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A convenient method is introduced to analyze the requirements imposed by the analyticity of the full
helicity amplitudes on the structure of Regge poles and their residues at {=0 for two-body-to-two-body
reactions with general masses and spins. This method enables us to visualize the structure of daughter
trajectories and conspirators clearly. Also, in practice, this method enables us to make the following deriva-
tion easily for reactions with arbitrary spins. (1) The most singular parts of the daughter and conspirator
residues at /=0 are calculated for unequal-mass-unequal-mass reactions and unequal-mass-equal-mass
reactions. Then, through factorization, the nonvanishing parts of the daughter and conspirator residues
are obtained for the equal-mass-equal-mass reactions. They are identified with a one-Lorentz-pole expan-
sion. (2) In calculating the daughter and conspirator residues, the analyticity requirements of both the
~channel and the s-channel helicity amplitudes are satisfied. Therefore, the conspiracy equations are
shown to be satisfied explicitly. (3) The restrictions on the slopes of the daughter trajectories are also
obtained. Their independence of the external masses and spins is shown. (4) The restrictions on the slopes
of the conspirators are also calculated. We obtain an interesting new result: For a trajectory of quantum num-
ber M, at t=0, the trajectories a+(f) and «_(f) are equal, and likewise their derivatives up to the (M —1)th.
Before carrying out all these calculations, all the # factors of the Regge residue have to be determined. By
introducing a quantum number M in the unequal-mass-unequal-mass reactions, the ¢ factors of the parent
as well as the daughter residues are uniquely determined using the conventional method of analyticity
and factorization. This quantum number M is identified to be the O(4) M in the equal-mass-equal-mass
reactions. We note that if the definition of the quantum number M is not affected by the coincidence of
«(t) with an integer at ¢=0, then the trajectory «(0) will choose sense if M <a(0) and choose nonsense if
M >a(0). At the end of the paper, a discussion is given on the implications for the group-theoretical ap-
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proach to the Regge-pole theory.

INTRODUCTION

HE Regge trajectory a(f) and its residue B(f) in
equal-mass spinless reactions are real analytic
functions having only the dynamical cuts starting at
threshold.! Both a(t) and B(#) are analytic at £=0. In the
general two-to-two reactions, the Regge-pole structure
at =0 is complicated by two features: high spins and
unequal masses. In the unequal-mass cases,? the high-
energy expansion of each Regge term is singular at
t=0. This behavior is in contrast with the analyticity
property of the full amplitude. Consequently, an in-
finity of integer-spaced trajectories must exist in order
to cancel the singularities at {=0. These are the
daughter trajectories.? In the case of high spins, addi-
tional singularities exist in the residue functions B,(f);
these singularities can be found by first analyzing the
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kinematic singularities’=® of the full amplitude fx.(f)
and then imposing factorization® on By,(f). Factoriza-
tion is a result of unitarity and the simple-pole assump-
tion. However, this analytic approach appears to miss
two important properties: first, the conspiracy rela-
tions”® and how they are satisfied; and second, the
additional O(4) symmetry at {=0 in the equal-mass
reactions.®~!* With the one-Lorentz-pole assumption at
t=0 in the equal-mass reaction, many specific results
can be obtained—for example, the existence of a parity
doublet and the daughter trajectories, and the way they
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collaborate to satisfy the conspiracy relations. However,
the one-Lorentz-pole approach cannot be used directly
for unequal-mass cases. Therefore, these two approaches
(Lorentz-pole and analyticity) were used in a com-
plementary way!?: first using the one-Lorentz-pole as-
sumption for equal-mass—equal-mass reactions (EE re-
actions), and then using factorization and analyticity
for unequal-mass-unequal-mass reactions (UU re-
actions) and unequal-mass-equal-mass reactions (UE
reactions). This approach has been used to make experi-
mental predictions for some reactions.’® However, in
all these works, the ¢ factors are determined for the
residues of only the leading one or two trajectories. How
the daughter trajectories sum in general reactions has
never been fully understood. Only in models has this
been dealt with completely.’41® But they all have the
drawback of specifying too much, e.g., (1) they have
parallel trajectories, (2) they can only specify that a
trajectory’s coupling does or does not vanish at the
equal-mass vertex at /=0. There is no way of recovering
a trajectory and its coupling from ¢=0.

Recently, attempts were made to use the original
analyticity and factorization method to study the
problem thoroughly. The analysis involved can be di-
vided into two categories.

(1) Studying the ¢ factors of the residues of the lead-
ing one or two trajectories: The existence of conspirators
in the UU reactions can be established in this way.!¢
Results have been obtained for many specific reactions.!”
A neat and general solution was obtained by Frampton!®
for the parent trajectories.

(2) Calculating the daughter and conspirator residues
explicitly: It is found that the most singular part of the
daughter residues in the UU and the UE reactions can
uniquely determine the nonvanishing parts of the
daughter residues in the EE reactions. It is shown that
the result is just a one-Lorentz-pole expansion. For the
spinless case this was done by Taylor'® using parallel
daughter trafectories, and later by Bronzan and Jones?®
( 12 % F. Sawyer, Phys. Rev. Letters 18, 1212 (1967); 19, 137
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without assuming parallel daughter trajectories. For the
total spin-one case, it was done by Drago and Di
Vecchia?! and by Bronzan.2! This is a major break-
through in understanding the problem.

Weiss?? takes a different approach. Assuming that
particles of arbitrarily high spin exist, he shows that to
satisfy all the conspiracy relations of all the equal-mass
reactions with arbitrarily high spins, a one-Lorentz-
pole expansion is one of the two possible solutions.
However, the other solution can only be eliminated by
considering first the UU and the UZE reactions.!®20
Using analyticity in the UU and the UE reactions,
conditions on the slope of daughter trajectories can
also be obtained.?® However, the methods so far used
are quite complicated and are almost impossible to
generalize to high spins. Also because of the complexity,
it is not very easy to see the structure.

In this paper, we introduce a convenient method of
analyzing order by order the analyticity requirements
of the full helicity amplitudes on the structure of Regge
poles and their residues at {=0 for two-body-to-two-
body reactions of general masses and spins. A qualita-
tively different property develops for reactions of total
spin greater than 1: The most singular part of the
original helicity residues of the daughter trajectories
cannot uniquely be determined in the UE and the EE
reactions. With the help of the constraint equations
only the new daughter residues 3, . defined in Eq. (3.38)
can be uniquely determined. Our main purpose is to
give a clear and complete picture of the structure; there-
fore, many results previously derived in the spinless
and total-spin-1 case are also included in the paper.?*
The organization of the paper is as follows.

In Sec. I, we demonstrate the method in the spinless
case. We show the relation between the number of ad-
ditional zeros in the residue at =0 and the number of
arbitrary parameters needed to determine the most
singular parts of the daughter residues. Using this
method, the most singular parts of the daughter resi-
dues are calculated in the UU and UE reactions, then
through factorization the daughter residues in the EE
reaction are obtained. They are identified with the one-
Lorentz-pole expansion. The conditions on the deriva-
tives of the daughter trajectories are obtained. These
conditions are shown to be consistent in the UU and
the UE reactions.

In Sec. II, the ¢ factors of the parent as well as the
daughter trajectories are derived. The results are sum-
marized in Fig. 1. As indicated in Refs. 14 and 18, the

21 P, Di Vecchia and F. Drago, Phys. Rev. 178, 2329 (1969);
J. B. Bronzan, sbid. 178, 2302 (1969).

2] H. Weiss, Phys. Rev. 176, 1822 (1968).

23 P. Di Vecchia and F. Drago, Phys. Letters 27B, 387 (1968);
Frascati-Caltech Report (unpublished); J. B. Bronzan, C. E.
Jones, and P. K. Kuo, Phys. Rev. 175, 200 (1968). The mass
formula has also been derived in a completely different approach
by G. Domokos and P. Suranyi, Nuovo Cimento 56A, 445 (1968).

24 While we were preparing the manuscript, we were informed
that S. Cosslett was also investigating the problem, using a some-
what different method.



1 STRUCTURE OF REGGE POLES AND THEIR RESIDUES

quantum number M is introduced in the UU reaction
to fix the ¢ factors of the residues.?® The results for the
parent trajectories are the same as Frampton’s and the
method used is the same as in Ref. 6. We include the
discussions here for completeness and for discussions
in Sec. III.

In Sec. ITI, we calculate essentially the same things
as in Sec. I but for reactions of high spins. The structure
here is more complex. The conspirator and its daughters
must be included in order to satisfy the analyticity of
the ¢-channel amplitudes f.4,p:'. We show that for
trajectories of quantum number M, the functions ay,(f)
and a,,(f) are equal up to the (M —1)th derivative
at £=0. In the UE reactions, the residues are explicitly
constructed so that they satisfy the further analyticity
requirement of the s-channel helicity amplitudes fee,q3°
in addition to that of f.4,ps!. Therefore, the way the
conspiracy relations are satisfied is explicitly shown.

In Appendix A, we list some useful formulas. In
Appendix B, we elaborate the Andrews-Gunson?®
method of calculating the expansion coefficients of the
E functions. In Appendix C, we show that the conditions
on the slopes of the daughter trajectories in the UE
reactions are consistent with those in the UU reactions
for general spins.

I. METHOD OF ANALYZING STRUCTURE OF
REGGE TRAJECTORIES AND RESIDUES
REQUIRED BY ANALYTICITY AND
FACTORIZATION AT ¢=0:
SPINLESS REACTIONS

A. Residues of Daughter Trajectories at {=0

The Regge-pole contribution to a spinless amplitude
is given by

Jis)= (1—e/sinma)3()®o,0*(z:),  (1.1)

where
®o,0%(z)=tanma Q_o_1(2:) ,
8= 251412 —1 20 md+(ma—my?)
3 X(mE—ma®)]/ TacTa,
To?=[t—(mat-me) 2]t —(ma—mc) 2] =41(ps)?,
Toa*=[1—(mot-ma)* [t — (mo—ma)*]=41(p/)*.
The ¢ factor of the residue is B())~ (p:p/)*:

BUY)~ 1t (1.2)

and
z2i—1=st/51+0(),
where
(1.3)

For large energy s, the function Q_, (2 can be ex-

1=} (e = m2) (mat —md) | 12,

2 M. Le Bellac, Nuovo Cimento 55A, 318 (1968). He also con-
sidered the ¢ factors in the UU reactions for the parent trajectory.
26 M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).
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panded in terms of (z,—1). The ¢« singularity of 8(z)
is canceled only by the leading term (z,—1)%, which
gives an s* term in f(s,f). All the lower-order terms,
(z,—1*1 (z,—1)*2, etc., give terms like s*(st)™,
s%(sf)~2, etc., which contribute poles to f(s,f) at {=0.
This violates the analyticity of f(s,f). The daughter
trajectories,? a,=a—«, wherex=1, 2, - -, are introduced
such as to cancel these singularities at =0—that is, to
make Eq. (1.1) become

1

Jls)=y(O)r e ——(1—e")

cosma

> (1.4)

all k=0

a*()Q-a1(21) 5

so that there are no lower-order terms in (z,—1) ex-
cept (z,—1)=. Therefore, the daughter-residue a’s are
required to satisfy

> (=000 ar(e) =[3E~1T%, (15

all x=0

where the factor £ in front of (2,—1) is just for conven-
ience in the definition of @*. Notice that the a¥s are
regular in {. Therefore, all the daughters have the same
¢t factor as the parent. Also notice that even though
f(s,f) has only one term in (z,—1)2, f(s,t) does have all
terms s%, s*71, s*72, etc., at t=0. Obviously the daugh-
ters must have the same phase as well as the same
(parity) X (J parity) as the parent, so the odd daughters
must have opposite parity to that of the parent. Also,
all the daughters must have the same quantum num-
bers as the parent. The expansion coefficients a* of Eq.
(1.5) can be calculated using the method given by
Andrews and Gunson.?® We give the detailed calculation
in Appendix B. The result is

a*=goo** with a—a,=k
=71 tanme[ T'(a+1) P(—)*a,+1)

X[T (DI (aFact2) T,
where the general definition of go,0%* is given by Eq.
(B15) in Appendix B.

