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of spin 1 is the Weinberg analysis itself. It is amusing
to note that if the coupling constants are defined as the
coefficients of Feynman propagators, threshold factors
would arise naturally so as to eliminate the contribution
of J&1 spin states.

Thus, for example, the g meson (Jv=3 ) would
contribute a term

M(v, t) =g, „g,.sf(—2v)'+6vt(t —4nt, ')/Sj/(m, '—t)

to M, &'l(v, t) in the soft-pion. limit. The term propor-
tional to v in this expression vanishes at t=o and does
not contribute in Eq. (5).

Insofar as this recipe differs from the constant
residues prescribed in the dispersive approach, it is
obviously ad hoc, as it allows in the residues only the
threshold factors coming from the Feynman propa-
gators, but no other t dependence.

Another point which should be emphasized is that
our use of the g„. obtained from the Veneziano-
Lovelace formula has been for illustrative purposes only.

Indeed, in that simple model it is not true that only
states contribute in. Eq. (3). Thus, while the

Veneziano formula can be easily made to yield the right
magnitude of the I&——1 scattering lengths, it does not
satisfy the full restrictions of PCAC and current algebra—in particular, the requirement that only 1 states
contribute in Eq. (3).
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Necessary and sufhcient conditions for baryon spectral-function sum rules are obtained under the as-
sumptions that (1) the equal-time commutator of the axial charges Qp(ae) (a=1,2,3) and the nucleon
Geld p(y) is given by LQs'(yo), tt (y)g= rzg (y)pre + (rii—=-', terms) and that (2) the axial-vector cur-
rent A„'(x) is conserved. For each of these sum rules (enumerated by n=1,2,3. . .), the equivalence to
J'd's(Ns'(yo), I.(&/&yo)'" |k(y), tk(s) J+l)»=*,)a=0 is actually shown under weaker conditions: assumption
(1) and, instead of (2), Q =p (L((S/ctyp) 'L J'd x tt"A~ (ypx), (B/Byp)2 ik(y)g), f(s)']q)» &)p=0. Further
equivalences are given. The sum rules connect the (I= —',, I=-',+) and (I= —',, I= s' ) baryon spectrum and
include (for n = 1) a sum rule, obtained independently by Rothleitner and (in the one-particle approximation)
by Sugawara. In our derivation we make no assumptions on high-energy behavior and we use an identity of
the Jacobi type. Assuming the 6rst two sum rules to be valid, the model then predicts a P»(m) 1470 MeV)
resonance Lwhich may be identiGed as the observed R&&(1750)g from the existence of the four nucleon
resonances P~j.(940), P~l. (1470), S~j.(1550), and S~~(1710).

'HE spectral-function sum rules, derived by Wein-
berg' for the chiral SU(2) SSU(2) currents,

have been extended by several authors' 4 and various
proofs have been given. ' ' Among these, Glashow,
Schnitzer, and Weinberg' have described a derivation
of the first Weinberg sum rule using the Ja,cobi identity,
and Jackiw" has used the Jacobi identity in order to
derive a condition for the second Weinberg sum rule.
The main difference between Weinberg's' original proof

* Supported by the DAAD through a NATO grant.' S. Weinberg, Phys. Rev. Letters 18, 507 (1967).' T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,
761 (1967); P. A. Cook and G. C. Joshi, Nucl. Phys. B10, 253
(1969).' S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 139 (1967).

4 J. Rothleitner, Nucl. Phys. BB, 89 (1967).' R. Jackiw, Phys. Letters 278, 96 (1968).' W. Bierter and K. M. Bitar, Nuovo Cimento Letters 1, 192
(1969).

of the second sum rule an.d the one given by Ja,ckiw
lies in the replacement of the assumption on high-

energy behavior, made in Ref. 1, by the assumption
that a certain vacuum expectation value of a triple
commutator vanishes.

