am (1)

where p, * is the coefFicient of (i2s,)«8 &' in E~ «(s )
As we mentioned in Sec. II C, the analyticity of the
amplitude is achieved by the collaboration of the even
trajectories and the odd trajectories of the conspirator.
The odd daughters of the same spin-parity are either
totally decoupled or unrelated. By the specification of
Eqs. (3.11)—(3.14) and (3.22), in Eq. (3.84),

~ is a positive even integer,

~ is a positive odd integer

From the restriction of Eq. (3.22), it follows that

0,Sf' a y y, ~p ~& (3.85)

and

0, )imp a f &,~p ~& f 2 ))rp ~2 (3 86)

(3.87)

Thus Eq. (3.84) becomes

n. &')(0) —&).
&') (0)

=L~i"'(0) —~"'(0))po"&~."&~."'-'/h~. "'
+I o &&)(0) o,&i)(0))pialh~ l, mh a, a—2jh z, a

+3~2"'(0)—~"'(0))po"h~ ' hw ".-'/h
(3.88)

Comparing Eq. (3.88) with Eq. (3.81), we see that the
restriction given by Eq. (3.88) on o„&') depends on one
more free parameter n2&"(0), which is determined in
Eq. (3.81). Therefore, their consistency is not very
obvious. We show explicilty in Appendix C that Eq.
(3.88) and Eq. (3.81) are consistent. So, the constraint
on the slope of the trajectory is indeed independent of
the external masses and spins, and the daughter tra-
jectories are not forced to be parallel to the parent for
any M.

IV. CONCLUSION

From this analysis, we see the implications of analy-
ticity and factorization. The positions of the daughter
and conspirators and the most singular parts of the
daughter and the conspirator residues at t=0 can be
Nnigle/y determined with respect to those of the parent
trajectory. The solution in the equal-mass reaction cor-
responds to that of a one-I.orentz-pole expansion. In
addition, the t factors of the residues and the constraints
with free parameters on the derivatives of the trajec-
tories and the less singular parts of the residues can
also be calculated. It is also shown how all the con-
spiracy relations are satisfied. However, notice that
analyticity and factorization cannot' imply anything
about the regular parts of the daughter and conspirator
residues in unequal-mass reactions, just as in equal-
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mass reactions they can never specify the vanishing
parts of the daughter-conspirator residues. Any specih-
cations in a model beyond those mentioned above must
be justified by dynamics. Therefore, we do not expect an
O(4) expansion at t==0 for the unequal-mass reactions
to have a fundamental meaning, as it had for the equal-
mass reactions.

Note added in rnanuscriPt. After this manuscript was
written, we received a report by J. B.Bronzan [Phys.
Rev. 181, 2111 (1969)], who also derived Eq. (3.67).
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APPENDIX A' USEFUL FORMULAS

- (a)-(b)-
Il (a,b,c; s) = P — s",

=o (c).n!

(d"/dz") ~(u, b, c,s) = [(a)-(b)-/(c)-]
XF(a+n, b+n; c+n; s) . (A3)

[c—2u —(b —a) s]F( a, b; c; s)+a(1 s)F—(a+1, b, c, s)
—(c a)F(—u —1, b; c; s)=0. (A4)

F(a,b; 2b; s)

= (1—z) t'P( 'u—b —-'u b+-'s'/-4(s —1)). (A5)

F(s)F(1—s) = —zF(—s)r(s) =sr/sin s.

r(2z) =2'*—'sr-'t'r(z) r(s+-')

(A6)

(A7)

All formulas from (A1) to (A7) are from Higher Trans
cendental Functions, Vol. 1."

[f( )g( )]=K —f'"'( )g'"-"'( ). (»)
ds , ttf(n ~) I

The contribution of one O(4) pole to the helicity ampli-
tude is given by Ref. 11 as

where (u) „—= I'(a+n)/I'(a).

