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Strong interactions of spin-zero and spin-one mesons are studied in a model in which the Lagrangian is
approximately invariant under coordinate-dependent SU (3)®SU (3) gauge transformations. The scalar
and pseudoscalar nonets are assigned to the (3,3*)@® (3*,3) representation, whereas the vector and axial-
vector octets are introduced as gauge fields belonging to the (1,8)@® (8,1) representation. Spontaneous sym-
metry breaking to the isospin-hypercharge level is introduced by giving nonzero vacuum expectation values
to some scalar fields. The effective Lagrangian obtained after considering field mixings and renormalizations
is used in a phenomenological manner to study the masses and couplings of various particles. With some of
the experimental meson masses as input, the predicted masses of remaining observed mesons are in reason-
able agreement with experiment. Some scalar-meson masses are also predicted (usz=527 MeV and
psy=771 MeV). The widths for V — PP and 4 — VP decays are calculated and compare well with experi-
ment. The axial-vector currents and the strangeness-changing vector currents satisfy partial conservation
equations. Decay constants for spin-zero mesons are calculated. We get Fx/Fr=1.17 and Fgy/F,=—0.59.
The K;3 form factors are calculated, the effect of the scalar kaon being included; we get f,.(0)=0.86,

£=—0.197, A, =0.023, and A_=0.013.

I. INTRODUCTION

ANY papers have recently appeared which con-
sider the chiral group SU2)®SU(2) or SU(3)
®SU(3) as the basic symmetry of the dynamics of ele-
mentary particles. Most of these investigations have
employed the so-called nonlinear realization! of the
symmetry. It has been pointed out by some authors?
that results obtained from phenomenological Lagran-
gians involving nonlinear realization of the symmetry
can also be obtained from the conventional Lagrangians
involving linear representations by breaking the sym-
metry spontaneously. This latter procedure has its own
advantage of allowing a simpler and more compact
formulation of dynamics.

In this paper we report on a study of the strong inter-
actions of spin-zero and spin-one mesons in a model
which employs? fields belonging to linear representations
of SUB)®SU(3). We assign the scalar and pseudoscalar
nonets to the (3,3*)® (3*,3) representation and the vec-
tor and the axial-vector octets to the (1,8)®(8,1) repre-
sentation, the latter being an obvious choice in view of
the fact that we introduce the vector and axial-vector
fields as gauge fields. The symmetry is broken spontane-
ously to the level of SU(2)® U(1) corresponding to iso-
spin and hypercharge by giving nonzero vacuum expec-
tation values to some scalar fields. The resulting pattern
of particle masses and couplings exhibits a systemati-
cally broken symmetry and is well in accord with
experiment.

The idea of combining gauge invariance of Yang-Mills
type with the spontaneous breakdown of symmetry is
a very attractive one and has been proposed by Higgs*

. ! See, for example, the review article by S. Weinberg, in Proceed-
ings of the Fourteenth International Conference on High-Energy
Physics, Vienna, 1968 (CERN ,Geneva, 1968), p. 253.

*S. Gasiorowicz and D. A. Geffen, Argonne Laboratory Report
No. ANL/HEP 6809 (unpublished).

? Our approach is similar to that of M. Lévy, Nuovo Cimento
S2A, 23 (1967).

* P. W. Higgs, Phys. Rev. 145, 1156 (1966).

and Kibble® as a simultaneous cure for the masslessness
of the Goldstone bosons and the gauge particles. In the
procedure adopted by these authors, the Goldstone
bosons completely disappear from dynamics and provide
for the longitudinal modes of vector mesons. This pro-
cedure, if followed faithfully, would be disastrous in
the present context because the whole octet of pseudo-
scalar mesons which appear as Goldstone bosons in this
model will have to be eliminated. We therefore do not
carry out the polar decomposition of fields along the
lines of Kibble, but adopt the simpler procedure? of sub-
tracting directly from the scalar fields their nonzero
vacuum expectation values.

A price for retaining the Goldstone bosons has to be
paid, i.e., to introduce an explicit symmetry breaking to
ensure nonzero mass for these particles. So we cannot
afford the luxury of starting with a fully symmetric
Lagrangian and having a purely spontaneous break-
down of the symmetry. The explicit symmetry-breaking
term that we employ is a linear function of the scalar
fields. This choice of symmetry breaking guarantees®
that the currents corresponding to broken-symmetry
components satisfy partial conservation equations.

Since the mechanism of spontaneous breakdown does
not generate mass for the gauge particles corresponding
to unbroken-symmetry components, it is essential to
introduce, as done by several authors,”® a common mass
term for the spin-one mesons which is invariant only
under constant parameter SU(3)®SU(3) transforma-
tions. The mass term arising from the Higgs-Kibble
mechanism then accounts for the mass splittings.