For EU reactions, similar arguments go through. The
only difference is in the kinematics. That is,

BUE(D~ (V1)
2= (sv/1)/s+0()

where sy=3m|m,2—m?|. Since Q_,—1(2;) contains only
terms of 2%, 5272, 2% etc., only even daughters are
needed so that

(1.6)

1.7

and
(1.8)

S B0z = (320 (1.9)

even k=0

Actually, the Pauli principle and the conservation of G
parity imply that the odd trajectories and the even
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trajectories cannot both couple to the same equal-mass
identical-particle or particle-antiparticle pair, because
the even and the odd trajectories have exactly the same
quantum numbers but opposite parity. In a UE re-
action, where only the odd trajectories can couple to
the equal-mass pair, their residues will have the follow-
ing ¢ factor:

BUE(D)~ (W)=t (1.10)

The equation corresponding to Eq. (1.9) is
Y 00 aa() =G0t (L1D)

odd k=1
By factorization,

BEEBYY(D) =B (1) T, (1.12)

and from Egs. (1.2) and (1.10), we obtain
BEE()~1, (1.13)

for odd trajectories. Therefore, the odd daughters de-
couple from an equal-mass pair at {=0 irrespective of
whether the internal quantum number allows the cou-
pling or not. We shall see in Sec. IT that our solution here
corresponds to the M =0 solution. From Egs. (B26) and
(B30) in Appendix B, the solution to Eq. (1.9) is

b"(t: O) = hoo"’a
=71 tanmal (e+ 1) (3)*(2a,+1)T(e+1)
X[+ 1) (2a+-2)]
XF(—«, act1; 2a,42; 2)
= tanmal (a+1)(—)*2(%)etet1(2a,+1)
X[+ DT Gatsat+5)T(—3+3) 1,
(1.14)
with a—a,=«. Notice that b*is zero if « is a positive odd
integer.

For the EE reactions, we can find the nonvanishing
part of the daughter residues by factorization:

e (t=0)= (b9)2/a*
=7 tanma(d)? @t (20,4 1) T (et ot 2)
X[Tk+1D) T[T Gatsat3)T(—5c+5) ]2,
(1.15)

Notice that ¢*=0 if « is a positive odd integer. This is
consistent with Eq. (1.13). Checking with Egs. (A9)
and (A10), one finds that

S e (1=0)Q ()

even k=0

is just proportional to an M =0 O(4) pole. Therefore,
via factorization, the analyticity requirements in un-
equal-mass reactions necessarily lead to the one-
Lorentz-pole solution. This was first shown in Refs.
19 and 20.

Notice that we have just discussed a case where the
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residue can have the most singular form allowed by the
kinematics given in Egs. (1.2) and (1.7). If there happen
to be additional zeros of ¢ in the residues (say, in the UU
reaction), then

Bl)~tetn, (1.16)

where # is a positive integer. Then the analyticity of the
full amplitude will allow lower-order terms in z,—1
on the right-hand side of Eq. (1.5), i.e.,

u§=0 a*(t=0)Q_a1(z:) =[3(z:—1) J*+di[3(z:— 1) ]**
+- o Fd 3G -], (1.17)

where the d’s are not determined. So the daughter
residues are determined up to the first # arbitrary resi-
dues. With the g’s given in Eq. (B15),

a*=go,0%%+d1g0,0° 4+ - - +dngo0o ™. (1.18)
Similarly, in the UE reaction, if
BN~ ()t (1.19)
then Eq. (1.11) changes to
2 0(t=0)Q-a1(2) = (320)*+di(320)* 2
even k=0
4+ da(Gz)e 2, (1.20)
and with the %’s given in Eq. (B26),
b"(tZO)=l’l0,0"’a+d1ho,0"'a—2+ o +dnho,0"'°‘—2". (121)

All these observations will be useful in analyzing re-
strictions on the slopes of the trajectories.

B. Slopes of Daughter Trajectories at {=0

We see now that the analyticity requirement on the
full amplitude uniquely determines the positions of the
daughter trajectories a,(0) and the most singular part
of their residues in terms of «(0). Obviously, there are
also restrictions on the slopes of the trajectories and the
less singular parts of the residues. We shall show that
a,’(0) is determined in terms of «(0), /(0), and a1'(0).
We do not discuss the higher-order derivatives here.

The condition on «,’(0) comes from the following
terms. From the representation

1[T(—a) ]
Q-ae1(ze) == ———[3(z,—1) ] @
2 T'(—2a)
XF(—on, —ax; —2a,; 2/(1~20)) ) (1-22)

we see that all the «(f)-dependent power of z,2¢ is in
[3(z:—1)]=«®. We can expand this «,(f) in Eq. (1.22):
Q-ap1(20)= Q-a,(—l(zo

X {14+ [t/ (0)+82""(0)+ -+ - - ] InE(z.—1)

+ [t (0)+ 2" (0)+ - - - I?

X[nd(@—DTP+---}, (1.23)
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where Q_,1(z;) is the same as Q_a,1(3;) except that
the e, (f) of [2(z,—1)]*«® in Eq. (1.22) is replaced by
a,(0)

Let us consider the term with /a/(0) Ini(z,—1) in the
UU reaction. Because of this extra factor of ¢, the con-
straint equation due to analyticity will be of the form
of Eq. (1.17), instead of Eq. (1.6):

1?2;0 a*(0)r (0)Q—ap1(2e) Ink (z,—1)
=a’(0)[%(z,— l)jﬁ(o) In%(zt_ 1)

+di[3(z—1) ] In3(z—1). (1.24)
Since the ¢*(0)’s are known, we can calculate dy:
d1=a,(0)00(0)P1a+(11’(0)dlpo“1
=[/(0) —as'(0) Ja°(0) 1~
=[e/(0)—e'(0)IX3e, (1.25)

where P12 is the coefficient of [£(z;—1)]* ! in Q_._1(2,),
and Po* is the coefficient of [$(z;—1)]* in Q_g—1(z:).
The relations ¢°P;*=+1a and a®P12+a'Py*1=0 are
used. So the calculation of the condition on «,(0)
amounts to calculating the coefficients of the following
expansions:

0

a“Z:=0 ax(o)aK,(O)Q—ax—l(Zt) =0£’(0)[%(zt_ 1)]0;(0)
+%OL[C¥’(O) —ou'(O):”}(Zt_ l)ja(o)_l .

Using Egs. (1.17), (1.6), and (B15), we obtain the
solution to Eq. (1.26):

d"(O)O[,"(O) = a'(O)go,o""’

(1.26)

+3alo/(0) —a1’(0) g0, (1.27)
From Egs. (1.6) and (B15), which gives
20,0 Y/ go 0= —kQLa—k+1) /o, (1.28)
we obtain
a'(0) —a/(0)=[a1"(0) —a/(0)]
Xk[2a(0) —k+17/2a(0).  (1.29)

This is so-called mass formula for M =0 trajectories
derived in Ref. 23. Similar calculations can be made for
[te/ (0)J*[In}(z.—1) . It is left to the reader to show
that the results are consistent with Eq. (1.29).
Obviously, the restriction on the slopes of trajectories
ought to be independent of the external masses. Here
we are going to calculate the restrictions on the slopes
of the daughter trajectories in the UE reactions; then
we shall see if they are consistent with those obtained
in UU reactions. If they were not, the daughters might
be forced to be parallel to the parent. However, we shall
show that the restrictions are, in fact, consistent. By an
argument similar to that for the UU reaction, we find
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the equation for the slopes of the daughter trajectories

b @' (0)=ho 0%/ (0)+daho, 0",
K=O, 2, 4, (130)

In Eq. (1.30),
dr= [/ (0) Poh0,0>*+ s’ (0) Po*2ho,0*%]
=[—d/(0)+az'(0)JPo*ho,o**

=['(0)—a'(0)]
Xa(a—l)/S(?a— 1), (1.31)

ho,o”'a—2/}lo,0“’a=K(2a—K+ 1)/2(2(1-1) , (132)
so Eq. (1.32) becomes
! (0) —a/(0)=[e2'(0) —/(0)]

XkQa—k+1)/22a—1). (1.33)

To check consistency, we substitute the k=2 solution
from Eq. (1.29), i.e., &2’ —a'= (i’ —') (2a—1)/a, into
Eq. (1.33):

o (0)—a/ (0)= a1/ (0) =/ (0) Jx(2a—k+1) /2¢..

This is just Eq. (1.29). Therefore, the consistency is
confirmed. We see that the daughters are not forced
to be parallel to the parent. In Sec. III and Appendix C,
we shall demonstrate that Eq. (1.29) is correct for
arbitrary M and independent of external masses,? ex-
cept for M =1, where Eq. (1.29) is correct if we replace
the o’s by the corresponding sums for the parity
doublet, ay+a_.

II. ¢ FACTORS OF PARENT AND DAUGHTER
RESIDUES AT ¢=0

From the discussion in Sec. I, we see that the calcula-
tion of the daughter residues depends crucially on the
¢ factors of the residues. Therefore, we have to discuss
the ¢ factors of the residues first.

A. Helicity Formalism

Throughout the paper we shall use the helicity for-
malism.?® We first review some of the well-known prop-
erties of the helicity amplitudes.?® Since we are con-
cerned with Regge poles in the ¢ channel, it is natural
to use the {-channel helicity amplitudes

foa,pot= (V2 sin}0,)1#El(V2 cosif,)etrlf; 00 (2.1)
jﬁrﬂtE§(2]+I)Fﬁ,[l',d_p,,ﬂ',(zt) , (2.2)

where
u=D—-b, p=c—4,

and
Ay i’ (3)=d, z7 (3) (V2 sind8,)~1F—# X (V2 cosif,)—IFtel,

27 See Egs. (3.81)-(3.83) and Appendix C.

28 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

29 The Reggeization formalism is from M. Gell-Mann, M.
Goldberger, F. Low, E. Marx, and F. Zachariasen, Phys. Rev.
133, B145 (1964), Appendix B; we use the same convention as in
Refs. 4 and 6.
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To be specific, we consider the case @2 x>0 and use the
w’s as the total helicities for the unequal-mass vertex.
The parity-conserving helicity amplitudes are

fﬁ,nt’iE fﬁ.uti ”f-ﬁ.ut =§(2]+1)Fﬁ,n"’i(l)&n.ﬂ]'+(zt)

+XQI+DF,7Fd, 5 (z)  (2.3)
J

and
Fp*=Fg, +9F 3,7, (2.4)
where
1= (—=)#*nena(—) et
and

nr=nma(—)s+.

