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TasLE II. Self-consistent p parameters for Veneziano and Veneziano-Regge models, with the indicated values of N, as a function
of the width of the e included in the input force. 1009, ¢ means an e width 43 times that of the p, corresponding to the retention
of only a single Veneziano term in Eq. (3). Units and notation are the same as in Table I. Errors, where shown, indicate an appreciable

range of values yielding equally satisfactory self-consistency. For 1009, e, there are two somewhat different solutions, as explained in
the text; the first is preferred to some extent by the criteria of Refs. 7 and 9.

Veneziano-Regge N =4

Veneziano-Regge N =20

Veneziano N =20

% e vF My Am, vy My Am, vF M, Am,
00 —5.40 711 29 —5.30 711 1006 —5.37 711 72
10 —5.40 711 32 —5.35 711 896 —5.40 711 89
20 —5.40 711 36 —5.40 711 98
30 —5.40 711 42 —5.45 711 93
50 —35.50 711 42 —5.45 711 83+6 —5.50 711 89-+6
70 —35.60 711 52 —5.60 711 8348
76 —5.65 711 64
80 —5.65 710 77 —5.65 710 6146 —5.70 710 7748
83 —35.67 706 91 —5.70 706 7748
100 —6.50 753 10025 —6.51 753 90440 —6.51 753 8030
100 —35.80 712 869 —5.80 712 72436 —5.80 712 72436

1009, e, i.e., with v,=0 and only a single Veneziano
term retained in Eq. (3), yields results in excellent
agreement with the experimental parameters of the p,
although, as mentioned above, there is some uncertainty
in the theoretical value for the p width. With N =4,
if v2 is chosen so as to significantly reduce the ¢ width
from the value for a single Veneziano term, then the
results in Table IT indicate that the bootstrap value for
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the mass is slightly reduced, and the value for the width
becomes appreciably too narrow. For N =20, the
results are in reasonable agreement with experiment
throughout the range of e widths investigated for both
the Veneziano and Veneziano-Regge cases. They are
still perfectly consistent with keeping only one Venezi-
ano term, and, in fact, doing so gives a theoretical mass
in somewhat better agreement with experiment.

15 JANUARY 1970

General Solution for Regge Residues and Trajectories

StaNLEY KLEIN
Joint Science Department, Claremont Colleges, Claremont, California 91711
(Received 26 May 1969)

A parametrization for Regge vertices is presented. These vertices have the most general ¢ dependence
consistent with constraints at {=0 and pseudothresholds, and are valid for general spins and general masses
and for nonparallel trajectories. The assumptions upon which this work is based are analyticity, crossing
symmetry, factorization (unitarity), and Regge asymptotic behavior. In the unequal-mass case, we find
that the general Regge vertex has a particularly simple expansion around ¢=0.

I. INTRODUCTION

HE problem of constructing a Regge expansion
that has the proper kinematic singularities (the
conspiracy problem) has received much attention during
the last two years.! One reason why so much work has
been expended by so many people is that different cases
have been treated separately. The equal-mass case?™*
was thought to be entirely separate from the unequal-
mass case,”7 daughters separate from conspirators.

1 M. Toller, Nuovo Cimento 53, 671 (1968).

2 G. Cosenza, A. Sciarrino, and M. Toller, Nuovo Cimento 57A,
253 (1968).

3 D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560 (1967).

4 M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and D. Y.
Wong, Phys. Rev. 120, 2250 (1960).

5 G. Domokos and P. Suranyi, Nuovo Cimento 56A, 445 (1968) ;
57A, 813 (1968); G. Domokos and G. L. Tindle, Phys. Rev. 165,
1906 (1968). -

Some authors consider only low value of spin and
Lorentz number M, others only consider residues for
the parent and first daughter, or only the most singular
parts of the residue. The approaches range from elegant
group theory,?%® which makes use of special symmetries
at ¢=0, through techniques using Feynman diagrams?
or Bethe-Salpeter models,5® and finally brute-force

(1;61')75 Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596

7L. Jones, Phys. Rev. 163, 1523 (1967); 163, 1530 (1967); S.
Frautschi and L. Jones, ibid. 164, 1918 (1967).
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Strathdee, Trieste Report No. IC/68/31 (unpublished).