5T, W. B. Kibble, Phys. Rev. 155, 1554 (1967); also Proceedings
of the 1967 International Conference on Particles and Fields,
Rochester, 1967 (Wiley-Interscience, Inc., New York, 1968);
Y. S. Kim and F. L. Markley, Nuovo Cimento 634, 60 (1969).
( 8 S.)L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
1968).

7T, D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

8S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 139 (1967). Our treatment of vector and axial-vector
mesons is the same as in this paper.
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650 A. K.

Apart from the terms mentioned in the two preceding
paragraphs, the rest of our Lagrangian is completely
gauge-invariant. One would like to stick to minimal
couplings for the vector particles; however, it turns out
that at least at the phenomenological level at which our
Lagrangian is being considered, it is essential to intro-
duce nonminimal couplings to account for the decay
properties of axial-vector mesons.

The plan of the paper is as follows: In Sec. II, the
basic Lagrangian is written down and after introducing
the symmetry breaking, the field mixings and renormali-
zations are considered. Particle masses are discussed in
Sec. ITT and couplings and decay rates in Sec. IV. Sec-
tion V is devoted to a study of the vector and axial-
vector currents and their divergences. The decay con-
stants of spin-zero mesons and the K3 form factors are
discussed in this section. Section VI contains some con-
cluding remarks.

II. LAGRANGIAN

We start by introducing pseudoscalar and scalar
nonets and vector and axial-vector octets

1 s 1 i
P=—73% Npsi,  P=—2. Nidi,
V2 =0 P V2 =0
2.1)
1 s 1 s
Vi=— )\ﬂ) iy A,=— >\,~a iy
® NoE= u B \/jigl n

where the \;’s are the usual unitary spin matrices. The
representations of SU(3)®SU(3) assigned to these are
(3,3%)@ (3*,3) for scalar and pseudoscalar mesons and
(1,8)®(8,1) for vector and axial-vector mesons. The
basic Lagrangian is

£= "BI(P:(I): V7A)+£2(P’(I>)+£3(V7A)+34((1)) ’
where

L1= —%{(D#¢)2+(D#P)2} )

Lo= _%ﬂOZWZ"%C]_I/Vs—‘%CZT/I/4_*%C3(W2)2,

2.2)

3= —HFwlFp+GuGuw} —im{V,V 4,44},
Ly= {e@} ’
g g
D&= 6#‘{1"}‘&[ VM;‘I’:|~+E[A wP 1+,

ig g
D,P=0,P+—[V,,Pl-—TA,®]:,
IlP I4+\/2[l‘ :l ‘\/2[“ ]—l—

Wa={®*4-P?},
Wa=1[det(®+iP)+H.c.],
- Wa={[(@+iP)(®—iP)]},
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ig ig
Fu=0,V,— avvu"i_;/%[ Vi VVJ—+\TZEA#7A v ’

ig 1g
Guow=0,4,—8,4,+—{Vu,A4,)-—V,, 4],
4 : p \/2[ wd,] ﬁ[ ]

8
€e=— €\;.

V2 i=0

The symbol { } means that trace is to be taken.

The Lagrangian (2.2) is invariant under coordinate-
dependent SU3)®SU(3) gauge transformations except
for the m,? term and £4. The vector-meson mass term,
which is invariant only under coordinate-independent
SUB)®SU(3) transformations, is included to ensure
a nonzero mass of the gauge particles coupled to con-
served currents (i.e., p and w mesons) as explained in
the Introduction. The symmetry-breaking term £4 is
necessary to ensure nonzero masses of the Goldstone
particles (i.e., the eight pseudoscalar mesons and the
scalar kaon) in spite of the fact that actual contribu-
tions to these masses come from £,. This point will be
made more clear in Sec. VI.

The spontaneous symmetry breaking is introduced, as
usual, by giving a nonzero vacuum expectation value to
some scalar fields; we assume that

1 .
E(IJ()=— ()I 8A\8) « 3
1=(®) \/Z(n “+nshs) (2.3)

The 7o breaks the symmetry from SUQ3)QSU(3) to
SU(3), whereas ng breaks it down to SU(2)® U(1) corre-
sponding to isospin and hypercharge. We write

d=9+S. (2.4)

The substitution of (2.4) in £; gives terms like
A, 8,P and V,-9,S. To remove these, we write

aﬂaz dl“"+ gl’aaﬂpa ) (2 5)
Vye=Dpat Esuaansﬂ )

where the coefficients £,,; are to be determined by the
requirement that terms of the type d,-9,p and 9,-9,s
are absent from the Lagrangian. This gives