The amplitudes F/* contain only the normal spin-
parity states [P(—)7=+]; the amplitudes F/~ con-
tain only the abnormal spin-parity states [P(—)7= —].

B. UU Reactions

The full ¢-channel helicity amplitudes f* of the UU
reactions are analytic at ¢=0. But the f%, which are
analytic in s, do have singularities at {=0, due to the
vanishing of sin16; or cos30,~+/t at t=0. If?® (m,2 —m,?)
X (mp2—mg*)>0, then 6,=0 at ¢t=0. Therefore, the
kinematic singularities at =0 are

Frateo (/188 25)
T~ (V)~lEs (2.6)

and
Taut~ (V) IEtu 2.7

Notice that the most singular parts of both fz "+ and
Sa,ut— are from f_z % so they are correlated.

1. t Factors of Parent Trajectory

From Eqgs. (2.5)-(2.7),'8% the residue Bz,() of
Fg .7 %(l) for a Regge trajectory o has the following
singularity:

BawE ()= v, () (V1) FHw et
:-y’.‘,“ﬂ:(t)t_a(,\/t)ﬁ—#’ (2.8)

where the 7’s are analytic in /. The first part of the
singularity is from the full helicity amplitudes, and the
second part is from partial-wave projection. The singu-
larity in Eq. (2.8) is the most singular behavior allowed
by analyticity. Considering the following residues:

Bzt =va sttt (2.9
BuwE=Yuutt, (2.10)
Baut=vaut*(VF, (2.11)

we clearly see that they do not satisfy factorization,
i.e., it is not the case that

(Bawt)*= Baa™Buu™- (2.12)

Some analytic zeros in ¢ must be introduced to either
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Buu® or BazE or both.® After applying this discussion to
all possible u and @, one will find that there is always
one and only one diagonal residue that can resume its
most singular form ¢, As indicated in Refs. 14 and 18,
a quantum number M (always positive by convention)
can be uniquely defined for a Regge trajectory «, as
follows: A Regge trajectory « has a quantum number
M if its coupling to the helicity state i=pu=2M has the
most singular form allowed by analyticity, i.e.,

p-, (2.13)

3M.Mi='YM,M

From Eq. (2.11),
Bt wE=v u (V)M E, (2.14)

Then by factorization, v,,* must have a zero of the
form t¥-#; therefore,

6umi= 'Yumit—alM_"' (2-15)

Similar arguments can be applied to all possible values
of @ and p. One finds that both analyticity and factori-
zation are satisfied if

ﬁl_"“d:= .-y‘_‘,“:i:t—a(\/t)lM—Iﬂl | (\/l)lM—IMH ; (2.16)

here the 4’s are analytic and without zeros, by the
definition of M. Therefore, the behavior of 8,,,* at =0
is uniquely determined by M. Notice that in addition
to B ¥, the B+ also have the most singular ¢ factor
allowed by the kinematics.

Here we should recall the following point!®: For given
a and M, the B8z, and B, have the same (=0 be-
havior. But notice that Bs,=8z."+8z,~ has a less
singular factor than B_z,.=71s(8z."—Bs.."). To be
specific, we consider By y*~t"2 From Egs. (2.5) and

(2.6), we find
Bumu~tetM  but B_yu~i*. (2.17)

This means that 8, ™ and B, must be correlated,
ie.,

Yuu=yuutt+yuu~t", (2.18)
In general,
Ya,u="7Yas" v ~the less singular of
(+/1) Bl M=zl M=
{ (2.19)
1
so that
Ba.u="5uXthe less singular of
(/1) Ftel
{ . (2.20)
t_“(»\/j)lM—F](\/tyM*ﬂl
But
Bgou= Vg ut (V) MR (/) 1 0] (2.21)

The main point here is that for any trajectory a with
M >0, we can find a helicity amplitude (such as far )
relating the plus amplitude and the minus state. Thus
there must exist another trajectory with opposite spin-
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parity, which is usually called the conspirator of the
former. Only an M =0 trajectory does not have to have
a conspirator.

2. t Factors of Daughter Trajectory

For those helicity amplitudes whose residues have
the most singular behavior allowed, such as fa,,"*, the
t=0 behavior of the residues of the daughters is uni-
quely determined by that of the residues of the parent.
A detailed daughter cancellation mechanism is given
in Sec. III. Just as in the spinless case, it turns out that
all the daughter and conspirator residues B,,%* should
have the same ¢ factor as the parent Ba,,%. Then by
factorization, all 8;,,* should have the same ¢ factor as
the parent, i.e.,

BrsE o3/ Ml (/)1 (2,22)

C. UE and EE Reactions
1. t Factor of Parent

We consider first the UE reactions with equal-mass
pair m,=mg. The main difference between the ¢=0
singularity of UE and that of UU is that the full
helicity amplitudes f.\* do have singularities at ¢=0.
The quantities® sinf, and cos30, are 1 at ¢=0; there-
fore, the f,a¥’s have respectively the same singularities
at =0 as the f,\¥s. But notice that in the UE case,
t=0 is never inside the physical region. We shall use
A to denote the total helicity at the equal-mass vertex,
i.e., A=D—b. In accordance with the definition in Sec.
IT B, p is used for the unequal-mass vertex. The kine-
matic singularities of the helicity amplitude are®!

funbE= JuatEn oyt~ (V)8 (2.23)

where the 7 is the same as in Eq. (2.4). For boson-boson
(BB) reactions,

Ce=S—3[1—(E)nea(—)r],  (2.24)

where S is even; whereas for fermion-antifermion (FF)
reactions,

Ce=S—3[14 (L) ppma(—)+H] - (2.25)

where S is odd. Here A,=max(u,\), x>0, A\>0, S=s;
~+sq. For definiteness, we put s;=sq4. The singularities
of the full helicity amplitudes are

Funt, fﬂnktN (V).

We consider separately the following cases.
a. Case of S>M. For a boson-boson system with

(2.26)

30 If the masses are such that (m.2—mg?)(ma®—ms?) >0, then
6.=m at 6,=0, §,=0 at ¢=0, and ¢=0 is outside the s physical
region; here, fz, ,'~(v/8)®® and f_g, ,f~ (V1) for > p 2 0.
If (m2—me?) (ma*—my?) <0, then 6,=0 at 6,=0, 6;== at ¢=0,
and ¢=0 is inside the s physical region; here fz utf~(3/f)~G*w
and f_z St~/ EW, If my=mq and me=m,, then 6,=3r at
t=0, ;== at ,=0, and =0 is outside all physical regions.

31 Appendix A of Ref. 6.

669
S>A2u, we have
Bunt=run L(VOS(VH)m](v )=t
= 7“‘)‘-!—(\/15)—0:(\/0-—(5—)\—7,.) , (2.27)
where
na=1 if pis odd
=0 if uis even
and
Bun™=rux" (VO )75l (2.28)

The second factor in the singularity shown in Eq. (2.27)
is from the kinematic singularity given in Eq. (2.24).
The first factor is a result of the partial-wave projection.
From Eq. (2.16), the ¢ factor of the UU residue is

Buut=ry et el (2.29)
The ¢ factors at t=0 for EE reactions are?
Frat~1 3 (=)=
~t i (=)= —, (2.30)
Therefore,
Bat=vanE (2.31)
is constant at t=0. Factorization requires »
(BunE)*=BuuBrn*. (2.32)

Notice two things in this equation. First, the left-hand
side is always more singular than the right-hand side,
so additional zeros must be introduced into the UE
residues. Second, the right-hand side has the same ¢
factor for plus and for minus states, but the B, »* on the
left differ by a factor 4/¢. Therefore, either for the plus
or for the minus states, the two sides of Eq. (2.32) may
differ in odd powers of . In that case, a factor of ¢
must be introduced in B. (It cannot be in B,,,, since
its ¢ factor is fixed by the convention for the quantum
number M.) From Egs. (2.27)-(2.29) and (2.32), one
can reach the conclusion that for the EE reactions

Bt~ i dn) , (2. 33)

where

p=—(o)s, (2.34)
Therefore, the parent trajectory and its conspirator
cannot both couple to a given helicity state X of the
equal-mass pair. For the other cases of S>p>\ and
p=>S>\, the same result as in Egs. (2.33) and (2.34)
holds. For fermion-antifermion (FF) system in the ¢
channel, owing to the difference of Eq. (2.25) from Eq.
(2.24), we find

,3)\,)\:{:’\’&(1:‘:"’). (235)

Combining the results of Egs. (2.33) and (2.35), we have
BaE~ i ILEE MR (2.36)

b. Case of SXM. The same argument as given in
Subsec. a will hold. Equations (2.33) and (2.35) are
still true for the cases M >S>A>pu, M>S>u>), and
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M>u>S>\. But in the case of u>M>S>)\, we need
Bunt= 7”,)‘+(\/t)~—a(\/l)-(S—u—%[li(-))‘+1]) , (2.37)

which will give more zeros in ¢ on the left-hand side in
Eq. (2.32) than those on the right. Therefore, more
zeros than those in Egs. (2.33) and (2.35) must be in-
troduced, and the result is

BraaE~M—SHILEEMT for the BB system (i.e., S even)

(2.38)
and
BaaE~ =8+ IEEMN  for the FF system (i.e., S odd).
(2.39)

Checking the consistency for all cases, we see that this
is the solution for S< M.

From all these results, we see that the most singular
factor that a trajectory of quantum number M can give
to its residue in UE reactions is for M =p and S>M:

Beua~ (V1)

One of the Bim * will have (+/£)~% and the other
(V&)~etl, From Egs. (2.27) and (2.28), we see that only
when A=.5 does one of B4 ,s* have the most singular
¢ factor allowed by the kinematics. From the discussion
of Sec. I, we foresee that only for this amplitude
fear,st can the most singular part of the daughter
residue be uniquely determined from that of the parent.
This will be further discussed in Sec. IIL.

2. t Factor of Daughters at t=0

The original ¢ factor of the daughter trajectories
w=a—k 1

Bun =y, TL(VO S (VH](Vi)mer, - (2.40)

where the subscript u refers to the unequal-mass state,
and N\ to the equal-mass state. Unlike the parent
residue, the daughter v,,,** may still have poles? in
t at =0. Equation (2.40) says that the even daughters
have the same evenness or oddness in the power of /¢
as the parent, but the odd daughters have the opposite.
From factorization,

:Bu.hx'i:ﬁu.ux'iﬁk.)f’i- (2-41)

The ¢ factor on the right-hand side is the same for all «.
Using the argument we used in Sec. IT C 1, and also
checking with the discussion in Sec. III, it turns out
that the even daughter residues Bu,a%T (or B.a*7)
should have the same ¢ factor as the parent residue
Bunt (or B,7). But the odd daughter residues should
have the same ¢ factor as the conspirator residue. There-
fore, we obtain the following ¢ factors of the daughter
residues in the EE reaction:

for M<S, BrarE=maeitEw,
Ne= (_)M+7\+1+Ko

for M2S, BaasE=paosi-SHilidEn,
= (—)SxTEe

(2.42)
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Luen)
vzt E S2M;

M-s+i (1£7))
1 z Kfor S<M;

F1c. 1. ¢ factors of Regge residues Bu2(f) and Bu,sn(): Here
Mmy=1mg, MaFEm,; for Bur(t), s=S=ss+s4; for Bya(f), which is
defined in Eq. (3.38), s is the total spin defined in Eq. (3.33); «
is the daughter number, n,= (— )M+t /= (—)stAetls notice
that the ¢ factors at the equal-mass vertex are dependent on « as
well as on M, s, and A.