9 R. F. Sawyer, Phys. Rev. 167, 1372 (1968).

10 W. R. Frazer, H. M. Lipinski, and D. R. Snider, Phys. Rev.
174, 1932 (1968); W. R. Frazer, F. R. Halpern, H. M. Lipinski,
and D. R. Snider, 7bid. 176, 2047 (1968).
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techniques in which analyticity is enforced term by
term.1—14

We have previously presented a formalism?!s that is
able to treat the Regge vertex Brsa(¢) for the parallel-
trajectory case in a manner that is independent of ex-
ternal masses and spin, and that handles the nonleading
pleces of the vertex in a general way. In the present work
we shall discuss this formalism in some detail and, in
addition, shall extend our solution to the nonparallel
case.

Our basic assumptions are the same as those of the
“brute-force” school''~4: Regge expansion, factoriza-
tion of residues, analyticity, and crossing symmetry.
We shall, however, make important use of certain group-
theory identities, in order to demonstrate that our gen-
eral expansion satisfies the analyticity constraints.

In Sec. IT we set up the problem and discuss our nota-
tion. The consequences of parity and charge-conjuga-
tion symmetry will be discussed. We also point out the
connections of the spin basis .S, A with the Breit-frame
multipole expansion. We finally present some rough
arguments to justify the introduction of daughter tra-
jectories and the Lorentz number M.

In Sec. III we discuss the basic building block of our
formalism—a nongeneral form for the residue, which
satisfies the constraints at #=0 and pseudothreshold, but
which does not have the most general nonleading be-
havior. The main group-theory identity is introduced in
this section.

In Sec. IV we generalize the expansion of Sec. III, so
that away from /=0, the vertices for daughter trajec-
tories are no longer determined once the parent vertex
is given. The formalism of this section applies to general
spins and masses, including the often-neglected case in
which S<M. It is quite possible that the results of this
section are the same as the recent results of Cosenza,
Sciarrino, and Toller,'® though expressed through a
different type of expansion. As will be shown in Sec. V,
our expansion has the advantage that it leads to a simple
Taylor expansion for the vertex. That is, the residue will
be shown to have a simple expansion in powers of ¢ once
the solution is known at ¢=0.

In Sec. VI we show that the previous results can be
easily generalized to the case of nonparallel trajec-
tories.’” A straightforward proof is given for the tra-
jectory formula that has been given by Bronzan.!s:1?

11T, Jones and H. Shepard, Phys. Rev. 175, 2117 (1968).

12 P, DiVecchia and F. Drago, Phys. Letters 27B, 387 (1968);
Nuovo Cimento 61, 421 (1969).

13 7. B. Bronzan, C. E. Jones, and P. K. Kuo, Phys. Rev. 175,
2200 (1968).

14 ] H. Weis, Phys. Rev. 175, 1822 (1968); 184, 1527 (1969).

155, Klein, Claremont Report, 1968 (unpublished); Bull. Am.
Phys. Soc. 13, 663 (1968).

16 G, Cosenza, A. Sciarrino, and M. Toller, CERN Report No.
Th.906, 1968 (unpublished). .

17T would like to thank L. Durand for emphasizing that the
nonparallel case is not quite as straightforward as I had originally
thought.

18 é Domokos, S. Kovesi-Domokos, and P. Suranyi, Nuovo
Cimento 56, 233 (1968).
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In the Appendix we outline the brute-force method
for the unequal-mass case. The brute-force method
verifies that our expansion is indeed the most general
expansion consistent with analyticity and factorization.

The main result of our approach is the formula given
in (121) for the most general Regge vertex and in (116)
for the most general trajectory. The expansion around
t=0, as given in (89) for the unequal-mass case, extends
Bronzan’s residue formula to general spins.