$pe= gg-a/l:m02+ (gg‘a)z_i"%(g”n) 26a8] )
Esup= g8 Ssap/ (M0 apt 805" fiar fop) 5

g‘a= 7)0+778daa8- (2.7)

The substitution (2.5) in £; modifies the kinetic
energy term of pseudoscalar and scalar mesons. To
renormalize these, we write

Pa:ZpaIIZISa’
sazzsall2§a;

(2.6)

where

(2.8)

and determine Z’s such that the physical fields $, and
S, satisfy the canonical commutation relations. This
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gives
Z =14 (g8 )%/ [mo*+3(gns)*as],
Z 5y =14 (g18)* fasy f18a/Mo®-
After the substitution (2.4) in (2.2) there should be no
terms linear in S fields present in the Lagrangian. This
requires that only € and €3 are nonzero and satisfy the
two conditions

2+3C< , 7ls2>
oy — noe"——
b V2 " 3

(2.9)

6"70’782 27183
—_—— + 2 =0 2.10
\/_.> ('\/3)60 ( )

+C2(no3+

and

-03)
N8l Yo \/’2— 7o V_s_

nons  Ms?
+3C4 7)02*'*-+——>j|—63=0, (2.11)
V3 3
where

o= o+ C3(3n0>+215%) . (2.12)

More is said of Egs. (2.10) and (2.11) in Sec. VI.

When the Lagrangian (2.2) is expressed in terms of
the physical fields S, P, V, and 4, one finds that the
symmetry is broken in a systematic manner. The result-
ing pattern of particle masses and couplings is explored
in the following sections.

III. PARTICLE MASSES
A. Masses of Vector and Axial-Vector Mesons

The mass matrices of vector and axial-vector mesons
are given by

(MVz) af= m025a6+g27782f8a7f8ﬂ'y

(MA2) aB= Em02+g2(g‘a2+ %778268&)]60‘5 )

where ¢, is given by (2.7). As expected, the 5, splits
the axial-vector multiplet from the vector multiplet,
whereas ns causes splitting among different isospin
multiplets. The symmetry breaking alters, in fact, in-
creases,® the masses of only those spin-one mesons that
correspond to the broken components of the symmetry.5
We identify the vector octet 7 with the p(760), K*(890),
and »(780). The experimental situation regarding the
axial-vector mesons is not clear as yet. We tentatively
identify the axial octet A with the 4;(1070), K4(1335),
and A3(1420) resonances.’ From the observed 4; and
K 4 masses, we get

(gn0)?=(982.7 MeV)?

and 3.1)

3.2)

and

£=ns/no= —0.40. (3.3)

9 Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
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Inserting these values in (3.1) we get

Mg+=834 MeV, Ma,—1467 MeV.  (3.4)

B. Masses of Pseudoscalar and Scalar Mesons

The mass matrix for pseudoscalar mesons is given by

(ﬂp2) ap= [9025aﬁ+ (CI/\/Z) T op!
+ (CZ/\/?)(Ta62—Taﬂ3)]Zpa1/2Zp5”2 )

(3.5)
where y,? is given by (2.12) and

T o' = (310—6798d50c) das —610040850+2V3180 000 »
Tag®= (200*+5ns) Sapt4nonsdass — (4/V3)dassns®,

T ap® = (n02—315%) dapt2n0m8d aps
8
+15%(3 80088+ 2 2dapydsys—(1/V3)daps).
=1

We take account of the mixing between p, and ps in
the usual manner by introducing the physical fields p,;
and p, through the equations

Ps= Py cosb+ p,y sind,

R . (3.6)
Do= —p, sinf-+ p,» cosl.

The requirement that there be no mixed terms p,p,
gives

tan20=(u»?)os/ (py*— Mpq®) - (3.7
The p, and p,» masses are given by
“p172= %{ﬂpo2+ﬂp52 - [(I-‘poZ—ﬂps2)2+ ﬂpos4]1/2} ) (3 8)
Mo, =1 {ﬂp02+ ﬂp32+ I:(I"'po2 - .‘-‘ps2) 2+/"’Pos4:|1 2},
The scalar-meson mass matrix is
(us?) ap= (00> — (C1/V2) T g+ 1CHT op®+ T as®)

+3C (41520320881 6102804008

+4(/6)n0188a0888) 121 12 Z 56" 2. (3.9)

We determine the parameters uo% Ci, and C; from
the experimental masses of 7v(140), K(494), and '(960).
Since up, is quadratic in ue? Cy, and Cs, we get two solu-
tions for the masses of the remaining particles and other
parameters:

Solution I Solution II
By 530 MeV 5X10% MeV
s, 771 MeV 3X 10" MeV
psg 527 MeV 527 MeV
0 27° 25° (3.10)
w?  413X105(MeV)?:  1.26X10%5(MeV)?
Cy/g —113.8 MeV —3.25X 10 MeV
Cs/g> —0.098 —4.79X 108
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TaBLE 1. Decay widths (in MeV) of vector and axial-vector mesons calculated for g2/4r=4 and various values of &.

