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Strong interactions of spin-zero and spin-one mesons are studied in a model in which the Lagrangian is
approximately invariant under coordinate-dependent SU(3) SU(3) gauge transformations. The scalar
and pseudoscalar nonets are assigned to the (3,3*)Q+ (3~,3) representation, whereas the vector and axial-
vector octets are introduced as gauge fields belonging to the (1,8)Q+ (8,1) representation. Spontaneous sym-
metry breaking to the isospin-hypercharge level is introduced by giving nonzero vacuum expectation values
to some scalar fields. The effective Lagrangian obtained after considering field mixings and renormalizations
is used in a phenomenological manner to study the masses and couplings of various particles. With some of
the experimental meson masses as input, the predicted masses of remaining observed mesons are in reason-
able agreement with experiment. Some scalar-meson masses are also predicted (@ex=527 MeV and
pa„= 771 MeV). The widths for t/' ~PP and A —+ VP decays are calculated and compare well with experi-
ment. The axial-vector currents and the strangeness-changing vector currents satisfy partial conservation
equations. Decay constants for spin-zero mesons are calculated. We get Frc/F = 1.17 and Fsz/F = —0.59.
The ate form factors are calculated, the e&ect of the scalar kaon being included; we get f+(0) =0.86,
$= —0.197, 'A+=0.023, and ) =0.013.

I. INTRODUc Trow

'ANY papers have recently appeared which con-
sider the chiral group SU(2)SU(2) or SU(3)

SU(3) as the basic symmetry of the dynamics of ele-
mentary particles. Most of these investigations have
employed the so-called nonlinear realization' of the
symmetry. It has been pointed out by some authors'
that results obtained from phenomenological Lagran-
gians involving nonlinear realization of the symmetry
can also be obtained from the conventional Lagrangians
involving linear representations by breaking the sym-
metry spontaneously. This latter procedure has its own
advantage of allowing a simpler and more compact
formulation of dynamics.

In this paper we report on a study of the strong inter-
actions of spin-zero and spin-one mesons in a model
which employs' fields belonging to linear representations
of SU(3)SU(3). We assign the scalar and pseudoscalar
nonets to the (3,3~) (l) (3*,3) representation and the vec-
tor and the axial-vector octets to the (1,8) (l) (8,1) repre-
sentation, the latter being an obvious choice in view of
the fact that we introduce the vector and axial-vector
fields as gauge fields. The symmetry is broken spontane-
ously to the level of SU(2) g U(1) corresponding to iso-
spin. and hypercharge by giving nonzero vacuum expec-
tation values to some scalar fields. The resulting pattern
of particle masses and couplings exhibits a systemati-
cally broken symmetry and is well in accord with
experiment.

The idea of combining gauge invariance of Yang-Mills
type with the spontaneous breakdown of symmetry is
a very attractive one and has been proposed by Higgs4

' See, for example, the review article by S.Weinberg, in Proceed-
ings of the Fourteenth International Conference on High-Energy
Physics, Vienna, 196S (CERN, Geneva, 1968), p. 253.

2 S. Gasiorowicz and D. A. Geffen, Argonne Laboratory Report
No. ANL/HEP 6809 (unpublished).

'Our approach is similar to that of M. Levy, Xuovo Cimento
52A, 23 (1967).' P. W. Higgs, Phys. Rev. 145, 1156 (1966).
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and Kibble' as a simultaneous cure for the masslessness
of the Goldstone bosons and the gauge particles. In the
procedure adopted by these authors, the Goldstone
bosons completely disappear from dynamics and provide
for the longitudinal modes of vector mesons. This pro-
cedure, if followed faithfully, would be disastrous in
the present context because the whole octet of pseudo-
scalar mesons which appear as Goldstone bosons in this
model will have to be eliminated. |A"e therefore do not
carry out the polar decomposition of fields along the
lines of Kibble, but adopt the simpler procedure' of sub-
tracting directly from the scalar fields their nonzero
vacuum expectation values.

A price for retaining the Goldstone bosons has to be
paid, i.e., to introduce an explicit symmetry breaking to
ensure nonzero Inass for these particles. So we cannot
aRord the luxury of starting with a fully symmetric
Lagrangian and having a purely spontaneous break-
down of the symmetry. The explicit symmetry-breaking
term that we employ is a linear function of the scalar
fields. This choice of symmetry breaking guarantees'
that the currents corresponding to broken-symmetry
components satisfy partial conservation equations.

Since the mechanism of spontaneous breakdown does
not generate mass for the gauge particles corresponding
to unbroken-symmetry components, it is essential to
introduce, as done by several authors, ' ' a common mass
term for the spin-one mesons which is invariant only
under constant parameter SU(3)SU(3) transforma-
tions. The mass term arising from the Higgs-Kibble
mechanism then accounts for the mass splittings.