F( a, bc, 1)= I'(c) I'(c—a —b)/F(c —u) F(c—b) . (A2)

t=s'X' sX—
A, b, c,D A'=c—A;X=D—b

( ) tee— e c(se, sp) sj dy b)c(se) se, s—!cp —A)fey, g)y

'+'(i~/2)d, .~ '+'(i~/2)e». "(s,), (A9)
B,ii tt=0

where the e's are defined in Eq. (81) of Appendix B. From Ref. 41 and Ref. 15,

M, a+1(&~/2) ( )a+sr—s
(2s+ 1)r(n —s+1)

F(s+3I+1)F(s—3I+I)F(s+n+2)

(2n, +1)r (n.+s+ 1)F(n„+M+ I)F(n„—35+1)I'(2n+2 —tc)
- t t 2

X
I'(n„—s+1)I"(I+tc)

X2 " '[r(2n, +2)] 'F(—tc, n,+1 ]II; 2n„+2; 2). (A10)—

APPENDIX B: EXPANSION COEFFICIENTS
IN E FUNCTIONS

Andrews and Gunson26 have a method of finding the
expansion coefficients in e, &'(s).4' We shall adapt
their method to calculate the coefficients which we need
in this paper. Their e functions are dered to be, for

m& m',

e, '=2(r(j+nt+1)r(j —nt+1)r(j+nt'+1)
Xr(j—rn'+1) }'t'[r(2j+2)]—t

X[-'(1+z)]'*' +"'P(1—s)]-*'&m—™&

X [-', (z—1)]-'—'—

XF(j+rn+1, j+rn'+1; 2j+2; 2/1 —z). (81)
e Ehgtter Trartscerterttat FNrtcteorts, edited by A. Erdelyi (NIc-

Graw-Hill Book Co., New York, 1953)."S. Storm, Arkiv Fysik 29, 467 (I965).
42 We bene6ted greatly from discussions with Dr. C. G. Itzykson

on this subject.

The symmetry properties of the e's are

,s'(s) —( ) m—m'e, s'(z) ( )m-m'e, s'(s) (82)
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e . '(-s) = -e+* "-"'e, '(e)

(W for Ims&(0). (83)

Their theorem says: If s'+'f, (s) is analytic for all e
(including s= ~) outside some ellipse F with foci at
&1, then for s outside E,

and (BS) become

f-(s)=—f-(e)Lk(1+s)] '~"+"'~L2(1—)] '~="'~

g-,- "&-.-""(s),

g, "=(2n.+1)1r ' tan1r( —n —1—m)(21ri)-'

(87)

f'(s) =2 g-,- "e-,- "(s),

where

g „&=—(2h1+1)vr ' tan1r(j m—)(21ri)

(84) X &, "—'(t)f.(t)dh (88)

f (t)t -,'(t —1)]— —'+"

XF(n, m+—1, n„—m, '+1, 2n„+2; 2/(1 —t))dh, (89)
X e „„.-a-'(t) f;(t)dh, (BS)

where

( )m—m'1r—1 tan1r(n m) (21ril —(2u 1)the contour c enclosing &1 and all the singularities of
s&'+'f, (s). This means that the contour integration just X2LF(n~ m+1)F(n~+m+1)F(n, —m'+1)
picks out the residue of the singularity of the integrand XF(n„+m'+1)]'"$F(2n„+2)]—'. (810)
at s= ~. The E functions used in the paper are

&. AIjylications to UU Reaction
, n (s)=e,—a 1XP(1+e)]—,) m+m'(

Xp(1—)] '~m '~. (86) From Eq. (3.3),

To be specific, we discuss the case of m&~m'~&0. With
the change of variable y, = —n, —1,j= —n —1, Eqs. (84) Substituting Eq. (811) into Eq. (89), we obtain