Experimental

] 0 0.05 0.1 0.2 0.3 0.4 0.5 values®
T'(p — =) 115 119 123 131 139 148 157 125420
T'(K*— K) 41.2 42 43.2 45.3 47.5 49.7 52 49.7+£1.1
T'(41— pm) 121 94 69 32 9 0.17 5.7 80435
T'(K4— pK) 76 62 50 29 15 7 4 70210
I(K4— K*n) 369 202 225 17 44 6.5 4.6} +
T'(4s— K*K) 126 93 65 24 3.2 2.4 21 35+1

2 See Ref. 9.

The second solution which corresponds to large masses
and couplings for scalar particles'®is extraneous (in fact,
it disappears in the limit g — 0) and we discard it. The
mass of the scalar kaon is consistent with the Glashow-
Weinberg inequality us,<670 MeV for Fx/F.>0.
Moreover, it is below the Kz threshold so that the scalar
kaon can decay only electromagnetically by Sx— K
~+2v. The existence of such a particle is not excluded by
experiments.!! . .

After considering the mixing of Ss and Sy, equations
analogous to (3.8) are obtained for the S, and S,
masses where, however, uo? and C; do not occur in the
same combination as they occur in other masses and
therefore it is not possible to predict these masses. For
C3=0 we find that pg,2<0, us, =335 MeV for solution
I. C; therefore cannot be zero. This is in contrast to the
result of Ref. 3 where even for C3;=0 these masses were
positive. One can easily trace back the source of this
difference to the nontrivial renormalization of spin-zero
fields arising due to coupling with gauge fields.

A comment is in order in connection with the choice
of input masses. The choice of M x* instead of Mg, as
input gave pgr=471 MeV which means that the
K — Sx+2v could be allowed contrary to experiment.
Similarly the choice of u,, instead of u,, as input gives
o, =501 MeV and 107 MeV in the two solutions. Since
there is no observed pseudoscalar meson around 500
MeV, one would perhaps prefer in this case solution II,
implying thereby that the ninth pseudoscalar meson
and some scalar mesons are large-mass objects.!® We,
however, prefer to adopt the following attitude: Since
the predictions of this model are not expected to be very
accurate, it is desirable to choose input masses from
both the lower and higher ends of a multiplet to obtain
a balanced empirical fit.

Expanding meson masses in powers of s and keeping
only first order terms in s, we see that meson (squared)
masses satisfy the Gell-Mann—Okubo mass formula.

10 In this connection it is interesting to recall the work of W. A.
Bardeen and B. W. Lee [Phys. Rev. 177, 2389 (1968) 7, who advo-
cate that only the pseudoscalar octet and the strange scalar meson
are the low-energy excitations, whereas their remaining chiral
partners are some large-mass objects. To achieve this, they make
some parameters infinite with appropriate restrictions so that the
masses of the physical particles are finite. In our model, the situa-
tion of Bardeen and Lee is automatically realized if we take the
7(550) mass as input and pick up the solution IT instead of I.

1 L. Kirsch, Phys. Rev. 175, 1733 (1968).

Iv. COUPLINGS

The various coupling constants are to be read off from
the effective Lagrangian obtained by substituting (2.4),
(2.5), and (2.8) in (2.2). The V-P-P and A-V-P interac-
tion Lagrangians are of the following form:

£(VPP)=g1°‘ﬂ”’ﬁwﬁ§6,,j37
',_320‘57(3“7);«!—avﬁua)auﬁﬁaVﬁv; (4.1)

43(/1 VP) = g3"‘ﬂ7(i“aﬁ“5ﬁ7+ g4aﬂ7(auﬁm— aﬂjua)dwanﬁv
—f—g5"“37(6,,(im— avd#a)mﬁauﬁv . (4-2)

The various coupling constants in these equations are
those given in the Appendix with 4= 0. After performing
an integration by parts on the last term of (4.1), we get,
for the effective V-P-P coupling constant,

G(ﬁaﬁﬁﬁv) = g19P74-q,%g,%F7 | (4.3)

where ¢, is the four-momentum of the vector meson.
For ¢.*=0, Eq. (4.3) gives the universal SU(3) value
gfapy for the effective coupling of vector mesons corre-
sponding to the conserved symmetry components,
namely, p and w, whereas the coupling of K* gets modi-
fied by renormalizations and mixings.