For a fixed helicity state \, either the even or the odd
trajectories can couple to the equal-mass vertex at ¢=0.
As discussed in Sec. I A, for equal-mass vertex of iden-
tical particles or particle-antiparticle, this fact is con-
sistent with the Pauli principle and G-parity conserva-
tion, because the even and the odd trajectories have
opposite parity. We summarize all the results in Fig. 1.

D. Comments on the Situation When
«(t=0) Is an Integer

For integer a, the sense and the nonsense channels
must decouple,® i.e.,

BauE~(@—n)12 for p>n>u>0. (2.43)

This behavior should be displayed also at {=0, if
a(t=0)=n. Namely, there should be an additional /¢
factor for those sense-nonsense amplitudes. This ad-
ditional +/¢ factor might complicate the already com-
plicated ¢= 0 behavior we have just discussed. However,
we argue that in the UU reaction the {=0 behavior
of Baru* should not be changed by the fact that the
a of quantum number M also passes through an integer
at ¢=0. Namely, Bunu* should still have the most
singular behavior allowed by the kinematics, i.e.,
Buut~t2 In this way, the quantum number M is
still a physically well-defined quantity. The trajectory
a of quantum number M still contributes its full
strength in the forward direction. Once the behavior
of the Baru™ is fixed, in addition to the behavior given
by Eq. (2.43) the (=0 behavior for all other residues is
fixed, including those of EE and UE reactions. If
M <a(0), the Baa™ are sense-sense. Therefore, all the
trajectories o with M <a(0), and a(0)=n, will choose
sense in all channels, i.e., all the nonsense-nonsense resi-
dues should have an additional factor of £ to that given
in Fig. 1. But if #>«(0), and a(0) =7, the trajectory a

32 The possibility of having a multiplicative fixed pole at a
nonsense wrong-signature point of a can be ruled out at =0,
upon the following basis: The daughter residues become singular
if the parent residue has a multiplicative fixed pole. For references
and a detailed discussion of the « factors and fixed pole in the
parent residue, see C. B. Chiu, S. Y. Chu, and L. L. Wang, Phys.

Rev. 161, 1563 (1967); S. Mandelstam and L. L. Wang, zbid. 160,
1490 (1967).
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will choose nonsense in all channels. In this case, the full
amplitude can never have a pole at {=0 corresponding
to this particle. Therefore, this particle decouples from
all physical reactions.

The one-Lorentz-pole result for the EE reaction says
precisely this.’® Assuming that the pion has a mass
equal to zero and has M equal to 1, Mandelstam?
first used this group-theoretical result to derive the
Adler self-consistency relation for the soft pions.?* But
the difficulty associated with this theory, as was real-
ized earlier,® is just that mentioned in the last para-
graph. Once the fact is established that the M =1 pion
couples only to the nonsense channels, it is clear that
the soft pion decouples totally from all physical reac-
tions. Thus, no physical consequences can be deduced
from this type of soft-pion theory.

E. Discussion

(1) From Fig. 1, the ¢ factor of the residues in the
EE reactions is By \f~+/t if (=)= —1, for any
MLS (B aoE~tM=84/t for M>S). The kinematic
factor of the full {-channel helicity amplitudes is also
fa wvt~+/1. Therefore, our result is consistent with the
analyticity of fiat~+/t, though we did not impose it
in advance.

(2) We apply the results of Fig. 1 to the much-
studied reaction NV — NN. The {-channel reaction is
NN — NN. The total intrinsic spin is S=%1+421=1. The
behavior of the five amplitudes for ¥ < .S, i.e., =0 or
1, is

Bt (VI (=)= 41

~1 if (—)Mte=—1, (2.44)
Bio*t~+/¢, independent of M and x, (2.45)
Boo®t~1 if (—)Mte=+4-1

~(V)?E if (—)Mte= —1 (2.46)
Boot—~(v/1)? if (—)Mte=41

~1 if (=)Mo= 1, (2.47)
Bu*r—~1 if (=)"te=+1

~(HE i (—)Mte= —1, (2.48)

The first four amplitudes have G=(—)It’, and the
last one has G= (—)/+1, However, B1,=0 due to the
total decoupling of the singlet and the triplet state.
Notice that the coupling at t=0 depends not only on
M but also on the evenness or the oddness of « for a
trajectory.

Consider now the plus parent trajectories, such as
P, P', p, w, and 4,. If they have M =0, they couple to
Foo7+; if M =1, they couple to Fy;7+ at {=0, and their

3 S, Mandelstam, Phys. Rev. 168, 1884 (1968).

3 S. Adler, Phys. Rev. 139, B1638 (1968).

# R. F. Sawyer, Phys. Rev. Letters 21, 764 (1968); S. Mandel-
stam (private communication).
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even conspirators can couple to Foo”~. But their odd
daughters totally decouple from the NN system in
either case, owing to internal symmetry. Notice that
the nondependence of B1e7~+/¢ on M and « is consistent
with the kinematic behavior of Fi¢/*~+/f. Trajec-
tories such as A; can only couple to F1:7~. Being a
parent trajectory, A can couple to Fy 7~ at {=0if it
has M =0. Then its odd daughters would couple to
Fo,0/—. However if A; were the first daughter of some
trajectory, it can couple to Fy,;7~ only when it had
M =1. The pion trajectory couples to Fo,¢/—. If it is a
parent trajectory, it can couple at {=0 only if it has
M =1. Tts odd daughters can couple to Iy ;7. Its even
conspirators can couple to Fy,7+F; its odd conspirators
totally decouple from the NN system. However, if the
pion happened to be a first daughter trajectory, with
M =0, it could couple to the NV system in Fo,/— at
{=0. But then its parent «(0)=c,(0)41 would couple
to F1,17—, and its importance for high s would be second
only to that of the Pomeranchon ap. This is not ob-
served in experiments. Therefore either this possibility is
out of the question or the parent trajectory just hap-
pens to decouple from the NN system. _

(3) In the case of M>S, the trajectory totally de-
couples from the equal-mass system. This is a well-
known Lorentz-pole result,'®!* but the analyticity ap-
proach also gives the vanishing power.

(4) We see that the quantum number M cannot be
uniquely introduced in EE reactions by the analyticity
approach. Hence, we may appreciate the powerful re-
strictions due to analyticity and factorization in the
unequal-mass reactions. But the identification of the
quantum number M with the O(4) M can only be made
after considering its role in the EE reactions, which we
shall discuss in Sec. ITI. The exact symmetry origin of
M in the UU reactions is still unclear.

III. STRUCTURE OF REGGE TRAJECTORIES AND
RESIDUES AT ¢t=0: GENERAL SPIN

A. Residues of Conspirators and Daughters at t=0

From the discussion in Sec. I, we see that the way
to generalize the calculation to general spin is quite
obvious. Instead of Q_,—1(z), we use E,,»%(2;) in Egs.
(1.5) and (1.9), where Eo,0%(2;)=Q-e—1(2:). The only
complication is the additional requirement of a con-
spirator and its daughters. We shall show how the
analyticity is achieved by the collaboration of the
daughter sequence and its conspirator daughter
sequence.

1. UU Reactions

As we have discussed in Sec. II B for a trajectory of
quantum number M, the residues 3,, »* with arbitrary
u have the most singular form allowed. Thus, the
daughter coefficients can be uniquely determined from
the analyticity of f, »*(s,t) like in Eq. (1.5). To be
specific, we consider M 2> u > 0. The parent contribution
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is

S8 E(5,0) =By, () Ear %+ (21)
+ 8., M:F(t)EM,ua—'_(zt) , (3.1

where a;(0)=a_(0). But we know that the singular
parts of Bu,* and B, are related, ie., v, u™(f)
= —v,,»(f) up to the uth derivative, and

B, 3(8) =By, s (&) FBy, () ~ (/1) M H

instead of £~*(+/f)¥—~. As far as the most singular part
is concerned, B, ,m"=—B.,x". At t=0, Eq. (3.1)
becomes

f”,Mt’i(S,t) zﬂu,M+(t)EM,_ﬂa(Zt) y (3.2)

where Ep, .= Ey ,*+t—Ey,*. Using the argu-
ment of Sec. I, the daughter coefficient for a trajectory
of quantum number M is such that

Y a1 =0)E s (2) =[(zi—1)JO-¥ . (3.3)
all xk=0

The detailed calculation of @, »*(t=0) is given in
Appendix B, Eq. (B14) and Eq. (B16). For M 2 u2>0,

@y, ™ *=g_, u**, with a—a,=«,

=(—=)¥+e tanw(a—M) T(@—M+1)T(a+u+1)
2a, A1 [T (@M +1)T (0 — 1)

"I'—(/c—-lt—lgliI‘(ax—-M—}-l)I‘(aK—}—p—}-l):l

(3.4)

X(=)

X[ (eta+2)T1.

For other values of u, the value of @ ,** can be ob-
tained from the symmetry property of the E,, »* given
by Egs. (B2) and (B3).

Here it is seen that the analyticity property of
Su,ut=(s,8) is achieved by collaboration of ay, and
a_,, for all positive integer values of «. Also, a;z,,** can
be obtained uniquely by factorization, i.e.,

M,k —

=ay, anM.ﬁM'K/aM,MM"‘;

3.5)

even though we cannot start with fz >+ to calculate
the daughter coefficient. Without proving them ex-
plicitly, we expect the following results for f_z,! with
EZp20:

Qi

0
> ap M

all k=0

B o(e0) = dol (= D]
+du[3(GE—1)]F, (3.6)
where n=3[|M —g|+|M —u| —(@a—u)]. The d’s are
explicitly known, since all the @z ,** are known from
Eq. (3.5). For fz..},
2 @ By, (3) =dd[5(z—1) ] -

all x=0
+d[3GE—D]F, (3.7)
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where
n'=max((@+p—|M—a| —|M —p|),0),

and the d’ are determined. The additional terms on the
right are just allowed by the additional zeros in the
residues.