' T. W. B.Kibble, Phys. Rev. 155, 1554 (1967);also Proceedings
of the 1967 Interngtiongl Conference on Particles and Fields,
Rochester, 1967 (Wiley-Interscience, Inc. , New York, 1968);
Y. S. Kim and F. L. Markley, Nuovo Cimento 63A, 60 (1969).' S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968).

7 T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

8 S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 139 (1967). Our treatment of vector and axial-vector
mesons is the same as in this paper.
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Apart from the terms mentioned in the two preceding
paragraphs, the rest of our Lagrangian is completely
gauge-invariant. One would like to stick to minimal
couplings for the vector particles; however, it turns out
that at least at the phenomenological level at which our
Lagrangian is being considered, it is essential to intro-
duce nonminimal couplings to account for the decay
properties of axial-vector mesons.

The plan of the paper is as follows: In Sec. II, the
basic Lagrangian is written down and after introducing
the symmetry breaking, the field mixings and renormali-
zations are considered. Particle masses are discussed in
Sec. III and couplings and decay rates in Sec. IV. Sec-
tion V is devoted to a study of the vector and axial-
vector currents and their divergences. The decay con-
stants of spin-zero mesons and the E~3 form factors are
discussed in this section. Section VI contains some con-
cluding remarks.

1
P = gX;p;,—

~g '=0

1 8

C=—Q Z,y;,
~2 4=0

(2.1)

II. LAGRANGIAN

%e start by introducing pseudoscalar and scalar
nonets and vector and axial-vector octets

Zg Zg

F„,= B„V, B,—V„+ [—V„,V„] + [—A„,A,],
K2 V2

Zg Zg

G„,=B„A„B„A—„+ [V—„,A„'j [—V„,A„g,
K2 v2

8

py'X4.

v2 '=0

The symbol { }means that trace is to be taken.
The Lagrangian (2.2) is invariant under coordinate-

dependent SU(3)SU(3) gauge transformations except
for the mo' term and Z4. The vector-meson mass term,
which is invariant only under coordinate-independent
SU(3)SU(3) transformations, is included to ensure
a nonzero mass of the gauge particles coupled to con-
served currents (i.e., p and 40 mesons) as explained in
the Introduction. The symmetry-breaking term 4 is
necessary to ensure nonzero masses of the Goldstone
particles (i.e., the eight pseudoscalar mesons and the
scalar kaon) in spite of the fact that actual contribu-
tions to these masses come from Z2. This point will be
made more clear in Sec. VI.

The spontaneous symmetry breaking is introduced, a,s
usual, by giving a nonzero vacuum expectation value to
some scalar fields; we assume that

8

V„=—Q Xp„;,
8

A„=—Q 'n, a„;,
v2 '=i

r/= (C') p
= (apl+ gpss) .

v2
(2.3)

where the P s are the usual unitary spin matrices. The
representations of SU(3) SU(3) assigned to these are

(3,3*)$(3*,3) for scalar and pseudoscalar mesons and

(1,8)$(8,1) for vector and axial-vector mesons. The
basic Lagrangian is

Z= Zi(P, C', V,A)+Zs(P, C)+Zs(V, A)+24(C), (2.2)

where

&i= —
2 {(D.C')'+(D.P)')

zs —— 2pp'W2——', CiW8—', C2W4—-', Cs(W—2)-',

Zs — 4{FIyyFIIy+GpyGy—y) 2wp {VyVIy+Aly a} y

Z»={pC},

$g g
DaC'= ~~C'+—fVy C'j—+—[A~»3+

v2 v2

$g
D„P=8++ [V„,Pj [A„,C—]p, ——

Ws ——{C'+P')

W, =2[det(C+2P)+H. c.j,
W»= {[(C'+2P)(C' —2P) j')

The 4tp breaks the symmetry from SU(3)SU(3) to
SU(3), whereas qs breaks it down to SU(2) 8 U(1) corre-
sponding to isospin and hypercharge. %e write

(2.4)

The substitution of (2.4) in Zi gives terms like
A„B„I'and V„.B„S.To remove these, we write

4iaa=Opa+4 ~spay

Pya=Vpa+ $y 88ySP y

(2.5)

where the coeKcients $„, are to be determined by the
requirement that terms of the type d„B„p and g„pI„s
are absent from the Lagrangian. This gives

where

~,=g{./[ "+(gt-.)'+-:(g")'~..j,
p=gnsfs pl(~0 & p+g ns fs fsp„),

pa '90+'gp~aas ~

(2.6)