The decay of axial-vector mesons according to (4.2)
is of pure S-wave type, whereas in a more realistic cal-
culation!? one needs two coupling constants, correspond-
ing to S wave and D wave, defined through the equation

(@p(p)]a(Q))=Gse*- e*+Gpe*-Qe*-q,  (44)

where the €’s are the polarization vectors. We can in-
clude the D-wave coupling constants by adding a non-
minimal coupling term?® of the form

&= (W/N2){ —3iF [ D,P,D,P].
+%GI“’[DMP}DV(1)]+} .

One of the predictions of our model is that

(K4 — wK)=T(K4— pK),

(4.5)

which is expected because M ,= M, and the ¢ meson is

12D. A. Geffen, Phys. Rev. Letters 19, 770 (1967); S. G. Brown
and G. B. West, 7bid. 18, 812 (1967); T. Das, V. S. Mathur, and
S. Okubo, #bid. 19, 1067 (1967); H. ]J. Schnitzer and S. Weinberg,
Phys. Rev. 164, 1828 (1967).

13 This is the SU(3)®SU (3) analog of the « term of J. Wess and
B. Zumino, Phys. Rev. 163, 1727 (1967).
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absent from the model, mixing of which with w sup-
presses the w mode.
There are two parameters so far undetermined, i.e.,
g and /. The decay widths of the allowed two-particle
modes of vector and axial-vector mesons, namely,
p—mm, K*¥*—> Kr, A1— pr, K4— (oK,K*r), and
Ag— K*K as functions of g and 6= —/4M ,%/g are given
byl4
T(p — 7r) = (g2/4n)[28.8419.356+3.26%],
I'(K* — Kr)=(g?/4w)[10.34+5.16+0.662],
T'(41— pr)=(g%/4m)[30.4—14764+17957],
(K4 — pK)=(g*/47)[18.9—726-+736%],
T'(K4 — K*r)=(g%/47)[92.3 —40456+44457],
I'(4s— K*K) = (g%/4n)[31.4— 1776+ 2505%].

(4.6)

The best over-all agreement of calculated widths with
experiment is obtained with g?/4r=4 and 6=0.05.
Widths for this value of g?/4r=4 and various values of
d are given in Table I.

V. CURRENTS AND THEIR DIVERGENCES

The infinitesimal transformations for the fields ¢a,
Pay Vuay and a,, under SU(3) are given by
6V¢a= —fa37€5V¢7 ) 5VP¢1= -faﬂ‘)'eﬁvp’)’ ]
8vVpa= — fapyes"Vuy—(1/8)duea" ,

- v
0vaua= — fapres" Quy,

(5.1)

whereas under the axial SU(3) transformations these
fields transform as

6A¢’a= daﬂyeﬂAP‘y; 611?01: _daﬂveﬂA(ﬁ’Y )
04Vua= — fapr€tQuy,

040ua= — fapres™Vuy—(1/8) dueat.

For physical fields, the corresponding transformations
are

(5.2)

e’
dvSa= "'faﬂ'vZ "

Sa

[Z811/2§7+777] )

sV

a 8
5VP« = _faﬂ
'z

Pa

ZP’Yllzp'Y )

1/2

0vOua=— fapyes” [TuytZss"?0uSoksne]
+roves” Esal 4120,y
—0uep"[(1/8)8ap— frsoksar(Z et *Se+n2) ],
0v8ua=— fapres"[Burt(Epy—Epa) Z py " 20 P ]
+0ues” faprtpaZ ' *Pr s

1 For all calculations we have used the particle masses as pre-
dicted by our model. If, for example, we use the physical K* mass
in the phase space, the decay width of K* — K= will be increased
whereas widths of K4 — K*r and 43— K*K will decrease.
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Z p M2 (5.3)

0454 =da,37€ﬁ‘4

€,
aAPa = _daﬁyz;;[zsyl/2§7+n7] ,

Sa0pa=— €5 fapr(BurtEpnZ o120 P)

—ArrEsarZ py" *0uDy ] —rgyOues  EsrZ oy P
848ua=—€g"[ fapyDuatEsao s'1?0,4S0)

—dapyEpel oy’ ?0uSy ]

+0ues [ —(1/8)SastdaprEp(Z sy 38y+n4) ]

Now the vector and axial-vector currents can be calcu-
lated from the Lagrangian.'® The vector current is given

by
Jua"= —(m6*/g) Buat EsarZn?0uSN) + K"
where
Kuo¥= _(1/5)avana—fkﬂvavtssaxFuv,ﬁ(Zsyl/2§7+"Iv)
+5a)\EmGnv,BZp~,1/2P7] .