2. UE and EE Reactions

In the UU reactions the analyticity requirement is
solely from the i-channel helicity amplitudes f* which
are analytic at {=0. Once the analyticity properties
of the fYs are satisfied, the f*s are automatically
analytic at /=0, since the crossing matrix?® is analytic*
at t=0. But the analyticity requirement in the UE
reaction is much more complicated. First, the f’s have
a definite singularity structure at ¢{=0 that has to be
satisfied. Second, the f*’s are analytic at ¢=0. But this
is not automatically given, since both f*s and the
crossing matrix are singular at £= 0. This gives the well-
known constraints® on the fs. We shall show how
these constraints in the UE reactions help to determine
the daughter residues. First, let us discuss the analy-
ticity requirement due to the f¥’s.

a. Analyticity requirement due to foa,po!. As discussed
in Sec. Il C, in UE reactions only the residue with
A=S=sp+sq and u=M, and S2>2M have the most
singular ¢ factor allowed by the kinematics. Also as
given in Sec. IT C for A\=S and u= M, one of B¢ and
Bar,s~ has (v/f)~® and the other has (v/#)~¢*. To be
specific, we discuss the case

Bu,sT~(H/1)™ (3.8)

and

Bar, s~ (V/1)7otL,

As also discussed in Sec. IT C, the daughter residues
must be

(3.9

Bar.s*t~(+/f)~* for k=positive even integer (3.10)
and

BM’SK,-I-N(\/t)—a-H or BM,SK'+EO

for k=positive odd integer. (3.11)

The odd daughters of the minus trajectory should have
the same ¢ factors as the even plus trajectories, i.e.,

Bur.s*~~(/t)~* for k=positive odd integers (3.12)
and

Bu, s~ ()~ (/)™ or Bu,s*"=0

for x=positive even integers.?” (3.13)

3 T, L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 332
(1964); 1. J. Muzinich, J. Math. Phys 5, 1481 (1964); G. Cohen-
Tannoudjl A. Morel, and H. Navelet, ibid. 46, 239 (1968)

# In the other case, B, T~ (\/f)"* forx= posluve odd integers,
and By, ~(\/t)" for k= positive even integers; ax=ay,+ for
k=positive odd integers, and ax=a, - for k =negative even integers.
See Refs. 4 and 5.
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We now look at the contributions by the parent and
the first conspirator to the ft+,

S, stF(s,0) =Bar,sT() Es, u*"(20)
+Bu,s (D Es, u D (2), (3.14)

where a.(0)=a_(0). Therefore, for large s and =0,

fust s~y st (V) (svE)*S
v, st (Vs /D52, (3.15)

The leading s« term has a (1/¢)~* singularity, which is
just the singularity of fa,s*. But the second term has
1/t additional singularity, so it must cancel with the
(sv/8)*=572 term from Eg, »**(2:) and Eg, »***(2,). The
net result is

> bu,s*tEg, u%t(zy)

even k=0

+ Y basEs () =(G2)*S, (3.16)

odd k=1

where all the 8’s and o’s are their values at {=0.
We do the same thing for f,s™,

Fust=(s,0)=Bu,s () Eg, @ *(z,)
+Bu,st(OEs, w+—(2) (3.17)

~yu,s (V)T (s S
+va,sT(VE) sV S, (3.18)

From this equation we observe two things. First, both
terms in Eq. (3.18) have a (/)= factor, which ex-
ceeds the singular form of the full amplitude far, st~
~((/§~®D by a factor of 1. Second, as already
mentioned in Sec. IT C 2, the 81,51~ (¢) must have the
same { factor as Bur,st(f); otherwise the singularity in
the second term cannot be cancelled. Therefore, there
must be a total cancellation between the two terms.
All these facts require that

> bu.s(O)Es, u*(z0)

odd «=1

+ fl b, st (D Es, u*(3)=0. (3.19)

even k=0

CS,S’M'K=bS,MM’KbS’,MM'K/aM,MM'K
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Now, adding Egs. (3.16) and Eq. (3.19), we obtain

2 bu.stEg u*™+ Y bars*Eg, yo

even k=0 odd k=1
=725 (3.20)
and

0 0
2 bustEg_y*— Y, bugtT

even k=0 odd «=1

XEg, _m* =225, (3.21)

Equation (3.20) can also be rewritten in the form

0
2 bu,sM*Eg y=(32)%5,
all k=0

(3.22)
where

ba,s™*=buy,st for «k=npositive even integers
and ‘
for k= positive odd integers;

bar, g™ *=bar, g%

So we see that the analyticity property of fya,st is
achieved by the collaboration of the even trajectories
of one spin-parity (a4 in our case) and the odd trajec-
tories of the conspirator (e in our case). From the
symmetry property of Eg,»* in Egs. (B2) and (B3) in
Appendix B, we easily show that the 4’s obtained from
Eq. (3.22) atuomatically satisfy Eq. (3.21). The solu-
tion to Eq. (3.22) is calculated in Appendix B [see
Eq. (B26)]:

by, M =h, s,
=(=)™+8 71 tanm (a++S) T(a—S-1)
X (@) (20041 X[T(k+1)T (20 +2)
X[r(ax+s+1)r(ax+M+l)r(ax_M+1):|llz
(e, —S+1)
XF(—k, ax—M1; 20,4-2; 2).

with a—a,=x,

(3.23)

By factorization we can find the daughter residues of
the EE reactions at ¢=0, using Eqgs. (3.4) and (3.23):

tanm(a+S) tanm(a+S’) T(le—S+1)T(e—S'+1)

= (=581

tanw(a—M)

(=D*2en+1)

Tla—M+1DTI(a+M+1)

I‘(a,‘—l-M—l—1)I’(a,‘——M—f-1)I‘(a+ax+2)rl’(a,+5+1)I‘(a,c+S’+1):|1/2

P(x+1DLT (20, +2)

LT (= S+ 1) T (ae—S5"+1)

XLF(—r, ax—M~+1; 20,42, . (3.24)

Comparing with Egs. (A9) and (A10), we see again that this is proportional to

A8,ans™ T (in/2)dst a8 (1w /2).
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Therefore, the sum of all daughters just corresponds to
a one-Lorentz-pole expansion

Z CS,S’M'KES’,SaK(ZJ)N Z dS,aK,SM'OH_l(iT/AZ)

all k=0 all k=0

Xdst aes ™t (im/2) Egr s%(z1) . (3.25)
Notice that if « is a positive even integer, cg,s/'* are
the residues of even trajectories with the same spin-
parity, but if « is a positive odd integer, cg, s/ * are the
residues of odd trajectories with spin-parity opposite
to that with « positive and even.

For other UE amplitudes f, )% the daughter residues
can be determined in terms of the first u=S—\,,+M —pu
arbitrary daughter residues, where N,=max(|ul,|)\]),
as already defined in Eq. (2.25). The equation corre-
sponding to Eq. (3.22) becomes

2 b B w%(z0) =do(320) Nt da(32)

all k=0
+ e +dn(%zt)a_)\m_" ’ (326)

where #=S—\,,+M —p, and the d’s are undetermined.
We foresee that the analyticity requirement from f* can
eliminate some of the arbitrariness. We shall discuss it
in the next subsection.

b. Amalyticity requirement due to foq;q5°. The s-channel
helicity amplitudes are related to the #-channel helicity
amplitudes by crossing?®:

fcd;ab‘\r = Z da’asa(xa)db’ bSb(Xb)dc’csc(Xc)

a’b’c’d’
de’dsd(xd)fc’a';d' b’t- (327)

For my=ma=m, the crossing angles are given by

CosX,= [- (s+ma2 _mz) (t+ ma2 _mcz)
_zma2 (m¢22 "‘ma2)]/$ab Tac )

cosX=[(s+m2—m?)({+m2 —m4?)
- 2m02 (m02 _maZ)]/Scd Tao )

cosXp=[t(s+m?—m.2) —2m2(m2—m,2)]/
Sap[ 1t —4m?) M2,
and .

CosXg= [t(s‘l“ m? —mc2) —2m? (mc2 _mag)]/
Seal 1t —4m2) 12,
where

(8a2)*= [5_' (ma+mb)2][s_ (ma_mb)zj-

Notice that cosXs and cosX; are singular at ¢=0. The
fYs are also singular at t=0. But the f*’s are analytic
at ¢=0. Therefore, the f*s are constrained at {=0
through Eq. (3.27). Let us make the following observa-
tions:

(1) For the crossing angles, we need only keep the
(W/?)s terms at {=0 and s—. All the other terms,
such as #s, can be dropped, since they will correspond
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to more regular terms of the Regge pole. So we find
cosXy== —2m? (m2—my2)/(s7/1) X dm

= —m(mz2—my2)/2s7/t=(—cosh,)'=cosx, (3.28)
cosXg= —2m(m2—my?)/s\/t= (—cosf,)!
=cosX, (3.29)
CosXy= —s(me2 —m2)/s|mE—m2| = —1, (3.30)
and
cosX,~ —1. (3.31)
Therefore,
Xg=Xo=1.

Notice that Egs. (3.28) and (3.29) are also true as far
as the singular part at /=0 is concerned. Substituting
Egs. (3.28)-(3.31) into Eq. (3.27), we obtain

Jeeti—ap™= (=)t 30 dpy(X)

b ,d’

Xdara*¥(X) fea;arnt.  (3.32)

(2) In Eq. (3.32), the functions on the right-hand
side are singular at =0, but the f_, .s°* are regular.
As we vary b and d, we shall obtain all the constraint re-
lations on the f*’s for fixed ¢ and @. It turns out that it is
much nicer to use the irreducible form of the crossing
matrix dy,;°*(X)dgr,4°¢(X), which will be dependent on
b—d and b’ —d’, since the daughter coefficients depend
only on —d, not individually on & or d. So we shall
transform Eq. (3.32) to its irreducible form.38

d,,,'bsb(x)dd,,dsd(x) = (—)b""d_b',_bsb(x)(ld',d”(x)
=(—) (=B (=) 3~ c(sa, Sb, 83d", —b)

Xc(say Sv,8; d, —b)dn 23(X), (3.33)

where N'=d’—¥', A\=b—d. The introduction of s, into
the phase in Eq. (3.33) is just to conform with the con-
vention in Ref. 11. Substituting Eq. (3.33) into Eq.
(3.32), we obtain

Secdi—ap® =2 % Ay 2t (X (—)see

Xc(sa, $0,85d, —b) X (=)D

b’ ,d’yd—b' =\

XC(Sd, Sby S5 dl, *b') Xfca;drb't. (334:)

Using the orthogonality property of the Clebsch-
Gordan coefficients, we have

Z (—)_(Sb—b)c(sdx S5, 8; d; '—b)f—c,d;~a,bsE f——u;s)\s

b,d;d—b=\

=> dvai(X) X
N b

7,47 dl—b =N

(=) Co=¢(sq, 50, 85 &', ")
Xfca;d'b’tEZ dk',ks(x)fu:skt (3-35)
N

% This performance is hinted at the O(4) expansion in Ref. 11,
or the Lorentz expansion in Ref. 10.
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or

Fowan® =2 d n ) fuant =2 dr a*(X)
v v

X QIH )P pnddy 7 (2).  (3.36)
J

The implications of these equations are interesting.
The left-hand side is still analytic at {=0. As with the
original helicity amplitude, we can use this crossing
relation to discuss the analyticity properties®3* of the
new set of amplitudes f,..n¢ by studying the inverted
crossing relation corresponding to Eq. (3.36):

fu,sk't=¥ dk’,)\s(x)f—u,s)\s~ (3-37)

The result is precisely the same as the original helicity
amplitudes as given in Egs. (2.23)-(2.25) of Sec. II C
with the replacement of .S by s. Therefore all the argu-
ments for the original helicity amplitudes and residues
discussed in Sec. IT C and ITT A 2 a go through. The new
residues are related to the old ones by

,Bp;s)\:t= (_)_(Sb_bl)c(sd, Sby S; d,’ —b,)

@, d— b=\
XBeasarvE.  (3.38)
Notice that ﬁ,‘ o still satisfy factorization. Therefore
the results given in Fig. 1 apply to the B,.s.. Again we
see that for s<M, the equal-mass channel totally de-
couples from the trajectory a. For M <s, the daughter
residues are uniquely determmed in terms of the parent
residue only for far.s'. For fixed s=M, the daughter
residues are also uniquely determined for all £ with
arbitrary A.
From the discussion in Sec. III A 2 @, and Eq. (3.26),
the daughter cancellation will mean

R R L R (L TR S
X [do(3) =+ da(ha) =t
o das)],

where 7=s—\y, and B~ (/) The d’s are arbi-
trary constants at {=0 and are related to Bar,e* for
k=0, 1, 2,---, n. Notice that for all N\ in Eq. (3.39),
there is a 1eading asymptotic term of

(3.39)

s—o, (3.40)

S\t~ Bar ez~ s%,

But for u=M, B,a~ /f)~o+ ¥l the leading asym-
ptotic behavior is
Fuaat~seid—ul,

(3.41)

Now we want to see if these arbitrary parameters d
can be determined by the analyticity requirement of
Jow:ar® from Eq. (3.36).