Among the extensions of the Weinberg sum rules,
Rothleitner' has derived a sum rule for baryon spectral
functions, assuming that

lim lim d4xd4y e '&*+'»
Qp,-+0

&&('Tl (c.+~.)~.'( )4 b'),4(o)))o=o (&)

7 Depending on how the pion mass is treated, either of the two
terms vanishes trivially: For massless pions and conserved axial
currents, the [tt"A„~(x)j term vanishes trivially (not the q„ term,
since it has a pion pole at q„=0). For massive pions and PCAC,
there is no pion pole at q„=0, and the (q&A„~) term vanishes
trivially. In order to leave room for both interpretations, we will
not specify Eq. (1) further.
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and that

'(*) Wb')ll*.=. = — 4(*)v ' ( —y)

+ (AI = s terms) . (2)

In the above statement, Qs (xs) is de6ned by

Qs (xs)= dsxAe (x). (10)

In the above, we have denoted (for a=i, 2, 3) the
axial-vector current by A„(x) and the nucleon field

by lt (y). The sum rule derived in Ref. 4 from Eqs. (1)
and (2) reads

des'mLF„s(ms) —F '(m') $=0, (3)

where we have defined

(2s.)'ls(0
) iP (0) i

m' e '
p,r; u)

=w, (p)F~ (ns') for e=1,
= ipse„(p) F (m') for e = —1. (4)

Here, ~m', e; p,r;n) denotes a state with the same
baryon number, spin, isospin, and strangeness as the
nucleon; n stands for additional quantum numbers. We
have also

F~'(ms) =p F„(m')'

If we saturate the sum rule (3) by one-particle inter-
mediate states, it reads

P e,F„'(m;s)m;=0.

LQs'(ys) 4(r) j=—r~0(X)vsr'+~'"(y)7s (7)

This is the sum rule derived by Sugawara as a conse-
quence of his self-consistency conditions. The proof of
these conditions uses, in addition to Eq. (7) below,
assumptions on analyticity and high-energy behavior.

The purpose of the present paper is twofold. First,
in analogy to the derivations of the steinberg sum
rules using the Jacobi identity, ' ' we will derive the
following statement by means of an algebraic identity.

Statement 1.Let' "

Note that Eqs. (8) and (9) have amticommutators
for fermion operators. The statement shows that given
Eqs. (7) and (8), which we discuss below, at most the
non-Schwinger part of the anticornmutator L|p(y),ip(s) j+
survives in Eq. (9). The vanishing of this expression
itself is then equivalent to the sum rule (3).

As to the validity of the assumption made, Eq. (7)
is a consequence of the more restrictive assumption,
Eq. (2), allowing for additional arbitrary Schwinger
terms. Models in which Eq. (7) holds have been in-
vestigated by several authors, '""" and in neither
case was a contradiction with Eq. (7) found. On
the contrary, assuming Eq. (7) without As''(y) terms,
Sugawara" has reached reasonable agreement with
experiment in a number of cases. Rothleitner4 obtained
agreement with experiment, too."

The main advantage of Eq. (7) as compared to Eq.
(2) is that Kq. (7) is more likely to hold for fermion
operators introduced into a field theory of currents. "
As was shown in Ref. 15, for ZPi'(y) =0& Schwinger
terms are then present in the equal-time commu-
tator of the time components of the currents with
iP (y)." As to the second assumption, Eq. (8) is
Land so are the later Eqs. (13)j an obvious conse-
quence of e) &A „'(x)=0. If partial conservation of
axial-vector current (PCAC) holds for massive pions
and the so-defined pion field and |P(y) are canonical
fields, Eq. (g) follows from the canonical rule" 's

L~"~. (x)A (p)jI*,=.,=0

However, Eq. (11) does not prove the assumption in
Eq. (13) of statement 2 below gas does the assumption
8sA (x)=0).

Assuming the local commutator, Kq. (2), it was
shown in Ref. 4 that Eqs. (1) and (3) are equivalent,
and thus

where Asl'(y) denotes Possible AI=ssterrns. Then we
have

2r~ir ys drg'mfF+s(ms) F'(nP)gb(y z)— —

s M. Sugawara, Phys. Rev. 172, 1423 (1968).
9In the case 6'~'(y) =0, it has been shown in Ref. 10 that

rg =&& follows from charge algebra, and so does the commutator
of Q'= J'd'x V0 (x} with P(y). However, our present considera-
tions do not depend on this fact.' H. Genz and J. Katz, Nuovo Cimento 64A, 291 (1969).

"In the commutators and anticommutators written below, the
equal-time limit is always understood, with the exception of Kq.
(23).