As expected, the 9,$ term in Eq. (5.4) is nonzero only
for the strangeness-changing current. Defining the decay
constant of the Sk meson through the relation

(5.4)

(0] Jux+7(0) | Sxt(9))= —F sxqu, (5.5
we get
Fgg= %\/3718/ZSK1/2- (5.6)
The axial-vector current is given by
Juat = —(m0*/g) (Qat EpeZps!0uPa) + Ko,  (5.7)

where

KyA= "(1/5’)3;«(;”,.;
_dkﬂvavtfpaGnv,ﬂ(Zh,l/2§7+7)7)5th
+ESQRFMV:BZP11/2P’Y:|'

The decay constants for the pseudoscalar mesons are
defined through the relation

<0, Jua? ' pa(@))= —iF pqu.
Equation (5.7) gives

Fpo= (m0*/8) EpaZpa* (5.8)

15 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).
A straightforward application of the Gell-Mann-Lévy prescrip-
tion J,= —8£/89,€ would give the vector current without the K,
terms in (5.4) and (5.7). However, when the field variations in-
volve derivatives of the group parameters, this procedure gives
a wrong result, as is clear from the fact that the equations so ob-
tained are inconsistent with the equations of motion for the gauge
fields. A suitably modified procedure [T. Dass, Nuovo Cimento
Letters 2, 584 (1969)7 gives Eqgs. (5.4) and (5.7), which are, in
fact, nothing but the equations of motion of the gauge fields.
The prescription for calculating current divergences remains
unchanged.
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The meson masses, their decay constants, and renor-
malization constants satisfy the Glashow-Weinberg
relations®

FoZ:\*=FrZg'*+FspZsg'?,
el 2= p P2 g 2P s Z s Y2
Incidentally, since sy is related to u» and ug through
(5.9), it explains why we got the same value for ugy for
both the solutions in Sec. III.

The quantities Fr, M 4,, and M, are related to each
other through the relation

=M,/ (A/M > =1/M4?),  (5.10)

which is precisely Weinberg’s first sum rule! in the
single-particle approximation. Similarly for the strange
vector and axial-vector currents, we have

Fr*—Fgg®=(M,*/g)*(1/Mg*—1/Mg,?).
From (5.6) and (5.8) we have
F,=535/g MeV=76.4 MeV (for g?/4r=4.0),

(5.9)

(5.11)

Fg/F.=1.17, (5.12)
Fgy/Fr.=—0.59.
From experiment we have?
(Fx tanb4/F;)*=0.075. (5.13)

Substituting the value of Fg/F, from (5.12) in (5.13),
we get

tanf,4=0.23. (5.14)

It is interesting to compare this with an alternative
estimate of 4. Recently, an expression for the axial-
vector Cabibbo angle was obtained!” by requiring that
the second-order quadratically divergent part of the
weak self-masses of hadronic states should vanish; it is

1 Fy us? Zgl2
tan?fy =— —— .
2 Fg px? Z 2

(5.15)

An estimate of the right-hand side from our model gives

tanf,=0.20, (5.16)

which agrees well with (5.14).

Now we use Eq. (5.4) and the effective Lagrangian to
determine the K5 form factors fi(¢?) which are defined
through the relation

(m°(p) [TV (0) | K*(R))
= =3[ (p+R)ufi (@) + (k—p)uf-(¢)]. (5.17)

These are normalized such that in the SU(3) limit
f+(0)=1. In Eq. (5.4) we consider only the first two
terms corresponding to the K* and Sk poles and neglect

16 S. Weinberg, Phys. Rev. Letters 18, 507 (1967); T. Das, V.
Mathur, and S. Okubo, bid. 18, 761 (1967).

17 R. Gatto, G. Sartori, and M. Tonin, Phys. Letters 28B, 128
(1968). See, also, N. Cabibbo and L. Maiani, sbid. 28B, 131 (1968).
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the K,V term.'® We make use of the effective K* cou-
plings from Egs. (4.1) and (4.5) and the effective Sx
couplings:

S(E+Skm0) = goK+0,Sx—0,m0+ g10,K+9,Sx—r0
+ 50, K+ Sk 0,4 g K+Sxn0.  (5.18)

The coupling constants are given in the Appendix. We
get

714 = e/ DL/ g+ M )]
X (e r g ),
I-{g%) == (me?/9)[2/(q*+ M x)]

gKK‘n'
1g K*Kw
>

(5.19)

K"‘2

X(uﬁ—uﬁ)(
+Fse/(@*+mse®) L 2g0—px*(—go+gr+gs)
—ua*(gs—gr+gs) —msx’(gotg1—gs)].  (5.20)
We see that f; is governed by K* pole, whereas f_ is
governed by both K* and Sk poles. For small ¢, we
write
Je(@)= fe(0) (1 —Nsq*/ua?) .