(3) In addition to the f*’s being analytic at ¢=0,
because of total helicity conservation in the forward
direction the asymptotic behavior of f* changes at t=0;
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we obtain from the kinematics
Fetsap®= (V2 sinkf,)! (0= (e=a)]
X (VZ cosify)l @b+l f ;.o
= (V2 sin30,) 1+~ N (V2 cos§,)l (@ D+C=DIf ;. 08
(3.42)
where f* are analytic and zero-free wherever sin26,=0
or cos30,=0. In Eq. (3.40), both sinif,~1, cosif,~1

as s — for {0, but at t=0 sin1f,~ (n/s)~%. It follows
that for u—X\=0 only, we have

fcd;abs/\'sa"’ (,\/t)—azta at {=0. (3.43)
The same is true for the f,.q, ie.,
f,u;s)ss'\’ 6,4)\3“"!"0(50‘-1) at = O. (3.44:)

But from Egs. (3.36) and (3 41), p must be equal to M
to make the s* term survive. In conclusion, basically
there are two requirements due to fs: First, the analy-
ticity requires that

Tt~ (V)20 (3.45)
Second, the additional symmetry at /=0 requires that

Joanant~ o —u(y/ 1) (3z,)=. (3.46)
Substituting these into Eq. (3.37), we obtain
Farint~dn —25(X) (/1) ~(3z,). (3.47)

Using Eq. (3.39), we obtain from Eq. (3.47)
B w3 (2= 1) NG (24 1) TN
X Ldo(3z) *m+di(Gz) = - - - da((20) ]
=c(s,M)dr- (O (/1)*(320%, (3.48)

where ¢(s,M) is the proportionality constant. Notice
that ¢(s,M) depends only on s and M, not on \’; so the
N dependence of Bar .o is explicitly taken care of by the
d(X)’s. Thus, Barev is N -independent. We then use the
representation

dr —2*(X) =[5 (1+cosX) FIN=MI[F(1 —cosX) JHN+MI
P(s+N+1)T(s+M+1)
(I‘(s—)\'—{—l)I‘(s—M-H)

XF (=84 Am, sHNmH15 14N —N;

1/2
) rrasving
—% cosX),
(3.49)

where A,=max(M,[N]), \a=min(M,[\'|), and A,, is
the same as defined in Eq. (3.25). From the fact that

cosX=(—z,) 1,
it then follows that

000 = (1) N3 (15 v 30
T(s+N 4+ )T (s+M+1\ 12
I’(s—)\’—{-l)I‘(s—M—i—l))
XLPA+N+M) T F(—5+Am, s+Amt1;
14 Am—An; 3(141/20).

><<%>*m<%zt>—*m(

(3.50)
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Since s, A\m, and A, are all integers, F is a finite power series in 3(1+41/2,),

(—s+A) (s+Aut1)

F(=5-Am, 5 Ant1; T4 A=A 3(141/20) =14

s(1+1/z)+- -

1+ —An

T( =54 AnF2) (s A+ 1) T(1-FAn—A,)

where n=s—M\,. From Eq. (3.51), we can calculate
explicitly the asymptotic expansion in z, of

1 [3(1+1/z) ], (3.51)
T (=5 A T A DI A Au ) s—Aa) o
the f¥s are constrained at /=0, i.e.,
> A (1/2)dr (1/2) firint(s, t=0)~8,,.  (3.59)
PUB

(s () =00l b h)
+oetbaz)e. (3.52)

So Eq. (3.48) is

Bt s[doGz) Mt diGz) 14 - F-du(32) %]
=¢/(M,3)[bo(320) =P+ by (3z,)
+ o bu(Rz)e], (3.53)

where the &’s can be explicitly calculated from Egs.
(3.50)-(3.52). Then from Egs. (3.26), (3.53), and (B28),
the daughter residues are uniquely determined by the
parent residue B

\bM,st"‘= dohar NS dibpr o2 e
+dahaao, (3.54)

where the A’s are given in Eq. (B26), and the d’s are
explicitly known from Eq. (3.53). However, notice that
the daughter residues Baua* of the original helicity
amplitudes fi ' are not umquely determined, since
the s dependence of B s is not known. Only in the
reactions of total spin 1 do the 8,\* happen also to be
uniquely determined.?!

Using factorization again as in Eq. (3.24), one can
calculate the daughter coefficients Bo,sravcon;sra™ for
- equal-mass reactions. They should correspond to the
expansion of one Lorentz pole. We shall not show this
explicitly. (The identification is trivial for the cases of
A=s and \'=s".) We quote the O(4) result and then
make two remarks to complete the discussions:

Cs)\;s')\ —’dax M a-H(MT/Z)
X g™+ (i/2) ) (3.55)
fs')’;s)\"s(l=0) =Bars\ 2 da,s')\'M"’H'l(iW/Z)
XM (im/2)ex v x(20),  (3.56)

where the ¢’s are the second-kind functions?® correspond-
ing to dxav*(2;). The explicit definition of the €’s is
given in Appendlx B.

(1) f¢ is related to f* by crossing:

fs’y’;s;as(s, t=0) = )"Z)‘ d}\’y’s,(ﬂ'/Q)d)\ys(ﬂ'/Z)

X Fornisnt(s, £=0).  (3.57)

Inasmuch as

fS’v’;sv’g"‘ (sin%ﬁ;) =~ (\/t) =1 ) (3-58)

The fact is mentioned by Bitar and Tindle'® that using
their addition theorem, one can show that Eq. (3.56)
does satisfy the constraint equation (3.59). The Bitar-
Tindle addition theorem?'® says that

22 dagn ™= (i) 2)d o™ <+ (i) 2)ex x5 (22)

=y d)\,,ﬁ(—1r/2)d,‘,>\r*'(W/Z)DS/Squ“+1(73) , (3.60)
»
where
coshy®= — (s —2m?)/m?
and
Ds’suM’wf—l('Ys)Nsa—lM—'”” fOI' §—00 .

Substituting Eqgs. (3.60) and (3.56) into Eq. (3.57), we
obtain

fs’v’,svs(s, = 0) :,BSlv,s'v'Bv,v'Ds’,spM'a_H('ys) . (3'61)

Therefore the conspiracy equation (3.59) is satisfied.
(2) Notice that Eq. (3.61) also says that

fs'u,st s M=l |

From Eq. (3.35), the original helicity amplitudes

|M=la—cll (3.62)
This says that??3 f;..:°~s* at =0 only when a—c¢
=b—d=M.

Therefore in this subsection we have shown that the
constraint relations on the f¥s of the UE reactions are
determined uniquely by the daughter residues & ¢,
but not the original helicity residue &% It has also
been demonstrated that the conspiracy relations in the
EE reactions are also satisfied by the calculated
daughter residues (presumably the one-Lorentz-pole
solution). From our discussion here and in Ref. 39, one
can easily show that around ¢=0, the amplitude

fed;ap°~ 80, [(a—b)— (—a)15%

39 Notice that this result is also true for the UU reaction at ¢=0.
We give a brief derivation here. Using the relation given by Eqs.
(B1) and (B2) of Appendix B of Ref. 4, at =0, cosXa cosxc
= COSXp COSXa =080, =1, COSXq COSXp = COSXe cosxd—cos&
Therefore, the crossing matrix gives feoa.q5° f_c_a '
where g=c—a, p=d—b. But from Eq. (3.6), smce sin ;0¢~(ts)”2
fcd b "‘f-—c—a at= (Sll'l;oz)l“-"“’(COSgo;)"‘ l‘lf__" eh Na_ an |3~ II‘H
=80, [(a—b)—(c—a:1*°_ 1M ~1a~bll For the UE reactions, thIS isalso true
accordmg to Eq. (3.46). Thls shows that the behavior of the f*’s
at £=0 is independent of the external masses. The behavior of the
/s is dependent on the external masses, since their singularities
at ¢=0 depends on the extérnal masses.
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fea;ap®~seHM—la—clI=}M=1b—dll independent of exter-
nal masses, as it should, even though the large-s be-
havior of the f¥s around {=0 are strongly dependent
on the external masses.

B. Derivatives of Trajectories at {=0

1. UU Reactions

In Sec. III A, we used the analyticity properties of the
parity-conserving helicity amplitudes far,»** to find
the daughter residues at {=0. To find the restrictions
on the derivatives of the trajectories, we shall consider
the analyticity property of the original helicity ampli-
tude fmu' and f_put. The parent doublet contribu-
tions to the fam®* are

ot E=BEEy, u® BT Epy, mo—,  (3.63)
where we omit the subscripts on the 8.
For b= far, st far, b
=BTEy,u**+BEm,u* (3.64)
and )
femuout=B*Ey —u**—B Ey—u*.  (3.65)

Notice that far,a* is analytic, but from the fact B%(z)
={~oyE(l) and Eur, u%(2;)~ (st)> ¥, it follows that each
term of the right-hand side behaves like =¥ (actually
there are more singular terms, but they are cancelled
by daughters). So there are constraints on both 8+ and
o, We expand Epr,n*=®(z,) in ¢; then Eq. (3.64)
becomes

T =t [y*(0)+v=(0) JEar, 2 (2)

Hy+ ()7~ D(0)+a; (O)y+0)

+a-®(0)y(0)1(3/0e) Enr, 2%(z:)

+ELyH OOy ®(0)+a; Oy ()

+a®(0)y P (0)+as P (0)y*(0)

+a-®(0)y=(0)1(8%/90*) Ear, 2%(2) + - - -

A Myt D (0) = D (0) - - - -

+a;. A0 (0)y+(0)+a- 0 (0)y=(0) ]

X (9/00) M Epr,*(z)+---}. (3.66)

The first term says that y*({)=—vy~(f) up to the
(M —1)th derivative, so that g+(t)+B—(f)~i—(a=2),
though individually 8+(f)~¢~2. This is just the result of
Sec. II B 1. The further terms of Eq. (3.66) imply that
a(f)=0_(f) up to the (M —1)th derivative, just like
the residues y*(f) and y—(¢). Similar argument ought
to be true for the daughter residues and trajectories.
Therefore,

O‘K,+(t) =ax.—(t)

}up to the (M —1)th derivative.
YO =—v~=()

(3.67)

However, in"Eq. (3.65) the singularity on the right-
hand side just matches that on the left-hand side, so
there is no restriction like that just discussed.
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We are now going to calculate the restriction on the
slope of the daughter trajectories with respect to the
parent, using the same method as in Sec. I B. Cor-
responding to Egs. (1.24) and (3.3), the analyticity
requirement of the Inz; term in the expansion of far, !
Eq. (3.64) would imply

5 aaar Mg, O (0) —au, D(0) WEarres(z)
~[2:00) - OO T eI,

Here no d terms like that of Eq. (3.2) are allowed,
because the right-hand side is already too singular.
Similarly, from the Inz, term in Eq. (3.65), we obtain

2 ann* M+ D (0)Far, - (0)JE m,— u*(2)

= [ 0(0) 4o O (O) T (ae— 1) T
A= 1)

(3.68)

(3.69)

Notice there here the d; term is allowed. The use of
Eq. (B14) in Eq. (3.68) gives

an, w* Moy D (0) —a,,-(0)1/

[ers (0) —e_ O(0)]= gar, ",
From Eq. (3.4), we know that e, u*M=g_ u, u*
Therefore,
it P(0) —ax,~ D (0) = (gar, ™%/ g2, u**)

X [t 0(0) e O (0)]= [ (0) —a D(0)]
X[T(a—M~+ 1) (at+M+1)/T(a+M+1)

(3.70)

XT(ax—M~+1)]im0. (3.71)
But we know that for M4 >1,
a . D(0)=a_1(0). (3.72)

So Eq. (3.71) has a nontrivial solution only for M =1,
and

0,4 9(0) ~te,- O(0)= [, ©(0) —a_(0)]
X ay(0) [ex(0)+11/(0) [a(0)+ 11.