We shall extend our formalism to cover thresholds,
nonsense factors, and simplified equal-mass residues in
a future paper.

II. GENERAL FORMALISM

The basic object of our concern is the ¢-channel c.m.
helicity amplitude Tagan.(0:) as defined by Jacob and
Wick.? It will be convenient for us to combine the
helicity indices with Clebsch-Gordan coefficients as
follows:

Tonvo= 2 TapnananeCSaSeS; Aa—AN)
AaAbAchd

XC(SsSaS"; No—Na)\')(—)SeAet8a—2a (1)

The phase factor is needed because of our use of the
Jacob-Wick “backwards-particle” convention. The
spins S and S should not be confused with the ¢-channel
spins [defined without the phase (—)38cAe+Sa=Ad] which
are convenient for describing the ¢-channel threshold
behavior. Rather, the spins S and .§” are convenient for
describing the behavior near =0 and pseudothresholds.

Let us now assume that the amplitude has a Regge
asymptotic expansion:

Tsrn s~ B (B sn (1) Dan *(6,)
XA+re~im) /sinza.  (2)

The function Dy, %() is the analytic continuation of the
rotation matrix d7/(6) that has the asymptotic be-
havior Dy #(6)~ (cosf)* even for a< —1.2

We shall not attempt to justify (2) except to say that
it is largely motivated by the unitarity conditions. A
Regge trajectory is characterized by its spin «, signature
7, normality ¢, and charge conjugation £.

Normality is defined for external particles as o,
=nq(—)"v, where 7 is the intrinsic parity, and where
v=7% for fermions and v=0 for bosons. For a Regge tra-
jectory this definition must be altered, since the “spin”
becomes complex. The normality of a trajectory is given
by o=n7, where 7 is the intrinsic parity of the particles
on the trajectory. The main significance of ¢ for our
purposes is shown in the following relation, which sum-
marizes the consequence of the invariance of strong in-

19 J. B. Bronzan, Phys. Rev. 178, 2302 (1969); 180, 1423 (1969);
181, 2111 (1969).

20 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

%1 Bateman Manuscript Project, Higher Transcendental Func-
tz'g;zsxj edited by A. Erdélyi (McGraw-Hill Book Co., New York,
1 .
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teractions under a mirror reflection2:20;
Ban(t) = onate(—)5"Bsa’() , 3

where 7;=1:;(—)?5, so that =1 for an antiproton. We
are led to use this unusual convention for parity be-
cause the backwards-particle convention in (3) leads to
an extra minus sign if the backwards particle is a
fermion.

The quantum number £ is relevant when the Regge
trajectory is coupled to like particles. We define like
particles to be either a particle-antiparticle pair or two
identical particles.

We shall follow Toller? in defining £:

E=G(-)!

=(=)FYP

if B=Y=0

if B0 or Y0, 4)

where B is the baryon number, ¥ is the hypercharge,
and G is the G parity of a particle (¢=C for a neutral
particle).

If we use invariance under charge conjugation in the
case B=Y =0, or invariance under exchange of iden-
tical particles in the case B#0 or V0, then we can
derive the identity

Ban’ € (t) =o7E(=) 5B\ "¢ (h) . ()

This relation implies that a Regge trajectory can couple
to two like particles only if (—)5*=o7é.

It is interesting to note that the parameters S and o
have a special significance. The residue 8s)\” given by

B51°= T2 Brorel) ()5 (C(Sa555 Na=D)
a)\v
+7la'7)ca(_)s—”c(SaScS; >\a—")\c_)\)} (6)

is exactly the Breit-frame multipole vertex defined by
Durand, De Celles, and Marr.22-23 The {-channel c.m.
frame of particles ¢ and ¢ becomes the Breit frame when
one replaces the incoming particle ¢ with an outgoing
antiparticle. The phase factor (—)Se*¢in (6) is canceled
by this replacement rule.