Using the values!* of the various masses and coupling
constants, we get

(5.21)

f+(0)=0.86. (5.22)
From experiment,'® we have
Fr/(Frf+(0))=1.28. (5.23)

Using the values of Fg/F, from Eq. (5.12), we get
f+(0)=0.91, (5.24)

which agrees reasonably well with (5.22). The other
quantities f—(0), Ay, and A_, which are functions of §, are
almost constant for small values of 8. We have (for
6=0)

A,=0.023, \_=0.013,

= 1-(0)/ f+(0)= —0.197.
From experiment, we have®
A+ (K1) =0.0234-0.008.

The experimental situation about £ and A_ is not clear
as yet.20 As in most other theoretical analyses,?' we have
small values for these parameters which are in agree-

and (5.25)

18 Note that the K,” term contributes only to f_.

19 N. Brene, M. Roos, and A. Sirlin, Nucl. Phys. B6, 255 (1968).

20 Rapporteur talk by W. Willis, in Proceedings of the Heidelberg
International Conference on Elementary Particles and High-Energy
Physics, 1967 (North-Holland Publishing Co., Amsterdam, 1968);
S. H. Aronson and K. W. Chen, Phys. Rev. 175, 1708 (1969).

21 B, W. Lee, Phys. Rev. Letters 20, 617 (1968); L. N. Chang
and Y. C. Leung, zbid. 21, 122 (1968); I. S. Gerstein and H. J.
Schnitzer, Phys. Rev. 175, 1876 (1968); R. Dashen and M. Wein-
stein, Phys. Rev. Letters 22, 1337 (1969); L. K. Pande, zbid. 23,
353 (1969).
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ment with the K,;/K.; branching-ratio (R) experi-
ments. Substituting our values into the expression for
the branching ratio,??

R=0.646+0.48E\_+1.400;4-0.127£4-0.019¢2,

we obtain

R=0.652,
which agrees with the experimental value?
R=0.648+0.03

within experimental errors.

The divergence of the vector and axial-vector cur-
rents can be calculated from the Lagrangian with the
usual prescription

0 pa” A= —08L/8eV 4, (5.26)
This gives

Ou) ux V=1l s s Sk
and (5.27)

6#JuaA = Fpaﬂpazﬁa .

We see that both the axial-vector currents as well as the
strangeness-changing vector current satisfy the partial
conservation equations. As is clear from the work of
Glashow and Weinberg,® such partial conservation
equations would hold in any model in which the sym-
metry-breaking term is a linear function of fields belong-
ing to some linear representation of the basic symmetry
group, as is the case with the term £, in Eq. (2.2).

VI. CONCLUDING REMARKS

(1) The strength of the SU(3) breaking relative to the
SU(3)QSU(3) breaking is expressed by

£=1ng/ne=—0.40,

6.1
C: 63/60= *124 ( )

The parameter £ gives the relative strength of the spon-
taneous breaking of SU(3) and SU3)®SU(3), whereas
the quantity C is a measure of the relative strengths of
the corresponding intrinsic breaking. The latter is close
to the SU(2)®SU(2) value (—V2) and is also in agree-
ment with the value obtained by Gell-Mann, Oakes,
and Renner,?* who get C= —1.25. The value of £, how-
ever, is nowhere close to the SU(2)QSU(2) value
(i.e., £= —V3); but it is close to the value obtained by
Glashow, Schnitzer, and Weinberg? [i.e., (v/2)¢= —0.3]
and somewhat larger than the value of Lévy3 [i.e.,
(v/%)£= —0.22], presumably because the latter author
did not take into account the vector-meson couplings. If
the spontaneous breakdown of SU(2)®.SU(2) were also
negligible, the masses of the p and 4, and of = and S,
should be equal. The deviation of ¢ from the SU(2)
®SU(2) value is therefore a measure of the p-4, mass

22 R. C. Field and P. B. Jones, Phys. Rev. Letters 21, 327 (1968).

2 G. R. Evans ef al., Phys. Rev. Letters 23, 427 (1969).

2 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1969).
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difference, whereas the deviation of C from the SU(2)
®SU(2) value is a measure of the pion mass; comparing
the experimental value of the p-4; mass difference
(~310 MeV) with the experimental pion mass (~ 140
MeV), we see that the former deviation is expected to
be larger on empirical grounds also.

(i) We have treated the quantities 5, and 75 as if
they were free parameters. In principle, they can be cal-
culated in terms of other parameters in the theory; in
fact, we already have two equations, namely, (2.10) and
(2.11), to determine these parameters. However, these
equations involve e, and es which do not appear in the
coupling constants and masses directly. It is therefore
convenient for us to use 5, and 73, instead of ¢ and e,
as free parameters.