(2.7)

pa Zya pa y

Sa= ~sa Sa &

(2.8)

and determine Z's such that the physical 6elds p and
s satisfy the canonical commutation relations. This

The substitution (2.5) in Zi modifies the kinetic
energy term of pseudoscalar and scalar mesons. To
renormalize these, we write
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SPONTANEOUS BREAKDOWN OF S U(3) 8S U(3). I

Inserting these values in (3.1) we get
%= 1+(g-)'/E~o'+ s(ass)'~-83

Zs =1+(gas) fasvfysa/3330 ~

(2.9) M~'= 834 MeU, If',= 1467 MeV. (3.4)

After the substitution (2.4) in (2.2) there should be no
terms linear in 5 fields present in the Lagrangian. This
requires that only 6p and es are nonzero and satisfy the
two conditions

3 ( v)g)
no@0'+—Cil go' ——

l

K2 4 3i

B. Masses of Pseudoscalar and Scalar Mesons

The Inass matrix for pseudoscalar mesons is given by

( n')-p= Lt 0'&-p+(C~/~~)T-p'

+(C,/VZ)(z. .p
—2..p )jz„.I Z„, I, (3.5)

where @os is given by (2.12) and

6rjogss 2gss)
+Csl ~0'+ — l+(&ss)00=0 (2 10) & p =(3go—6gsdsaa)3 p 6go&aÃpo+2v3gs& 03ps,

3 3%3j

g8 PO

3C3( ns)

K2 k %3j
I ~0+—l

where

( nogs 3Is')
+3Csl go' — +—

l

—&8=0, (2 11)
VS 3]

po'= po'+ Cs(3go'+2ns') .

More is said of Eqs. (2.10) and (2.11) in Sec. VI.
When the Lagrangian (2.2) is expressed in terms of

the physical 6elds 5, I', V, and A, one Ands that the
symmetry is broken in a systematic manner. The result-
ing pattern of particle masses and couplings is explored
in the following sections.

&ap'= (2no'+sris') &ap+4goqsdaps (4/~&)dapsgs

&-p'=(no' —8~8') 3-p+2np~sd-ps

8

+ps'('888 88p+Q 2d p„ds~p (1/%—3)d ps).

Ps= P„cose+P„sine,
Pp= P& s1118+—Psi cosg.

(3.6)

The requirement that there be no mixed terms p„p„
gives

We take account of the mixing between pp and ps in
the usual manner by introducing the physical fields p„
and p„ through the equations

III. PARTICLE MASSES

A. Masses of Vector and Axial-Vector Mesons

The mass matrices of vector and axial-vector mesons
are given by

tan28= (II3„')08/(g„' —ps 3') .

The p, and p„masses are given by

I ~„'=3(V.,'+~~.' P(1.3' I-n.')'+~-...'3"'),
~.,'= 3 (I,.'+I .3'+ L(~.o' I n, ')'+I n,*'J"—'~.

(3.7)

(3.8)

The scalar-meson mass matrix is(~V' )aP ™03aP+g gs fsayfsPy

(~").p= E "+e(|..'+:~"~.)]~.p,

where g is given by (2.7). As expected, the gp s
the axial-vector multiplet from the vector multiplet,
whereas qs causes splitting among different isospin
multiplets. The symmetry breaking alters, in fact, in-
creases, ' the masses of only those spin-one mesons that
correspond to the broken components of the symmetry. '
We identify the vector octet V with the p(760), Z*(890),
and oo(780). The experimental situation regarding the
axial-vector mesons is not clear as yet. Ke tentatively
identify the axial octet A with the A3(1070), Z~(1335),
and As(1420) resonances. ' From the observed A3 and
K~ masses, we get

%e determine the parameters pp', C», and C2 from
the experimental masses of m-(140), E(494), and g'(960).
Since y~„ is quadratic in pp', C~, and C2, we get two solu-
tions for the masses of the remaining particles and other
parameters:

Solution I Solution II
p„, 530 MeV

ps. 771 MeV

p,s~ 527 Mev
8 27

pps 4.13X10'(MeV)'
Cr/g —113.8 MeV

Cs/g' —0.098

5X10' MeV

3X&0' MeV
527 MeV
250

1 26X10"(MeV)'
—3.25X10"MeV
—4.79&10'

(3.10)(gg )'= (982.7 MeV)' (3.2)

$= qs/go= —0.40.
9 Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).