To show the correspondence with multipole vertices,
let us consider the ANp couplings. As the V has two pos-
sible helicities, and the p has three possible helicities,
the total number of couplings must be six (if we allow
the p to have both parities). The multipole moments for
p exchange are given by

B1,7 magnetic dipole, 82,1t electric quadrupole,
B1,1~ electric dipole, 32,1~ magnetic quadrupole,
B1,0~ longitudinal dipole, Bs,¢* longitudinal quadrupole.

The subscripts S,\ refer to the AN system, and ¢ is the
parity of the p. The p found in nature has c=1. We have
an (electric, magnetic) multipole for n4f.o(—)5?

221, Durand, P. C. De Celles, and R. B. Marr, Phys. Rev. 126,

1882 (1962).
23 .. Jones, Phys. Rev. 163, 1530 (1967).

Freedman and Wang,$ following a suggestion by
Mandelstam, were the first to show that if M, #M,
and/or M#=M, [either the UU (unequal-mass—
unequal-mass) or the EU (equal-mass—unequal-mass)
case ], then each leading Regge pole must be associated
with an infinite number of daughter poles in order to
guarantee the proper analyticity at ¢{=0. Freedman and
Wang showed that at {=0 the trajectories must be in-
tegrally spaced. In order to have the daughters contrib-
ute to the same processes, we shall require all daugh-
ters to have the same isotopic spin, hypercharge, and
baryon number. The dependence of charge conjugation
£ on the daughter number & is more subtle. This is be-
cause the charge-conjugation selection rule involves the
helicity of the state and the signature of the trajectory.
In order to satisfy the constraints the odd daughters
must decouple at {=0. This condition is only compatible
with &= &. Thus if the parent trajectory has a normal
charge conjugation (—)”, then the odd daughters must
have an abnormal charge conjugation (—)J+1,

We shall find that in order to have the proper ana-
lyticity at t=0, it may be necessary for the parent tra-
jectory to be doubled, with the two trajectories having
opposite parities [labeled by a;()]. In the case of a
single parent (which only occurs for certain boson
trajectories), all daughters must have the same nor-
mality ¢ in order for them all to contribute to a process
involving the scattering of scalar unequal-mass particles.

According to our preceding arguments, the helicity
amplitude should have an expansion of the form

T, sa=2. [3ks')\'+.3ks>\+D>\>\'“’°+(9t)
%

1+Tke—i1r(ak+—v)
Y (term witho= —1)] G

sinmr (axt —v)

where & labels the %kth daughter. We have placed a
minus sign in front of 878~ merely for future conve-
nience. We could have used a plus sign and multiplied 8~
by v/(—1). In addition, (7) does not commit us to have
trajectories of both parities, since we could have g—~=0.

From (3) we can determine the signature of the
daughters by the following considerations. If the first
daughter is to help cancel unwanted singularities arising
from the parent trajectory, then the term with k=1
must have the same phase near =0 as does the parent.
The unitarity relation can be used to show that the
ratio of residues

Brs:vBksn/Bosrn “Bosa®

is a real analytic function. Since these residues do not
allow for any relative phase factors, we find that we
must have 71=—7¢ in order for the phase factor
1477 to be unchanged. The same argument
can be extended to higher daughters, giving the results

re=1(—)*,
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In Secs. ITI-V we make the drastic assumption that
all trajectories are integrally spaced. This assumption
seems to disagree with the real world, where particles of
a given mass seem to have a unique spin, but we are for-
saking the real world because the assumption ax(Z)
=ao(f)—k allows a considerable simplification in our
treatment of the problem. In Sec. VI we discuss how our
formalism can be modified to give expansions for res-
idues and trajectories in the nonparallel case.

The assumption of parallel trajectories allows (7) to
be written as

1+Te—i1r(a—-1))
Tsnvsn=———————2_ [n67a(—)5"""Brs—rBrs
' sint(a—v) &

F90a1e(—=) 5" BrsnBrs—r D (0) (=),  (8)

Brsan’=Brsxt1.7:(—) 5 Brs-r.

where

The question to which we are addressing ourselves in
this paper can now be asked: What is the most general
expansion of Bxsa(#) that does not violate the analyticity
constraints at #=0 and pseudothresholds?