Using Eq. (B14), Eq. (3.69) gives
@, Mo, P0)+ax,— P(0) )= [atr. PV (0)+a—-P(0)]

(3.73)

Xgu—uotdigm—noet, (3.74)
where
d1= [0 P(0)+a-P(0) Jar, u* M P1*
+ Lo+ ®(0)+a1,-D(0) Jaar, uMPo=2,  (3.75)

where P1¢ is the coefficient of (z,)*~'in Eu, u% and
Po is the coefficient of 2,4 in Ejr,_x*. Using the
fact that

au, " MP1%= —ay, ytMPo, (3.76)
ay,u®MPi*= —(a—M)?/2a, (3.77)
ap, " M=gy—uoe, (3.78)
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and

g~ Y g ar ~ =k Qa—x+1)/(a—M)?, (3.79)
one obtains
Lot P(0)+ae,-(0)]—[e.P(0)+a-(0) ]

k(2a—k+1
=—S~L){[a1,+‘”(0)+a1,~(”(0)]

—[es@0)+a-®(0) 1},

for all M. Notice that Eq. (3.80) is independent of M.
Combining the results of Egs. (3.72), (3.73), and (3.80),
we obtain all the constraints on the slope of the daughter
and conspirator trajectories:

(3.80)

ForM>1
’ e+ P(0) =a,,-D(0)

k[ 2a(0) —k+1]

and

aD(0) —a®(0) =

2a(0)
X[a1(1)(0)—a(l)(0):]; (3.81)
for M =1,
a1 (0) —ax,-(0) =W
K,+ Ky— a(O)l:a(O)_l_l]

X[ ®@(0) —a-®(0)]
and

Late+ P (0) e, - (0) ] =Ly P (0) +a-P(0) ]

k[a(0) —x+1
=_[_(zj{[a1,+(1>(0)+a1'_(1>(0)]

2a/(0)
—[a (0)+a-®(0)]}; (3.82)
for M =0, there is no doublet, and
«[22(0) —x-+17]
a,M(0) —a®V(0) =——————
®(0)—a®(0) 20)
X[a1®(0)—a®(0)]. (3.83)

As we have shown, all these constraints are independent
of the external spins.

2. UE Reactions

As in Sec. I B, we again would like to check whether
the restrictions on a,,+®(0) in the UE reaction are
consistent with those in the UU reactions. Again we
find they are consistent, and the conditions from the
UE reactions are less restrictive. Therefore, Egs. (3.81)-
(3.83) are the restrictions on the a4 ®(0).

The restrictions on the slopes of the a’s from [t
and fir.! in the UE reactions are all of a form similar
to Eq. (3.74):

bM,sK’MOZx(l)(O) = a(l)(O)hM’sx,a_l_dth’sx,a——l

+(22hM,5"'°‘—"2 , (384)
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where the %’s are given explicitly in Eq. (B26). The d’s
can be calculated:

d1=bar,s"MP1*a® by, MPyion @

do= bar O MPya Wby JMP o1y Dby 2. M P ez, )

where P;* is the coefficient of (32,)%57 in Ej %(z,).

"~ As we mentioned in Sec. IT C, the analyticity of the

amplitude is achieved by the collaboration of the even
trajectories and the odd trajectories of the conspirator.
The odd daughters of the same spin-parity are either
totally decoupled or unrelated. By the specification of
Egs. (3.11)-(3.14) and (3.22), in Eq. (3.84),
ay=o,4 if «isa positive even integer,
ay=a,- if «Isa positive odd integer.

From the restriction of Eq. (3.22), it follows that

by O MP 1= —Dby M Po (3.85)
OO MPy%= —byr s MP 1 —byr 2Pz (3.86)

and
Dot M=har 0. (3.87)

Thus Eq. (3.84) becomes

aM(0) —a™(0)
= Lo ©(0) —a® (0) 1P o™ har g+ g 4% /o 37
+Ler®(0) —a®(0) TP1®ag ob Trag 5% /Iy 4
+Las ®(0) —a®(0) TPo g 5 “hag 552 i1y 552
(3.88)

Comparing Eq. (3.88) with Eq. (3.81), we see that the
restriction given by Eq. (3.88) on «,V’ depends on one
more free parameter a;®(0), which is determined in
Eq. (3.81). Therefore, their consistency is not very
obvious. We show explicilty in Appendix C that Eq.
(3.88) and Eq. (3.81) are consistent. So, the constraint
on the slope of the trajectory is indeed independent of
the external masses and spins, and the daughter tra-
jectories are not forced to be parallel to the parent for
any M.

Iv. CONCLUSION

From this analysis, we see the implications of analy-
ticity and factorization. The positions of the daughter
and conspirators and the most singular parts of the
daughter and the conspirator residues at ¢=0 can be
uniquely determined with respect to those of the parent
trajectory. The solution in the equal-mass reaction cor-
responds to that of a one-Lorentz-pole expansion. In
addition, the ¢ factors of the residues and the constraints
with free parameters on the derivatives of the trajec-
tories and the less singular parts of the residues can
also be calculated. It is also shown how all the con-
spiracy relations are satisfied. However, notice that
analyticity and factorization cammol imply anything
about the regular parts of the daughter and conspirator
residues in unequal-mass reactions, just as in equal-
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mass reactions they can never specify the vanishing
parts of the daughter-conspirator residues. Any specifi-
cations in a model beyond those mentioned above must
be justified by dynamics. Therefore, we do not expect an
0(4) expansion at ¢=:0 for the unequal-mass reactions
to have a fundamental meaning, as it had for the equal-
mass reactions.

Note added in manuscript. After this manuscript was
written, we received a report by J. B. Bronzan [ Phys.
Rev. 181, 2111 (1969)], who also derived Eq. (3.67).
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APPENDIX A: USEFUL FORMULAS

F(ab,c;2)= i (@)+(8) 3",

n=0 (C) i !

(A1)

Fornvani=
A,b,c,D;N=c—A;A\=D—b

~To 5@ 3 dyaqe™ o (in/2)dsan™ (i /2)exn*(21)

(—)—(Sb—b)—(su—A)C(sdy Sb, S5 d; _b)c(scy Sa, S5 €
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where (@),=T'(a+n)/T(a).

F(a,b,c,1)=T(c)T'(¢c—a—0b)/T(c—a)T'(c—b). (A2)
(d"/dz")F (a,b,c,2) = [(a)n(b)n/(c)n]
XF(a+n, b+n;c+n;2). (A3)

[c—2a—(b—a)z]F(a,b; c; 2)+a(1—2z)F(a+1, b, ¢, 2)

—(c—a)F(a—1, b; ¢c;2)=0. (A4)
F(a,b; 2b; )
=(1—2)"1F(3a, b—3%a, b+%;22/4(z—1)). (AS)
() I(1—2)= —2T(—2)[(z)=n/sintz.  (A6)
['(22) = 22—17=112T (5) T'(z4+1). (A7)

All formulas from (A1) to (A7) are from Higher Trans-
cendental Functions, Vol. 1,40

n!

—[f(Z)g(Z)] 2z

« kl(n—cx)!

T J@E" ). (A8)

The contribution of one O(4) pole to the helicity ampli-
tude is given by Ref. 11 as

—A)fea,nst

dsast’a+1(i7r/2> = ( — ) 0!+M~s[

APPENDIX B: EXPANSION COEFFICIENTS
IN E FUNCTIONS

Andrews and Gunson?® have a method of finding the
expansion coefficients in €,,m7(2).#2 We shall adapt
their method to calculate the coefficients which we need
in this paper. Their e functions are defined to be, for

all k=0 (Ag)
where the ¢’s are defined in Eq. (B1) of Appendix B. From Ref. 41 and Ref. 15,
2s+1)T(a—s+1)
T(s+M+1D)T(s—M+1)T(s+a+2)
y Qa1 (aFs+ DT (M A+ D)T(y— M +1)T 2a+2—k) 742
T(ax—s+1)T(1+«) ]
X2 T'(20,+2) TP (—x, ax+1—M; 20,+2; 2).  (A10)
m=>m,
em o= TG+ mA+ DD —mAt- DI (Gm+1)
XT(j—m'+ 1)} 2T (25+2) 1
X3 (1+8) O (1) i
X[3 =1
XF(j+m+1, j+m'+1; 2j+2; 2/1—2). (B1)

40 Higher Transcedental Functions, edited by A. Erdélyi (Mc-
Graw-Hill Book Co., New York, 1953)

41§, Storm, Arkiv Fysik 29, 467 (1965).

42 We benefited greatly from discussions with Dr. C. G. Itzykson
on this subject.

The symmetry properties of the e’s are

enm ¥ (2) = (=) et m?(2) = (=)""™e_p,_ri(z)  (B2)
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and and (BS) become
b (—5) = — Mg, 0 1(2) Jol)= Lo TH (1) T Himt 3 (1 )]

(& for Imz20). (B3) -
= 2 Znm Enmw(z),

Their theorem says: If z/+!f;(z) is analytic for all 2 all imo
(including 2= ) outside some ellipse E with foci at
=1, then for 2 outside E, gm,m*= o +1)r tanmr(—a—1—m) (2mi)~!
Ji®) =2 gmmemm*(2), (B4) X / B H(0) fa(O)dt
w=j
where 5 1 oL
=N« fa(l)[f(t_l)] awttm

gm,m?=—u+1)77! tana(j —m) (2wi)~?

XE(ay—m+-1, ae—m'+1, 2,423 2/(1—1))dt,
where
the contour ¢ enclosing 41 and all the singularities of M= _5_—) e tanm(a-t-m) (2mi) 2et-1)
z7+1f,(z). This means that the contour integration just X3[T(ex—m+ DT (@t m~+1) T (ac—m'+-1)

picks out the residue of the singularity of the integrand XT(awtm'+ 1) 12 T e +2) 2.
at 2= co. The E functions used in the paper are

B (2) = ™ X [5(142) JHmtnl
XEA=g) I Hmm1. (B6)

To be specific, we discuss the case of m2>m’>0. With

X / YOO, (BS)

1. Applications to UU Reaction
From Eq. (3.3),
Ja)=[3(z~1)]=.

the change of variable u= —a,—1, j= —a—1, Eqs. (B4)  Substituting Eq. (B11) into Eq. (B9), we obtain

gm,m’x’aE 77“/ [%(zt_l)]a—m[%@t_‘l)j—a"_H—mF(ax_m_’_l) Ol,(—-m,+1; 201,(+2; 2/(1 —Zt))ng

=77x/ Ge—D ] F(a—m+1, ax—m'+1; 20,+2; 2/(1 —2))dz,.