&I:Qs'(xs), LOb) f(s) j+j)oI*,=..=*,=0, (»)
if and only if Eq. (1) holds, under the above assumptions.

"M. K. Banerjee and C. A. Levinson, University of Maryland
Technical Report No. 857 (unpublished).

"A. M. Gleeson, Phys. Rev. 149, 1242 (1969); H. Genz, J.
Katz, and S. Wagner, Nuovo Cimento 64A, 218 (1969).

"H. Genz and J. Katz, Nucl. Phys. 813, 401 (1969).
"H. Genz and J. Katz, Institut fur Theoretische Physik der

Universitat Hamburg Report (unpublished).
"For additional reference to applications of Ref. 8, see M.

Sugawara, Acta Phys. Austriaca (to be published).
"For another proposal, see S. Weinberg, Phys. Rev. I66, 1568

(1968)."H. Sugawara, Phys. Rev. 170, 1659 (1968).
'9 For 6'~'(y) =0, see also S. Coleman, D. Gross, and R. Jackiw,

Phys. Rev. 180, 1359 (1969).
2'The author thanks M. K. Banerjee and C. A. Levinson for

discussions on these points.
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The other purpose of the present paper is to give
conditions for additional sum rules. Ke will prove the
following:

Statemeet Z. Let Eq. (7) be valid and let" for e&1

d'x avA „(x)

s, 13

Then we have
1

Sp ) P ) S

Finally, from Ref. 4 and the high-energy expansion' "
of the spectral representation for (T(~))p, one derives
that, if Eq. (2) also holds, Eq. (16) is equivalent to a
vanishing of the expression in Eq. (1), like (p') " ' in
the, limit p'~ po.

Ig. order to prove the above statements, it would be
sufhcient to prove the second one (statement 1 is
statement 2 for I=1). However, we would rather
prove statement 1 and generalize the proof. Ke start
with the following algebraic identity of the Jacobi
type:

[La,b],c]++[[b,c]+,a]—[[c,a],b]+——0. (18)

Then Eq. (7) allows us to write""

[Qp'(xp) 4 (y)]

=i,.y,r, am'm[I', (m ) F—(m')]

n—1

X ———m' b(y-*)

=-v 'A(y)+y "'(y)—

y,r Ar—(y)+Vp~"'(y)—

8
d'x A, '(x),P(y)

Gap

d'xavA „(x),P(y)

(19)

n—1 ~e have used the Jacobi identity for [Qp'(xp) ~[+A'(y)))
=ir'pprz g S&+p, —— 5(y —I). (14) and have added [J'd'—x 8"AA, '(x)pp(y))=0 to the 6rst

p 8y By line in'Eq. &~(19). Then one derives

In the above statement we have defined S„by

S„= dm'm"fF '(m') —F '(m')].

Note again the anticommuta, tors in Eqs. (13) and (14).
Conditions under which Eq. (13) is valid have been
investigated above. In Eq. (14), the highest-order
Schwinger term is of order 2(n.—1). That this term
vanishes is equivalent to the sum rule (3).

The rule (for 0&v&m —1)

S2.+i=0 (16)

is valid if and only if the Schwinger term of order
2(n —1—v) is absent in Eq. (14). Note that each Sp„+~
is present in. all the expressions (14), for which n) v+ 1.
In Eq. (14), S2„+q multiplies the non-Schwinger term.
These remarks establish a set of conditions for each
sum rule, as well as identities between Schwinger terms
in Eq. (14). These can be read off easily.

For all integers v&0, Eq. (16) would imply

(17)

That is, up to massless fermions, the —,'+ and —,
' spectral

functions are identical. Since there are no J=I=-,'
parity doublets, P(y) would not allow any particle
interpretation. Unless this is the case, the anticommu-
tators [(8/Byp)'" 'P(y), P(s))+l „=„,are not c numbers
for all integers k& 1 Pand Schwinger terms are present
in some of the Eqs. (14)).