These constraints are easily expressed in terms of the
s-channel c.m. helicity amplitude for the process ab —
cd. We shall now state our analyticity assumption. We
assume that the s-channel amplitude has the following
dominant behavior for small # and large s%*:

S uhatispany™ (t—tmin) 1# #1125 )
where p=pq—pe, &’ =up—puq. Note that the combination
of helicities in the definition of u is the combination
relevant to the #-channel reaction. The factor {—fmin
vanishes on the boundary of the physical region and is
necessary because of angular momentum conservation.

This factor is also motivated by the helicity crossing
matrices.25:26 We find that win is given by

tmin= (Eas_Ecs)2_(Pa8_Pcs)2
= (M=M=~ My+M
—[A(s,a,0) —A(s,c,d) I} /4s
=—(M>2—M (M —Ma*)/s
- (Ma2+Mb2_M02—Md2)

X(Mo*M 2 —M M ) /s*+0(s%), (10)
where
pas=A(s,a,b) /2512
and
A(s,a,b)={[s—(M+My)*][s—(M.—M)?]}12.  (11)

Thus the analyticity constraint for the case M =M.
and/or M =M, is simply the requirement that the
s-channel c.m. helicity amplitude should be analytic at
t=0, thresholds, and pseudothresholds. In the case

24 H. Stapp, Phys. Rev. 160, 1251 (1967).

25 1,. L. Wang, Phys. Rev. 142, 1187 (1966).

26 G, Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N. Y.) 46, 239 (1968); G. Fox, Ph.D. thesis, Cambridge Uni-
versity, 1967 (unpublished).
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Mo=M ., My=Mga, we note that {min=0 and the analy-
ticity constraint is still given by (9).

In order to guarantee this analyticity, we must in-
troduce an extra quantum number M. The need for this
quantum number can be crudely seen as follows. To
highest order in s, Eq. (9) becomes

~pla—wl2g00 | (12)
However, by crossing (8) to the s channel and invoking
parity conservation, it becomes apparent that the s-
channel amplitude must be of the form??

Sﬂ chdstakp

Sottarsiaus™ [’Yﬂauc ® Y upna ®
+’Y—Ma—uc(l)7—ub—ud ® ]S @, (13)

In order to get (13), we have made use of our limitation
that not more than two trajectories have the same ay.
If (12) and (13) are to be compatible, then v(f) must
have the following behavior:

’Ynauc(t)"")-/ﬂanc(l)ﬂ“_Ml 12 3
Yepra (t) ~Y upra (Z) f=niiz ) (14)

where ¥ is an arbitrary function that is analytic at ¢=0,
and M —u is an integer (in order to have analyticity at
1=0).

We see that a Regge trajectory gives a nonzero con-
tribution to the s-channel c.m. amplitude at /=0 only
when the spin flip u is equal to 3/.15.

We have found so far that the #rajectory is charac-
terized by the parameters ax(f), M, o, 7, and & The
Regge residue involves the coupling of the trajectory to
two external particles. Thus the residue depends not
only on all the parameters of the trajectory, but also on
the parameters of the external particles. Whenever pos-
sible, we shall omit most of the parameters and simply
write the residue as Brg.

III. LEADING BEHAVIOR OF RESIDUE

In this section we shall demonstrate our methods by
investigating the following nongeneral form for the
residue, which was also discussed by Bitar and Tindle28:

Brsn=Adaps2"(¢¢a) , -

15
Brsrn =dagsn ™ (Ps) , (15)
where n=q(f) and
sinhg = pot/M,=A(t,a,c)/2t12M ,
b1a= pa’/. (tac)/ , (16)

sinhgp=Pst/Mo=A(4,b,d)/2t'2M 3.