(3.3)

(3.1) (~')-p= Le o' (c3/~&) &—-p'+ scs(2'-p'+2'-p')

+3C3(498 8sa68p+67/0 'Bpa30p
plits +4(Q6)q, g 8 o0 p) JZ '~3Z, 'I'. (3.9)
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TAnzz I. Decay widths (in MeV) of vector and axial-vector mesons calculated for g'/4s. =4 and various values of 8.

I'(p ~ 7rs.)
r(E' E )
I'(A g

—+ px.)
I'(E x—+ pE)
I'(Eg -+ E*s)
I'(As ~ E*E)

115
41.2

121
76

369
126

0.05

119
42
94
62

292
93

0.1

123
43.2
69
50

225
65

0.2

131
45.3
32
29

117
24

0.3

139
47.5

9
15

44
3.2

0.4

148
49.7
0.17

6.5
2.4

0.5

157
52
5.7

Experimental
values'

125W20
49.7&1.1

80+35

70&10

' See Ref. 9.

The second solution which corresponds to large masses
and couplings for scalar particles" is extraneous (in fact,
it disappears in the limit g

—+ 0) and we discard. it. The
mass of the scalar kaon is consistent with the Glashow-
Weinberg inequality p8x~& 670 MeV for Frr/F„)0.
Moreover, it is below the Ex threshold so that the scalar
kaon can decay only electromagnetically by Sz ~E
+2y. The existence of such a particle is not excluded by
experiments. "

After considering the mixing of S8 and So, equations
analogous to (3.8) are obtained for the 5, and 5„.
masses where, however, po' and C3 c1o not occur in the
same combination as they occur in other ma, sses and
therefore it is not possible to predict these masses. For
Ca= 0 we find that pq„'(0, p8„-=-335 MeV for solution
I. C3 therefore cannot be zero. This is in contrast to the
result of Ref. 3 where even for C3=-0 these ma, sses were
positive. One can easily trace back the source of this
difference to the nontrivial renormalization of spin-zero
fields arising due to coupling with gauge fields.

A comment is in order in connection with the choice
of input masses. The choice of 3/I~ instead of M~„as
input gave @8~=47I MeV which means that the
E —+ 5&+2y could be allowed contrary to experiment.
Similarly the choice of p„„instead of p,„„.as input gives
LM„;=501 MeV and 10~ MeV in the two solutions. Since
there is no observed pseudoscalar meson around 500
MeV, one would perhaps prefer in this case solution II,
implying thereby that the ninth pseudoscalar meson
and some scalar mesons are large-mass objects. "We,
however, prefer to adopt the following attitude: Since
the-predictions of this model are not expected to be very
accurate, it is desirable to choose input masses from
both the lower and higher ends of a multiplet to obtain
a balanced empirical fit.

Expanding meson masses in powers of q8 and keeping
only first order terms in vis, we see that meson (squared)
masses satisfy the Gell-Mann —Okubo mass formula.

' In this connection it is interesting to recall the work of W. A.
Ilardeen and B.%V. Lee LPhys. Rev. 177, 2389 (1968)],who advo-
cate that only the pseudoscalar octet and the strange scalar meson
are the low-energy excitations, whereas their remaining chiral
partners are some large-mass objects. To achieve this, they make
some parameters infinite with appropriate restrictions so that the
masses of the physical particles are finite. In our model, the situa-
tion of Bardeen and Lee is automatically realized if we take the
g(550) mass as input and pick up the solution II instead of I."L.Kirsch, Phys. Rev. 175) 1733 (1968).

IV. COUPLINGS

The various coupling constants are to be read oG from
the effective Lagrangian obtained by substituting (2.4),
(2.5), and (2.8) in (2.2). The V P Pand-A-V Pint-era-c-
tion I agrangians are of the following form:

&(~PP) =gr"~,-f p~.f v

+gs»(r)„v„r),v—„)f)„PpB,P„(4.1)

&(A l P) = gs rf p~tjppPv+g4 (~su~~ r)~up~)o~p~r Pv

+gs"(~.d- ~ &.-)~ p~.Pv (4 2)

The various coupling constants in these equations are
those given in the Appendix with h =- 0. After performing
an integration by parts on the last term of (4.1), we get,
for the effective V-I'-I' coupling constant,

G(&-pppv) =gt"+q-'gs Pv, (4.3)

' D. A. GeBen, Phys. Rev. Letters 19, 770 (1967); S. G. Brown
and G. B. West, ibid. 18, 812 (1967); T. Das, V. S. Mathur, and
S. Okubo, ibid. 19, 1067 (1967); H. J, Schnitzer and S. Weinberg,
Phys. Rev. 164, 1828 (1967)."This is the SU(3)@SU(3)analog of the E term of J. Wess and
B. Zumino, Phys. Rev. 163, 1727 (1967).

where q is the four-momentum of the vector meson.
For q '=0, Eq. (4.3) gives the universal 5(I(3) value

gf pv for the effective coupling of vector mesons corre-
sponding to the conserved symmetry components,
namely, p and co, whereas the coupling of E*gets modi-
fied by renormalizations and mixings.