(811)

g "n=1t P12(e1—1)]a P(z, —1)] " '+ F(n„—m+1, n„—m'+1; 2u„+2; 2/(1 —s1))dh,

L-', (s1—1)] " 'F(n„—m+1, n„—m'+1; 2n„+2; 2/(1 —s1))der. (812)

As we mentioned before, the contour integral is just to bring out the residue of the singularity at s&——~. Changing
variable I=—2/(1 —&1),

( Iq a—ax+1

g--" =~.2(—) "' '
I

—
I F(u.—m+1, u. —m'+1; 2u.+2; ~)d~,

c n
(813)

where the contour is around u= 0. Using Eq. (A3), we obtain

27ri

g ." rtn, 2( )a "" '—X F&a "'(u. m+1, ng —m—+1:2n„+2;0)
(n —n,)!
21ri F(n —m+ I) F(n —m'+1) F(2n„+2)

=n 2(—)
(n —n„)!F(n, —m+1) F(n, —m'+1) F(n+n, +2)

=(—)m m'1r ' tanvr((u1+m) F(n —m+1)F(n —m'+1)

(2n„+1)-F(n„+m+ I)F(u„+m'+1)
X(—).-" LF(n+n„+2)]—'. (814)

(n —n„)! F(n„m+1)I'(n—„—m'+1)

For spinless case, this reduces to a simpler result

go, o" = 1r ' tan1rn LF(n+1)]'X (—)
— (2n„+ 1)LF(u—u„+1)I(u+u„+2)]-1 (81S)
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Therefore, the uniquely determined daughter coefficierlts for Eq. (3.3) are

~ 1f, ' gM, —

= (—)~+~~-l tau~(n —M) r(n —M+1)r(n+„+ 1)

2n„+1 I'(n„+M+1)I'(n„—)l+1)
X (—) — — [I'(n+n, +2)]—'. (816)

(n —n„)! I'(n„—M+1)I'(n„+@+1)

To calculate the restrictions of analyticity in higher orders or restrictions on the derivatives of the trajectories
the expansion of the following function is useful:

j-(s)=[2(«—1)] -+dl[k(« —1)] " '+".+d-[l(sl —1)]
gm, m' gmm' , +dlgmm' '

, + ' ' '+dngmm',

As indicated ill Eq. (3.22), here

Kquatioll (89) becomes

2. Ayylications to UE Reactions

f-(s ) (2=«)

h„„"m=)). (-', z,)m
—"[-',(s,—1)]—~"—'+"F(n„—m+1, n„—m'+1, 2n„+2; 2/(1 —zl))dsl. (818)

After a change of variable, we obtain

(1 (x—ag+I

h "=)) p)™l( )~"—'+m du~ — (u 2)m —mF(n„—m+1, n„—m'+1, 2n„+2; u),
Q

(819)

where the contour is around I=0. The contour integration gives

dq( —.)
[(u—2)" F(n„—m+1, n„—m'+1; 2n„+2; u)] =o.

(n —n„)! du)
(820)

Using the formula

one obtains

(d) ~—m. fn —n„)
[f(u)g(u)]= 2 I

lf' " "'g'"',
Edui -=own i

(821)

(n+n.)! I'(n —m+1)I= ( 2) m—m—(a—a, )+n

(n —n„)! ~ e!(n—n„—e)!I' [n —m+1 —(n —n„)+n]
I'(n„—m+1+m) I'(n„—m'+1+v) I'(2n„+2)

X
I'(n„—m+1) I'(n„—m'+1) I'(2n„+2+x)

I'(2n„+2) —, (—2). r (n, —m'+1++)
=2n-ii'(n —m+1) (—2) E—

I'(n„—m+1) I'(n„—m'+1) ~=0 I!( n„n—ll)! I'(2n„+2++)
(822)

Substituting Kq. (822) into (819), we obtain

(—2)" I"(n„—m'+1+el)
(823)

n=o n!(n ng u)! —I'(2n—„+2+le)