The function da,s\"*(¢) has been widely discussed by
many people.??8 It is defined as the representation of
a boost that takes particle ¢ from rest to momentum
pat in the z direction:

dwvdssa"M (@)= (nMS'N'|e~K=|nMS\).  (17)
%" G. Fox and E. Leader, Phys. Rev. Letters 18, 628 (1967); 18,

766(E) (1967).
28 K. Bitar and G. L. Tindle, Phys. Rev. 175, 1835 (1968).
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The states |#M.S\) are basis states of the homogeneous
Lorentz group. If # is an integer, then we have

dss\"M(¢) =2 C(J4J-S; upu-N\)
Ht

XCT 4TS5 pypuN)ew—sé - (18)

with ]++J_=n, J+""J_=M.
We have obtained (18) by making use of the following
properties of the homogeneous Lorentz group:

(nMSN=3 | Jur, ] uYCUT LTS5 puN),
pk

4wy’ [ €52 T puy )= €t P0 4 Buyny s
(J_’#_I [ eIfzd’ I ]4'[‘__> = e—ﬂ*‘ﬁaJ_J_/a“_u_l .

We shall need to know d,s\*¥ for the case in which
n—M is an integer, but of much greater interest is the
case in which we allow # (but not M) to become com-
plex. There are three cases for which we would like to
have expansions for ds\*¥(¢): (1) a is an integer; (2)
n—a is an integer and cosh¢ — 0; and (3) z—a is an
integer and cosh¢ — . These expansions have ap-
peared various times in the literature,3:2% and there is no
need to repeat them here. In Sec. V we shall, however,
examine the expansion for case (3) in some detail.

The reason we have written (15) is zot because of any
group-theoretic arguments about the symmetry of the
scattering amplitude near /=0. Rather, we are led to
investigate (15) because of the following sum rule:

2 Bagsn ™ (—bin)An(0:) desn™™ (P1a)
k=0
=3 dv.5 (= Xp)ds 5:"M ($1a)dn5(Xa) ,  (19)

where X, and X; turn out to be the Trueman-Wick cross-
ing angles for particles ¢ and 4 from the ¢{-channel c.m.
system to the s-channel c.m. system, and ¢, is the boost
angle from the frame in which particle ¢ is at rest to the
frame in which 5 is at rest:

coshpa=(—s+M 2+M2)/2M M . (20)

The derivation of (19) for integral » is straight-
forward. We simply sandwich the Lorentz-transforma-
tion identity?®

et K ptbg—iTybtg—K2pta = oiTyXcg—K 26 bag—iyXa

€3y

between the basis states |#M.S\) and {(nMS'\'|.

Upon inserting a complete set of basis states between
the boost and rotation operators, we obtain (19). The
summation over % stops at k=n—M.

If #n becomes complex, then (19) is more difficult to
justify. The main problem is the question whether the
states |nMn—Ek\) with k=0, ---, « form a complete
basis. A second question is how to continue analytically
A, du_kn™, and dggn"M.

29 S. Klein, Ph.D. thesis, Brandeis University, 1967 (unpub-
lished).

Bitar and Tindle claim to have derived (19) by using
Carlson’s theorem and the analytic continuations of
Salam. An alternative justification of (19) is given by
the brute-force expansion discussed in the Appendix.

In order to check whether the choice of residue given
by (15) has the proper behavior at {=0 and pseudo-
thresholds, we must examine the amplitude when
crossed to the s-channel c.m. system. The crossing for-
mula has been given by Trueman and Wick® and by
Muzinich3!:

Sc’d',a’ == Z de,twdaa'sa(xa)dbb’sb
abed
X (Xp)deorSe(Xo)daar54(Xa) . (22)

The (&) phase ambiguity is of no importance to us, and
we shall simplify our formulas by ignoring such over-all
phases. The crossing angles are given by

l:(s—l—Mﬁ—sz)(t—I—M.,?—Mc?) —ZM(,?AJ
A(s,a,b)A(L,a,c) ’
cosXp=—+[a<> b, c>d],

cosX,=~+[a<rc,b>d],

cosXy,=—

(23)

cosXy=—[a>d, b c],

where A=M 2—M ?—M >+M 2. Our choice of phases
for the crossing angles is motivated by (21).
When we combine (15), (22), (1), and (8), we get