The decay of axial-vector mesons according to (4.2)
is of pure 5-wave type, whereas in a more realistic cal-
culation" one needs two coupling constants, correspond-
ing to 5 wave and D wave, dehned through the equation

(n(q)P(P) I ~(Q)) = Gse" s +GDe" Q" q, (44)

where the e's are the polarization vectors. We can in-
clude the D-wave coupling constants by adding a non-
minimal coupling term" of the form

2= (h/v2) {——,'iF„„LD„P,D„Pj
+sG"LD.P».K+& (4 5)

One of the predictions of our model is that

I'(Eg ~ (oE) = F(E~ —& pE),

which is expected because 3II,=3I„and the p meson is
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absent from the model, mixing of which with ~ sup-
presses the m mode.

There are two parameters so far undetermined, i.e.,
g and k. The decay widths of the allowed two-particle
modes of vector and axial-vector mesons, namely,
p ~ m.vr, E~-+ Evr, At ~ pvr, E~ —+ (pE,K*vr), and
As -+ E*Eas functions of g and 8 = —hM, '/g are given
by14

Z 1/2
uv

8gs~=d pvep pv,g I/2

Cp

5&p d sv LZ v ~v+ ivyg S/2

5»..= es'[—f.sv(~-+4.Zu'"'~.Pv)

(5.3)

r(p )= (g /4 )[28.8+19.35+3.25 j,
I'(E*~ En-) = (g'/4w) [10;3+5.18+0.68'j

I'(A i —+ pw) = (g'/4vr) [30.4—1478+1798'j,
(4 6)

r(E~ —& pE) = (g'/4vr) [18.9—728+ 738'j,
r (Eg —+ E*vr) = (g'/4s )[92 3 40. 48—+444b' j,
I'(A s ~E*K)= (g'/4w) [31.4—1776+2508'j.

The best over-all agreement of calculated widths with
experiinent is obtained with g'/4m=4 and 8=0.05.
Widths for this value of g'/4s-= 4 and various values of
8 are given in Table I.

dxpvpsniZyv Bppvf dip—v8psp )aaiZpv pv )

5A+pa &p [fapv(&pa+)sa~Zse r)p&a)

d~sv4~Zgv Bpsvj

+~,es'[ —(1lg) 5.s+d-sv4 (Z""'&v+&v)j.
Now the vector and axial-vector currents can be calcu-
lated from the Lagrangian. "The vector current is given
by

J„v=—(m, '/g)(t)„+(,.„Z,„'")„sr)+E„v, (5.4)

where

f sv'8 &v &&P~= f~sv's Pv

5v~.-= f-svep'n. — (1/g) ~"-—', (5.1)

whereas under the axial SU(3) transformations these
fields transform as

~&4'~ d~sves Pv~ 5&P~ d~pves 4v ~

J ~Pv~P ~us ~

A

f-sves"n.—v (1lg)~"—-"
(5.2)

For physical fields, the corresponding transformations

6p
has = f p [Z,."—'i +g j-

g 1/2

V

5&p« f~pv Zrv Pv ig 1/2

V. CURRENTS AND THEIR DIVERGENCES

The infinitesimal transformations for the fields p,
p, n„, and a„under SU(3) are given by

we get
&ol~„"(0)Is +(q)&= -~,.q„,

~ax= s~~ns/Zs»"'

(5.5)

(5.6)

The axial-vector current is given by

(mo'/g) (d.-+—4.%"'~.P-)+E.-", (5 7)

K'„=—(1/g) r)„G„„,

dipv ~ [4.G—",p(Z.,'"~v+ ~v) ~-~

+&..P'",sZn, "'Pvj
The decay constants for the pseudoscalar mesons are
defined through the relation

Equation (5.7) gives

E.-'= (1/g)~.p—",. fisv~ L&—..P'",s(Z.,"'~v+nv)
+5-i4.G",pZn, "'Pvj.