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

As we mentioned before, the contour integral is just to bring out the residue of the singularity at z,= «. Changing

variable w=2/(1—2,),
1 a—ag+1
gm,mf"'"‘=?7x2(—)“‘“"_1/ (—) Flay—m+1, ay—m'+1; 20,+2; w)du,

u.

where the contour is around #=0. Using Eq. (A3), we obtain

2ri -

£ = (g, —m—+-1, ax—m/+1: 2a,+2; 0)

(a—ay)!

i T(a—m+1) T(@—m'+1) T'(a+2)

(a—a)! T(ax—m~+1) T(e,—m'+1) T(atat2)

= =)'z tanm (a+m) T(a—m+1)T (@—m'--1)

QoD T (@t mA DT (o tm'+1)
(@—a) LT (@ —m+1) T (ag—m/+1)

gm'm,x,a — ﬂxz(_)a—ﬂxx—l X

= (=)t

1/2
X(—)a—ax :l [T(ata+2)T".

For spinless case, this reduces to a simpler result

go,0*=n"" tanmwa [T'(a+1) P X (=) *(2a,+ 1) [ T(a—at DI (atat2)T1.

(B13)

(B14)

(B15)
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Therefore, the uniquely determined daughter coefficients for Eq. (3.3) are

aM,,‘M"‘=gM,_,;"'°‘

= (=)t tanm(@a—M) T(la—M+1)T(a+p+1)
2a,+1 |"I‘(a,¢+M+1)I‘(a,‘—p+1)

¢ (—) e
=) (e—a) !LF(aK—M+1)F(aK+M+1)

1/2
] [T(etac+2)T1.
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(B16)

To calculate the restrictions of analyticity in higher orders or restrictions on the derivatives of the trajectories

the expansion of the following function is useful:

fe@)=[E—DI+dBE— 1)1+ -+ d 3 —1) ],
gm.m’x= gm,m'x’a+d1gm,m’x'm_l+ Tt +d'ngm,m’x'a_n-

2. Applications to UE Reactions
As indicated in Eq. (3.22), here

Falz)= Gr)=.
Equation (B9) becomes

P ® =1« / Gz)* [ (z— 1) o F (e —m+1, ap—m'+1, 20,425 2/(1—2))dz;.

After a change of variable, we obtain
1\ @—axtl
hm,m’K=nx(%)a_m_l(—‘)_ak_l+m/ du <_> (u__Z)a~mF(a“_m+1, ax_ml+17 20(,‘—}—2; ’l/t) )

c U

where the contour is around #=0. The contour integration gives

271 a \ (eax)
I= <~—> [(u—2)e"F(a,—m+1, ax—m'+1; 20,+2; %) Ju—o.
(a—a,) \du

Using the formula
d \ @ a—ax o —ay
(=) Trge1=Z (7T e,
du n=0 n
one obtains
2w (atan! T(a—m+1)
(a—a)! 7 nl(e—ag—n)! Tla—m-+1—(a—ay)+n]

(_2 a—m~—(a—ag)+n

T(ee—m+14n) T(ae—m'+14n) T (2a+2)

[(ax—m+1)  T(e—m'+1) TQavt+2+n)
'(2at+2) aae  (=2)"  T(w—m'+1+n)
[(ax—m+1)T(ae—m'+1) n=0 nl(a—ay—n)! TQact+24n)

=2mil (@ —m—+1)(—2)xm

Substituting Eq. (B22) into (B19), we obtain

I‘(a,‘—i—m—l—l)l‘(a,(-l—m’—i-l)]l”

Bonymr = (=)™ 71 tanm (a+m) T(e—m-+1) (%) *(2a,+ 1)[
D(ax—m+1)T(a—m'+1)

e (=2)"  T(a—m/+1+n)

n=0 nl(a—ay—n)! TQayt+2+4n)

(B17)

(B18)

(B19)

(B20)

(B21)

(B22)

(B23)
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Let us reexpress the summation as

(=2)» T(a—m'+1+4n)
=0 nlla—a,—n)! TQa+2+4n)

a—ay
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27 T(ae—m' +14#2)T (n—a+ta,)

=—[rtsinr(a—a)] > —

n n!

T'Qay+2+n)

I'(—ota)T (exmi1)

=—[7"1sinr(a—a)]

F(—a+taq, ax—m'+1; 20,125 2).  (B24)

I'(20,+2)

Then substituting Eq. (B24) into Eq. (B23), and using Eq. (A6), in the form

sinm(@—ax) T(—ata)= —71[(e—a)T(e—a) T,

we obtain

(B25)

P e = (= )=n'51 tan(at-m) T(a—m-+1)E)* e+ 1) T(a—a+1)T(2a+2) T

(B26)

[I‘(a,(—l—m—l— DI (ee+m'+1) T (ap—m'+ 1):]”2
X

T(ax—m1)

For higher-order restrictions due to analyticity, such
as Eq. (B17) for the UU reaction

Fa(z) = Gz)em+di(z) 14 -

+don(3z) 2, (B27)
The expansion coefficients are
hm,m’xz hm,m’x'a+dlhm,m’x'a_l+ b

Fdonhtm, w7, (B28)

In the spinless case, %,0* in Eq. (B26) can be re-
duced to a simpler form by using Egs. (A5) and (A2):

F(—a+tay, avt1; 20425 2)
= (=)t F(—jat3aq satiatatd;1)
= (=)o T (ot T ()T Ga+act)
+I(~dartfactd).
Substituting Eq. (B29) in Eq. (B26), we obtain

Ji o= tanmal (a-+}) (=) Hee0 (})«Facti(2a,+-1)
X[I(a—act DI Gatdact HT(—daHact DI
(B30)

(B29)

APPENDIX C: CONSISTENCY OF CONDITIONS
ON SLOPE OF DAUGHTER TRAJECTORIES
IN UU AND UE REACTIONS

Here we want to check explicitly that the restrictions

2a—1
ax(l) —a® =[a1(1) _._a(l):] Poath,sl,ahM.sx,a—l_i_l:Piath,sl,a_i_ Poasz.s%a]hM,sx,a—z} /kM,SK'a'

F(—a+tay ao—m'+1; 20,+2; 2).

on the slope of the daughter trajectories from UU re-
actions and UE reactions are consistent. The restriction
from the UU reactions, for M >1, is
ay,+ P (0)=a,,-1(0),
a,M(0) —a®(0)

=3[ 22(0) —x+1][2(0) —a®(0) .

The restriction from the UE reaction is

0 D(0) —a®(0)
= [a1 (1)(0) —Oé(1)(O)]Poath,sl’ahM,s”'“_l/hM,s"’“
-+ [011 (1)(0) —a(”(0)]P1"‘1hM,sl""hM,s"'“‘2/hM,s""’
+ [a2(1)(0) __a(l) (O)]P()ath,32’ahM,sK'a—2/hM,sK'a ,
(3.88)

(3.81)

where
ax=ay, for k=positive even integer,
ax=ay— for k=positive odd integer,

and P;% is the coefficient of (3z)%57 in E; x*(z,).
We shall show that Eq. (3.81) and Eq. (3.88) are con-
sistent. Notice that Eq. (3.88) is less restrictive than
Eq. (3.81). From Eq. (3.81),

&3 ®(0)—a®(0)= [ (0) —a(0)]

We shall show that Eq. (C2) is just Eq. (3.81). By our normalization,

Poha =1,

X[2a(0)—1]/a(0). (C1)
Substituting Eq. (C1) into Eq. (3.88), we obtain
(C2)
a
(C3)
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so we shall always calculate the P’s and the 4’s with respect to Po* and % "% From Eq. (B23), we can calculate

all the #’s:

B 2oaHT(ats+ DI @+ M D) (@—s+)D(a—M+1) 7
B 20+1LT(—s+1)T (@ —M+ 1) (ats+ I)P(a-i—M-l-l)]

After some manipulations, this becomes

o lag = Qa—= 1) M (@=9)/ (=) (k- M) (at5) T2,

hMISZ,a/kM.SO,a=

2a+1LT(@r—s+1)T(@e— M+ 1)T(a+s+1) T (a+M+1)

=a(2a—3)[M*+5(a—1) [(a—s)(a—s—1)/

Tiar 5o " Bag g0 =2k(a—8) " F (—k+1, ay— M +1, 20,42, 2)F(—k; ay—M+1; 20,42; 2),

R s by ot =4k(k— 1) (@—s)(@—s—1) TP (—«+2, ax— M +1; 20,+2; 2)

From Eq. (B1) and Eq. (B6), we can calculate the P’s:
Po1/Po*=[(a—s)(a+s)(@—M)(a+M) ]/

T(aan—M+1) T(a—M-+2) T(la—M+1D)T7?
—2) + (—2 . (C4
X(=2 [ Qart2) | TQayt2+1) )][ I'(2a+2) ] (c)
(C8)
2012—*—ll'I‘(ozg-i-s-I-1)1"(012—|—M—|—I)I‘(oz——s—i—I)I'(oz—ll/!—l—l):lll2 ) _{%F(ag—M-l- 1)
T'(2a3+2)
T(ae—M-+2 1T (as—M+3 at+1—M)7t
€ ( + )(__2 ] F( + )/_2 2:”:3(_—'_;____)_]
T'(202+3) T'(2as+4) T'(2a+2)
(e+M)(a+M —1)(a+s)(@t+s—1)(@—M)(«—M —1) ]2, (C6)
(C7)
XFY(—k; axy—M+1; 20,425 2). (C8)
So from Egs. (C13) and (C14)
Plath'sl,a+[(2a_1)/a]P0a2hM’s2,a
(C9) = (a—s)(@a—s—1)/8a. (C15)

2a(2a—1),

Py2/Pye=[(a—s—1)(a—s)(a+s—1)(a+s)
X(@—M —1)(a—M)(a+M —1)(at+M) ]
X[(2a—3)2a—2)2a—1)2a0) T, (C10)

Py21/Pyx= (Po®/Po®){5(—arts)+ (e1—M)
X(al—s)/Zal}
= (Po/Py®)M (—a1+5s)/201.

Combining Eqgs. (C3), (CS), and (C6), we obtain

har st Poi=M(a—s)/2a. (C12)
Combining Egs. (C3), (C5), (C11),and (C12), we obtain
M(a—s) (—at+1+5)M
‘ 2 2a—2
Combining Egs. (C3), (C6), and (C10), we obtain

hataP =} (a—s)(@—s—)[M*+3(a—1)1/
2a—2)(2a—1).

(C11)

har b oP1*1=

(C13)

(C14)

Now substituting Egs. (C7), (C8), (C13), and (C15)
into Eq. (C2), we obtain

a®—aW=[0;V—a®](k/2a) [ 2MF(—x+1)

+ & —1)F(—«+2)1/F(—«), (C16)
where
F(—n)=F(—n;a,—M+1;20,+2;2).
Using the identity Eq. (A4),
IMF(—k+ 1)+ (k—1)F(—«+2)
= (2a—«+1)F(—«), (C17)
we obtain finally
a WD —aW=(a; D —aW)k(2a—xr+1)/2a. (C18)

This is just Eq. (3.81) and Eq. (1.34). Notice that there
is no s dependence in the equation.