(iii) It is interesting to analyze the consequences of
Egs. (2.10) and (2.11) with ey=eg=0. These equations
can be written in the following form?s:

(VB et (1/V3)es= paFa 27112, (6.2)
(V3)eo—(1/2V3)es= ux*FrZg™'12. (6.3)

We also have the relation
es= (2/V3)usi FsxZs 2. (6.4)

Let us first put eg=0. Equation (6.4) then implies that
at least one of the three quantities on the right must
vanish. The case ug,?=0 corresponds to the prediction
of the Goldstone theorem in the case of a purely spon-
taneous breakdown of SU(3) to the isospin-hypercharge
level. Noting the relation

FSK:%\B_WSZSK_IN’ (6-5>

we see that Fgp=0with | Zgx| < implies 3= 0, which
corresponds to the situation when the SU(3) symmetry
remains unbroken and the strangeness-changing vector
current along with the isospin and hypercharge current
is conserved. Finally, from the relation

Zsg=Mg+*/M 2= [1+3(g(ns/m0))?],

we see that the case |Zgg| = corresponds to me=0
(assuming that gns is nonzero and finite). In this case
there will be no kinetic energy term for the Sx meson
and this particle is eliminated from the theory. This is
precisely what one expects from the work of Higgs* and
Kibble; when in a fully gauge-invariant Lagrangian
the symmetry is spontaneously broken, the Goldstone
fields get eliminated and become the longitudinal modes
of the massive gauge fields.

Putting €o=0, similar conclusions are reached for the
pseudoscalar mesons.

6.6)
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APPENDIX
§1°87 = g(faprLlnyF§f aco@asyelpn)Z p6" 122 oy
g8 =faﬂv(%g‘fpﬂfm‘i‘%hLﬂLv)ZW”221"'1/2
25987 = — g% (dasr ragyo — ey feorns)Z py 12,
84V = — fupy(gEprtghL\$ )2 0,12,
858 = (g fapybpy 380 epenedayoln)Zp, 12,
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— 38" (M i/ M) (Fr/Mgs+Fs/May),
= _“g2(MA1/M 2>(FK/MK*—FSK/MKA) ’
g =%g2(MK*/M,,2) (Fr/M a,+Fo/Mkg,),

3C,
go= ‘v‘i—czfﬂo—(\/%)m] Z Mg g MR

where
Le=1—(5t5.
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A simple prescription is suggested for preserving universality of the isovector current in the presence
of many 1~ poles p;. By identifying g,,—y as proportional to g,;=r, predictions are made regarding (a) the
modification of the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation, (b) charge radii, (c) == reso-
nance production in colliding beam experiments, (d) high-energy p meson photoproduction and photo-
absorption, (e) photoproduction of p’ and p”’, and (f) asymptotic behavior of form factors.

N this paper we suggest a simple modification of the
hypothesis of p dominance! which preserves the
universality of the isovector current. Our starting point
is that low-energy pion scattering, while purely had-
ronic, also obeys a form of universality.?
In a resonance approximation one may write the iso-

vector “electric” form factor of any particle x in the
form
sz‘y(t)= Z .Bngnzi/(mnz—l) . (1)
n=1

The B, represent the couplings of the photon to the
intermediate states p,.?

A similar “form factor” may be defined in the case of
the I;=1 amplitude for =-x elastic scattering at
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1Y. Nambu and J. J. Sakurai, Phys. Rev. Letters 8, 79 (1962);
8, 191(E) (1962); M. Gell-Mann, D. Sharp, and W. Wagner, 7bid.
8, 261 (1962).

2 S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

3In the case of p dominance, for example, Bi=my2/2y,
=me/gprn.

threshold :

MO (0,1) =2(q1+g2)* L (pr+p2)uF 22" (1) ]
=4yF ., (), (2)

where »=%(s—u), q1 and g are the momenta of the in-
coming and outgoing pion, and p; and p, are the mo-
menta of the incoming and outgoing « (spinless here
for convenience). Since 7-% is a hadronic scattering, all
spin exchanges are possible in the ¢ channel, and in
particular the #-channel resonance expansion (or the
t-channel partial-wave expansion) blows up at the
various s- (and #-) channel singularities. The rather
remarkable consequence of partial conservation of
axial-vector current (PCAC) and current algebra? is
that at threshold and at (=0, the I,=1 crossing-odd
amplitude is given in the soft-pion limit by a conserved
vector interaction. This means that in this particular
kinematic region only J=1" isovector ¢{-channel ex-
changes are relevant.? Those are precisely the same
states contributing to (1), and we have

s gnmrgnza':
Foumo® (1=0)= 3 22, @3)
n=1 mn2

¢ We suggest, therefore, that the sum over all spin-1 exchanges
gives I=1 exchange in wx — wx at threshold. This is equivalent
to taking only pole contributions to the dispersion relation in ¢
for the J =1 partial wave.