C—CL@

-I'(n„+m+ 1)I'(n„+m'+1) - '('
h, " = (—) ')r ' tanm. (n+m) I'(n —m+1)(2) "(2n„+1)

I'(n„—m+1) I'(n„—m'+1)
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Let us reexpress the summation as

( 2)n I'(n„—m'+1+II)

a o=n!(n —a„—e)! I'(2n„+2+II)
2" I'(a„—m'+ I+a) I'(e —n+n, )= —LIr ' sinlr(n —n„)jg—

a e! I'(2n„+2+n)

I(- + .)I'(.--. )—
t m. ' sin7r(a —n„)) F(—n+n„, n„—m'+I; 2n, +2; 2). (824)

I'(2 +2)

Then substituting Eq. (824) into Eq. (823), and using Eq. (A6), in the form

sim-(n —n„) I'(—n+n„) = —n.
t (n —n„)I'(n —n„)]-l,

we obtain

h,„' =(—)" "' 'tan ( +m) I'(n —m+1)(-', )
—

(2 „+1)L'I'(n—„+1)I'(2n,+2)] '

r(n„+vs+1) I'(n„+m'+1) I'(n. —ns'+1)- '"
X

I'(n„—m+1)
P(—a+n„, n„—m'+I; 2n„+2; 2). (826)

+d2 h„,„" '". (828)

In the spinless case, ho. o" n in Eq. (826) can be re-
duced to a simpler form by using Eqs. (AS) and (A2):

F( n+n„, n.+—1;2n„+2; 2)
= ( )&( ")P(——;n+—-,'n. , ,'n+-,'n„+1;—n„+-,'; 1)
=(—)-*'(=- )I'( „+-;)r(-,')/r(-,' y-,'„+-;)

+ I'( —kn+ka. +k) .

Substituting Kq. (829) in Eq. (826), we obtain

(829)

h() (I" ——tarn. nl'(n+-,') (—)l' '(-,') + "+'(2n.+1)
&&LI'(n —n.+1)1'(kn+kn. +2)1'(—ka+kn. +k)j '.

(830)

APPENDIX C: CONSISTENCY OF CONDITIONS
ON SLOPE OF DAUGHTER TRAJECTORIES

IN UU AND UE REACTIONS

Here we want to check explicitly that the restrictions

For higher-order restrictions due to analyticity, such
as Eq. (817) for the VU reaction

f (Z )—(IZ )a—m+ d (IZ )n m I+-. .—.
+(E (I& ) a m 2a —(—827)

The expansion coefficients are

on the slope of the daughter trajectories from UU re-
actions and UE reactions are consistent. The restriction
from the UU reactions, for M&1, is

n. .+"'(0)=n. ,-"'(0),
a o)(P) n(I)(P)

=k~L2n(0) —~+ 1]LnI(')(0)—n(»(0) j (3 81)

The restriction from the UE reaction is

a (l)(0) n(l)(P)
(l)(P) n(l)(P) jP alh I,nh z, a—I/h a, n

+La (l)(0) n(1)(P)jP alh l, nh z, n—o/h a, n

+$n, (')(0)—n(') (0))Po"h ' h " '/h

(3.88)
where

n„=n„,+ for a =positive even integer,

0.„=o.„, for a =positive odd integer,

and p, n' is the coefficient of (2zI) ' ~' in p, , ~ 'f(zI).
We shall show that Eq. (3.81) and Eq. (3.88) are con-
sistent. Notice that Eq. (3.88) is less restrictive than
Eq. (3.81). From Eq. (3.81),

"'(0)- "'(o)=L '"(o)—"'(0)3
&&L2n(0) —13/n(0). (CI)

Substituting Eq. (C1) into Kq. (3.88), we obtain

a (I) n(1) Ln (I) a(1)j P nlh l, nh g, a-l+ P'alh l,a+
20! 1

p AQh~ 2CC h~ «+ 2
M, s M,s (C2)