As expected, the B„s term in Eq. (5.4) is nonzero only
for the strangeness-changing current. Defining the decay
constant of the S~ meson through the relation

&vt s~ = f~sv&s [&g v+—Zs, ' 'r)s&~cs„] F„.= (ms'/g) („.Z,.'~'. (5 8)
+fxpv&p gsagZsv r)ssv

~"s'[(I/g) 5-p f~p.4:(%"'~.+~—.)],
5v&.-= f-svep'[&.—v+(4, (..)Z,"'~—.p,]

+~yes fasv4aZuv pv ~

'4 For all calculations we have used the particle masses as pre-
dicted by our model. If, for example, we use the physical E~ mass
in the phase space, the decay width of E*—+ Em will be increased
whereas widths of Eg -+ E*7f and 38 ~ E*Ewill decrease.

n M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
A straightforward application of the Gell-Mann —Levy prescrip-
tion j„= 52jbs„e would give th—e vector current without the E„
terms in (5.4) and (S.7). However, when the field variations in-
volve derivatives of the group parameters, this procedure gives
a wrong result, as is clear from the fact that the equations so ob-
tained are inconsistent with the equations of motion for the gauge
fields. A suitably modified procedure PT. Dass, Nuovo Cimento
Letters 2, 584 (1969)7 gives Eqs. (5.4) and (5.7), which are, in
fact, nothing but the equations of motion of the gauge fields.
The prescription for calculating current divergences remains
unchanged.
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The meson masses, their decay constants, and renor-
malization constants satisfy the

Glashow-steinberg

relations'

p Z &/s —p g r/s+p g &/s

sp g —1/2 — sp g —r/s+ &p g —r/s (5.9)

Incidentally, since pa~ is related to p and p~ through
(5.9), it explains why we got the same value for tcsa for
both the solutions in Sec. III.

The quantities F, 3f~„and M, are related to each
other through the relation

the E„~ term. "We make use of the eGective E* cou-
plings from Eqs. (4.1) and (4.5) and the effective Src
couplings:

Z(E+Srr rro) =—gsE+ct„SIr ct„n'—+g,i}„E+a„Srcrro-
+gsc}„E+Sx B„sr'+gsE+Str—or' (5 18)

The coupling constants are given in the Appendix. We
get

f+(q') = (~o'/g) L2/(q'+7rrx*')3

X(gp Ico+rqsg x*xw) (5 19)
r'=( .'/g)'(/ .'—/ ~i')~ (5 o) f (q')= (nt '/g)l2/(q+M „)$

which is precisely Weinberg's 6rst sum rule" in the
single-particle approximation. Similarly for the strange
vector and axial-vector currents, we have

P 2 P 2 —(tlII 2/g) 2(1//III gs 1//}II 2) (5 1 1)

From (5.6) and (5.8) we have

F =535/g MeV=76.4 MeV (for g'/4sr=4. 0),
Fx/F. = 1.17, (5.12)

Fsx/F = —0.59. f,(q') = f~(0)(1 X+q /t .)—. (5.21)

X(t tr' —t .') ——,'gsx*x
3fxe'

+2'are/(q'+tt/tz') fags tt z'(—ge+
—g7+ gs)

—tt (gs —gr+gs) —tcs (gs+gr —gs)$. (5.20)

We see that f+ is governed by E* pole, whereas f is
governed by both E* and S~ poles. For small q', we
write

From experiment we have'

(5.22)

From experiment, "we have
(5.14)tan8~ = 0.23.

(5.23)Ftr/(F f+(0))= 1.28.
It is interesting to compare this with an alternative
estimate of 0~. Recently, an expression for the axial-
vector Cabibbo angle was obtained'~ by requiring that
the second-order quadratically divergent part of the
weak self-masses of hadronic states should vanish; it is

Using the values of Frc/F from Eq (5.12)., we get

(5.24)f+(0)=0.91,

which agrees reasonably well with (5.22). The other
quantities f (0), X+, and X, which are functions of 3, are
almost constant for small values of 8. We have (for
8=0)

g P 2g 1/2

tan'g~ ———
2 J'sctwx ~~ ~

(5.15)

Using the values'4 of the various masses and coupling
(Ftr ta One/ F)'=0.075. (5 13) constants, we get

Substituting the value of Frc/F from (5.12) in (5.13), f+(0)= 0.86.
we get

tan8~ =0.20, (5.16)

An estimate of the right-hand side from our model gives
A,+=0.023, P =0.013,

k= f-(o)/f+(o) = —o 197
(5.25)

which agrees well with (5.14).
Now we use Eq. (5.4) and the eRective Lagrangian to

determine the Ets form factors f~(q') which are defined
through the relation

& o(p) lv„'x'(0) IE+(u)&

't (P+&).f+(q')—+-(& P).f (q') 3 (5—17)-
These are normalized such that in the SU(3) limit
f+(0)=1. In Eq. (5.4) we consider only the first two
terms corresponding to the E~ and S~ poles and neglect

'e S. Weinberg, Phys. Rev. Letters 18, 507 (1967};T. Das, V.
Mathur, and S. Okubo, ibid. 18, 761 (1967).' R. Gatto, G. Sartori, and M. Tonin, Phys. Letters 28B, 128
(1968).See, also, N. Cabibbo and L. Maiani, ibid. 288, 131 (1968).