First we prove statement 1. Ke write the identity Eq.
(18)'with a=Qp'(xp), b=f(y), and c=g(s). ,Thus, from
Eqs. (7) and (19) we get

[r~Vpr'&(y), 4 (s))++r~B (sbpr', 4 (y)]+

+[Qp (xp), [k(y),4(s))+]= [~"'(s),4 (y))+

+[~'"(y),tt (s))+— d'x BvA „(x),tt (y),P(s)

(21)

If we take the vacuum expectation value, the right-
hand side vanishes because of our assumptions, and

2' H. T. Rich, Phys. Rev. 163, 1769 (1967).

2n—1

Q ( o), 4(y)
Gyp

2" 2

= — Q"("),
~Pp- ~go

2 2

d'x Apd(x), — P(y)
8$o ~go

2n 1
p g pn 1

= —r~y pr I

— P(y)+I vp~'"(y)
kayp kayo

2n—p—j
d a"A„'(»),I P(y) . (2o)

Byp
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we are left with

Using next the spectral representation,
&LQg (xp), (B P(y)/Byo', P(s)j,jl.,=„,=„&=0, (27)

To derive a further consequence, let us enumerate
by X&, . . . , X4 the four nucleon resonances F)~(940),—r~(V» &L4 (y),k(s) 0+ I w, =*0&o Fn(1466), 5)) (2548), and Sn(1709), and let us denote

+&54(y) 4(s) j+ l.o=*,&ox» ) F„'(m,') by F,'. We assume F)'/0, and we normalize

=&LQ, (go),g(y),P(s)j+]~„„,„),. (22) to FP=1. The assumptions of statement 2 for n=2,
together with assuming

8
()P(y),P(s)j ),=i. dm' P '(m')~ ~ v„+m)

k ay„
give us the sum rules

Sg= 53——0. (28)
B

+F 2(m2) i &„—m ~(y —s; m'), (23)

we see that, because of the presence of yq in Eq. (22),
no term proportional to y„contributes upon substituting
Eq. (23) into Eq. (22). Finally, performing the time
differentation under the integral, we get Eq. (9) in
the equal-time limit.

To prove statement 2, we write Eq. (18) for a =Q5 (xp),
b= (&/&yo)'" '))t(y), and c=g(s). Performing precisely
the same manipulations as above but this time using
Eq. (20) instead of (19), we have

mn) m2, e5 ——+1. (29)

This agrees with the existence of the P) ~(1750).
In order to derive the conclusion, we write Eq. (28)

as

If saturated by one-particle intermediate states, Kqs.
(28) allow us to predict the existence of at least one
further nucleon resonance E5 from g~, . . . , E4. Con-
cerning its mass and parity, there are two possibilities.
Either we have m5&m2 and e5

———1, or m2- m5 and
E5 =+1. Since the existence of an undiscovered reso-
nance with a mass smaller than m2 is very unlikely, the
actual prediction is

2n—1

~c4. +5+ 0(y),W(s)
Byp -+ yp=zp 0

R
m)+m2F22= maF32+m4F'4' Qe;m;F;2, —

i=5

+( l ) 0(~) 0(') ~5~
—+ yp=zp

R
m)3+my'FP=ma'F32+m4'F4' —Q e mPF '

i=5

(30)

W 2n—1

Q (*o),
Bpp -+- 0

Note that because of Eq. (13) there is no contribution
from the sum in Eq. (20). We again insert the spectral
representation and observe that terms porportional to
y„drop. Then, using

we reach Eq. (14)„the desired result.
As to the consequences of Eq. (16), restrictions follow

from the positivity
F~'(m') &0. (26)

Evidently, any of the Eqs. (16)—if saturated by one-
particle intermediate states —can hold only if baryons
of opposite parities exist. For 5~=0, this has been
noted in Refs. 4 and 8.

B B
~(y —s; m')

Bgp Bpp yp=zp

n—1

= ————m' 8 (z—y), (25)
By By

with E. being the total number of nucleon resonances.
The left-hand side is positive and the first two terms
on the right-hand side are not positive. Therefore, at
least one term in the sum is negative. Giving the
number 5 to it, we have

e); (m2' —m52) (0. (32)

This is the desired result.
The content of the paper is summarized in statements

1 and 2 and in the prediction, Eq. (29).
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Thus we have

mr(m2' —m)') =m8(m2' —m3')F3'+m4(m2' —m4')F4'

R
m. (m 2 m. .2)F 2 (31)

i=5