We shall show that Eq. (C2) is just Eq. (3.81).By our normalization,

P uh O, n (C3)
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so we shall always calculate the P's and the h's with respect to Poo and her, ,' . From Eq. (823), we can calculate
all the h's:

2u, +1 I'(ni+s+1) I'(n +M+1)I'(n —s+1)I'(n —M+1)

Pg, o 2 +1 I'{ —s+1)1'(n —M+1)1'(n+s+1)1'(u+M+1)

I'(ng —M+1) I'(ng —M+2) I'( —M+1)
X{—2)-' — — — -+- -(—2) — — . (C4)

(2n +2) I'(2n +2+1) I'(2n+2)
After some manipulations, this becomes

hor, '

/d'or,

' ——(2a —1)M((n —s)/(n —M) (n+M) (a+s)]'I'

2no+ I I'(no+s+1) I'(no+M+1) I'(n —s+1)I'(n —M+1)-'" ', I'(n-o M—+1)
R, a/h o, a— (—2) '

2n+1 I'(n —s+1)1'(n —M+1)1'(a+a+1)1'(n+M+1) I'(2n +2)

r(,—M+ 2) —,I'(,—M+ 3) —-I'( +1—M)--'t (—2)+ ( 2)o
I'(2no+3) I'(2no+4) I'(2n+2)

=n(2n —3)LM'+-', (n —1)jL(n —s) (a—s—1)/

(C5)

(n+M)(n+M —1)(n+s)(n+s —1)(n—M)(n —M —1)$'i'. (C6)

j'gor, " ~ '/hor, ," 2«(n s——) 'F( —«+1, n—,—M+1, 2a„+2, 2)F (—~; n„—M+1; 2n„+2; 2),

h~, ," '/h~, ," =4«(« —1)L(u—s)(u —s —1)j 'F(—«+2, n„—M+1; 2u„+2; 2)

(C7)

XF '(—z' n —M+1; 2n„+2; 2). (C8)

From Eq. (81) and Eq. (86), we can calculate the P's:

Po"/Po = L(n —s)(u+s)(u —M)(u+M) j'"/
2n(2n —1), (C9)

Po '/Po L(n —s—1)(—n——s) (n+ s —1)(n+ s)

X (n —M —1)(n—M)(u+M —1)(n+M)g'I'
X$(2n —3)(2a —2) (2u —1)(2a)j ' (C10)

P, &/Po ——(Po '/Po ){-',(—ng+s)+(ng —M)
X (nx —s)/2ng)

= (Po. /Po )M( —ni+s)/2n, .

Combining Eqs. (C3), (C5), and (C6), we obtain

So from Eqs. (C13) and (C14)

P,~~g~ & ~+/(2n —1)/njPPog~ & ~

= (n —s) (n —s —1)/Sn. (C15)

Now substituting Eqs. (C7), (CS), (C13), and (C15)
into Eq. (C2), we obtain

n &i&j(„/Zn) PMF ( «+ 1)
+(«—1)F(—«+2)j/F( —«), (C16)

where

F(—e)—=F(—n; n„—M+1;2n„+2; 2) .

h~, ' Po"——M(n —s)/2n. (C12) IT»ng the identity Eq. (A4),

Combining Eqs. (C3), (C5), (C11),and (C12), we obtain

M(a —s) (—n+1+s)M
2MF( —«+1)+(« —1)F(—«+2)

= (2n —«+ 1)F(—«), (C17)
h "P

20! 2
(C13) we obtain 6nally

u "'—u"'= (n~"' —n"')«(2n —«+ 1)/2u (C18)Combining Eqs. (C3), (C6), and (C10), we obtain

I,.' -P.- =-:( —)( —-1)LM'+-:( -1)j/ This is just Eq. (3.81) and Eq. (1.34). Notice that there

(2u —2)(2u —1) . (C14) is no s dependence in the equation.