From experiment, we have"

X+(E+)= 0.023a0.008.

The experimental situation about $ and X is not clear
as yet. 2 As jn most other theoretical analyses, we have
small values for these parameters which are in agree-

Note that the E„~ term contributes only to f .
'9 N. Brene, M. Roos, and A. Sirlin, Nucl. Phys. B6, 255 (1968).
~0 Rapporteur talk by W. Willis, in Proceedings of the HeideSer g

International Conference on Elementary Particles and High Energy-
I'hysics, 1967 (North-Holland Publishing Co., Amsterdam, 1968);
S. H. Aronson and K. W. Chen, Phys. Rev. 175, 1708 (1969).

B. W. Lee, Phys. Rev. Letters 20, 617 (1968); L. N. Chang
and Y. C. Lenng, ibid 21, 122 (1968}.; I. S. Gerstein and H. J.
Schnitzer, Phys. Rev. 175, 1876 (1968);R. Dashen and M. Wein-
stein, Phys. Rev. Letters 22, 133/ (1969};L. K. Pande, ibid. 23,
353 (1969).
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This gives
8 J„v ~= —8Z/3ev ".
pjpK = &~SyzPS~ ~K

=Fnaijna p~ ~

(5.26)

(5.27)

Ke see that both the axial-vector currents as well as the
strangeness-changing vector current satisfy the partial
conservation equations. As is clear from the work of
Glashow and steinberg, ' such partial conservation
equations would hold in any model in which the sym-
metry-breaking term is a linear function of fields belong-
ing to some linear representation of the basic symmetry
group, as is the case with the term Z4 in Eq. (2.2).

VI. CONCLUDING REMARKS

ment with the E„s/E,s branching-ratio (R) experi-
ments. Substituting our values into the expression for
the branching ratio, "

R = 0.646+0.48P, +1.40K++0.127/+0.019(',

we obtain
R= 0.652,

which agrees with the experimental value'3

E=0.648&0.03

within experimental errors.
The divergence of the vector and axial-vector cur-

rents can be calculated from the Lagrangian with the
usual prescription

(v'-')so+(1/v3)es=~ 'F Z '"
(V'l)eo —(1/2v3)es= yx'FxZx '"

Ke also have the relation

,= (2/v3)ps 'Fs Zs„'~'.

(6.2)

(6.3)

(6.4)

Let us first put es= 0. Equation (6.4) then implies that
at least one of the three quantities on the right must
vanish. The case ps~'= 0 corresponds to the prediction
of the Goldstone theorem in the case of a purely spon-
taneous breakdown of SU(3) to the isospin-hypercharge
level. Noting the relation

difference, whereas the deviation of C from the SU(2)
SU(2) value is a measure of the pion mass; comparing
the experimental value of the p-Ai mass difference

( 310 MeV) with the experimental pion mass ( 140
MeV), we see that the former deviation is expected to
be larger on empirical grounds also.

(ii) We have treated the quantities tie and t)s as if
they were free parameters. In principle, they can be cal-
culated in terms of other parameters in the theory; in
fact, we already have two equations, namely, (2.10) and
(2.11), to determine these parameters. However, these
equations involve ep and ~8 which do not appear in the
coupling constants and masses directly. It is therefore
convenient for us to use gp and q8, instead of ep and 68,
as free parameters.

(iii) It is interesting to analyze the consequences of
Eqs. (2.10) and (2.11) with es= es=0. These equations
can be written in the following form":

(i) The strength of the SU(3) breaking relative to the
SU(3)SU(3) breaking is expressed by

sir s 3 l@sx (6.5)

(= t) s/tie
———0.40,

C= es/ep= —1.24.
(6.1)

The parameter $ gives the relative strength of the spon-
taneous breaking of SU(3) and SU(3) 3SU(3), whereas
the quantity C is a measure of the relative strengths of
the corresponding intrinsic breaking. The latter is close
to the SU(2) I3SU(2) value (—v2) and is also in agree-
ment with the value obtained by Gell-Mann, Oakes,
and Renner, "who get C= —1.25. The value of f, how-
ever, is nowhere close to the SU(2)SU(2) value
(i.e., $= —v3); but it is close to the value obtained by
Glashow, Schnitzer, and Weinberg' Li.e., (gss) $= —0.3$
and somewhat larger than the value of Levys Ci.e.,
(Q-,') $= —0.22], presumably because the latter author
did not take into account the vector-meson couplings. If
the spontaneous breakdown of SU(2) IRSU(2) were also
negligible, the masses of the p and Ai and of x and 5„
should be equal. The deviation of t from the SU(2)
SU(2) value is therefore a measure of the p-At mass