Serar arv

1+Te—i7r(n—v) )

= 3 [nsha(—)5""
sinw(n—v) &\ ,abed
Xdn—kS’—)\’nM(+¢tb)dn—kS)\nM(¢ta)

a7 =) 5 kg M (F i) A rsn M (Pra) ]
XD *(0:) (—)*C(SeSeS; a—c\)
XC(SbSdS; b —d}\')dau:‘sﬂ(xa)dbb:Sb(Xb)

Xdcc’sc<xc)ddd'8d(xd) ’ (24)
where we have use the symmetry property?®
A\ (@1a) = dn—ts2""M(Pta) . (25)

By using another symmetry property of the boost
functions

das\™™(p) = (—)*Sd g, A"M(—¢) (26)

and the analytic continuation of (19), we can immedi-
ately carry out the sum over k:

> Ao, 57" M(P16) Dan"%(0,) i, sn™M (1) (— ) *
%
=i +5) Y 4y S (—X) Dy 50" M () dnS(Xa) , (27)

30 1; L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 332
(1964).
311, J. Muzinich, J. Math. Phys. 5, 1481 (1964).
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where Dg sx*™ is the analytic continuation of dg/gx"M
that has the same asymptotic behavior as Dy»"(6). The
sum over the helicity indices is also straightforward,
with the following Clebsch-Gordan identity?:

Z C(SaScS; d""C)\)daa’sa(xa)dcc’Sc(xc)dﬂ\s( _Xa)

Aabd
=C(SaSeS; @' —c""1)d oo Se(XatX,) . (28)
The final result is
eiw(n—ﬂ)_'_f
Sed,ap=—" > C(SaSsS; a—c'u)
sinT(n—v) &«
XC(SbSdS’; b —d,ﬂ)dc'csc(xa-'_xc)
Xda a5 Xg+X)[(n67ia(—)5"""Dgs ™M (pas)
+77a770(_>S_”DSS’un_M(¢ab)]- (29)

One can show that sini(X,+X,) has the behavior
sin%(X,,—}-Xc)N { (t“‘ tmin)/[t_ (M0+Mc) 2]} 12

by using (23) and the identity sin(6+46")=cosf sind’
+sinf cosf’. Since cosi(X,+X.) and sini(X,+X.) are
well behaved at =0 and pseudothreshold (they do not
blow up), so too must be the function d,eSe(X,+X,). It
is now easy to check that S.s,.» does not violate the
analytic behavior that was assumed in (9).

The asymptotic behavior of (29) as s — can be de-
termined by using (30) and

(30)

D1y (¢pap)~svIM=kl, (31)
where imin is given by (10). Thus we get
eim(n—v) | -
Sed,ab™~ > C(SaSeS; a—c'u")
sinw(n—v) »’
XC(S5SaS"; b—a'u") (t—tumin) A8 —sI+W"=w"1)12
X (snm1M=p" | fggnIM+u1) & (32)

where u=a—c¢, u=b=d, and n=1nns7.5a(—)55". The
s” behavior is given by

eiw(n-v)+T

N

Scd,ab'\'.———‘—
sinwr (7 —1)

X [ M=ul+1 =D 2y UM+l 0D 12 (33)
The singularity structure given by (32) is consistent
with the expected kinematic singularities of the s-
channel amplitude, shown in (9). The discussion follow-
ing (12) shows that (32) and (33) have exactly the de-
sired asymptotic behavior.

32 A. R. Edmonds, Angular Momentum in Quantum M echanics
(Princeton University Press, Princeton, N. J., 1957).
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IV. GENERALIZED %k DEPENDENCE
In the previous section we demonstrated that if we

choose g O =drer (Gu)as(l), (34)

then the scattering amplitude satisfies the analyticity
constraints. However, (34) has an important deficiency:
It is not the most general function that satisfies the con-
straints. That is, the 2 and A dependence of Bsi(f) is
severely constrained. Once the residue for k=A=0 is
known, (34) gives the residue for all other values of %
and . In this section we shall modify (34) to allow for
the most general £ dependence and A dependence.
The most general expansion of Sxsa(f) is given by

k S
Besx()=2 2 dur.sa™ M ($a)
E'=0 M'=——§
{J+' J!