'2 R. C. Field and P. B.Jones, Phys. Rev. Letters 21, 327 (1968)."G. R. Evans et al. , Phys. Rev. Letters 23, 4Z7 (1969).
'4 M. Gell-Mann, R. J. Oal~es, and B.Renner, Phys. Rev. 175,

2195 (1969).

we see that F8„=0with tZsxi (eo implies t)s——0, which
corresponds to the situation when the SU(3) symmetry
remains unbroken and the strangeness-changing vector
current along with the isospin and hypercharge current
is conserved. Finally, from the relation

Zsx= ~x*'/M, '= L1+-', (g(tl s/wee))'j, (6.6)

we see that the case iZsxi = ~ corresponds to me=0
(assuming that gris is nonzero and finite). In this case
there will be no kinetic energy term for the S~ meson
and this particle is eliminated from the theory. This is
precisely what one expects from the work of Higgs4 and
Kibble'; when in a fully gauge-invariant Lagrangian
the symmetry is spontaneously broken, the Goldstone
fields get eliminated and become the longitudinal modes
of the massive gauge fields.

Putting ~p= 0 similar conclusions are reached for the
pseudoscalar mesons.
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"Equations (6.2)—(6.4) are analogous to Eq. (16) in Ref. 6.
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gr" =g(f-p.l- +gf-.d.p.v 4,)Z.p"'Z.,"',
gs r ——fopv(z gve$v„+ ', hapl.—~)Zve' 'Z„,' ',
gs g (/fnsxfxprr/s dovxfpsxr/s)Zvs

g "= f-p—.(g4, +ghL fp)Z.,"',
gs =(gfapvfvr+zghfsps /sdars~v)Zvr

g = ,'g—'(M „/M, ')(F /M *+F „/M, ),
g = ', g—'(-cV,/M, ')(F /M F—p /M „),
gs= ', g'(M-res/Mrs)(Frr/Mg, +F /Mrc„),

3cj
gs = C2Lr/0 (svrs)r/sj Z 1/sZxl/2Zs 1/z

K2
where
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Universal Isovector Current with Many 1- Poles*
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A simple prescription is suggested for preserving universality of the isovector current in the presence
of many 1 poles p;. By identifying g„„asproportional to g„,predictions are made regarding (a) the
modification of the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation, (b) charge radii, (c) srsr reso-
nance production in colliding beam experiments, (d) high-energy p meson photoproduction and photo-
absorption, (e) photoproduction of p' and p", and (f) asymptotic behavior of form factors.

'N this paper we suggest a simple modification of the
~ - hypothesis of p dominance' which preserves the
universality of the isovector current. Our starting point
is that low-energy pion scattering, while purely had-
ronic, also obeys a form of universality. '

In a resonance approximation one may write the iso-
vector "electric" form factor of any particle x in the
form

F„&(f)= g P„g„,s/(rn ' f) . —
n=l

The P„represent the couplings of the photon to the
intermediate states p„.'

A similar "form factor" may be defined in the case of
the I~ = I amplitude for z-x elastic scattering at
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3 ln the case of p dominance, for example, p~ ——m, m/2yp

=mrs/gs. .

threshold:

M~"'(»&) =2(qt+/fs)'L(Pr+Ps) F*. (&)]
=4vF„(f), (2)

where v=——,
' (s—u), qt and /ts are the mornenta of the in-

corning and outgoing pion, and pt and ps are the mo-
rnenta of the incoming and outgoing x (spinless here
for convemence). Since sr-x is a hadronic scattering, all
spin exchanges are possible in the t channel, and in
particular the f-channel resonance expansion (or the
f-channel partial-wave expansion) blows up at the
various s- (and u-) channel singularities. The rather
remarkable consequence of partial conservation of
axial-vector current (PCAC) and current algebra' is
that at threshold and at 3=0, the I~ ——1 crossing-odd
amplitude is given in the soft-pion limit by a conserved
vector interaction. This means that in this particular
kinematic region only J=i isovector t-channel ex-
changes are relevant. 4 Those are precisely the same
states contributing to (1), and we have

g~~~g~»
F s (soft) (f —())

n=l m 2

4 Ke suggest, therefore, that the sum over all spin-1 exchanges
gives I=1 exchange in xx —+ m-x at threshold. This is equivalent
to taking only pole contributions to the dispersion relation in t
for the J=1'yartial. wave.