n—=k
AR faswact), 9
where

J=EM), Ty =n—KLM),
T=3+ | M),

and where { } is a 6-7 symbol defined by Edmonds.?2

We can show that (35) is the most general expansion
of Busa() for arbitrary ¢, by expressing agwar(f) in
terms of Bxsx. In order to invert (35), it is convenient to
use the following expression for da_i s\" %' (¢,):

dakShakM,(qsa) = Cak)\clakSM' (t) A )\S(xaw) ) (36)

where
sinhgo=po/M o= (sinhX,*)1,
Copn=[(—=)T'(ax+A1)T (@ —r+1)J1/2,
tPM N\
A(t,a,b))j
X|: (25—1—1)I‘(ozk—l—M+1)I‘(ozk—M—l—l):l”2
PQa+DT (a+S+1)T (e —S+1)

We have obtained (36) by comparing the s» pieces on
both sides of (19). The angle X, is the limit of the
crossing angle X, as s — .

Since the summation #z—£’ in (35) is bounded by k,
we expect that we can solve for agp 3 in terms of Bigy
with k<k'. Let us assume, for example, that agp s is
known for %'<k. We must show that we can find
asku (). We can write (35) as

Ca]gSM’/(t) =<

k—1 S

Besn@)=2 X2 5 Qnie, A" M ()

k=0 M’'=—
{L,’ J!

n—=k 8
7. 7 }ast'(t)“l—Cakx MZ < Corsn (1)

Ty T

xd ,Sx){
unS( I,

n—~k
7 }aSkM'(t) .
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We can now solve for agry(f):

]+I J_, n—=~k —1
asiar ()= [CakSM’ { } :l
J_ T4 J

S
X Z Cak)\—ld)\M's(—'x)
A=328

i, A" M

n;k]aSk:Mu(t):I .

It is apparent that the expansion (35) completely
spans the k, \ space, since the inversion is nonsingular,
except possibly at points where #—M is an integer. We
shall examine the behavior of the residue at these non-
sense points in a future paper.

It will be useful for us to express the residue in an
overcomplete expansion:

k—1 S
X[ﬁksx(t) -2 X

B=0 M''=—8
J+II J—//
.

Brsx(@)= 2 datsn™ ™" (¢ra)
’n”l‘l".f"
T T n—k
{ }ak!IMIIJ/IS(t),
J_ Ty J"
7 ’ (37)
Besv()= 2 dut,sn™ M (d20)
! M
Jy T n—k
{ }an'M'J'S' ®,
J_ J. T

where n"' =n—k', W'=n—F, J/ =1n"£M"), and
J=3W'x£M'). We should point out that &, &,
|M"—M|, and |M'—M| are integers. The summation
over J' and J” is not needed for completeness, but we
shall find it a useful extension. The statement that (37)
is overcomplete means that the functions can be ex-
panded in terms of the coefficients @y 5+ 5 but that
these coefficients are not unique.

We shall now demonstrate that the analyticity con-
straint at =0 is equivalent to the following condition
on the expansion coefficient:

(38)

where @yrrareg05(f) is a dynamical coefficient that is
analytic at 7=0.

Our procedure is to examine the s-channel amplitude
just as was done in (24). From the discussion following
(24), we see that our main task will be to carry out the
following summation:

Swur= 2 dunS (—Xp)dnr, 50" M (—s3)

NMNE
XD 8(00)d i, srnr™ M (Gea)dnrr S (Xa)
T TS k) (J T n—h
X{J_ VAT }{J_ Jo J”

awoarr g s(8) =auar g s(OF

} . (39)
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We can use a permuted form of the main sum rule (19)
to carry out the sum over \"’:

> Dann ™ (0 dn—rsne™ M (Pra)drrr S (Xa)

)\’/
=§ Bt ™M (Fe3)

Xd)\'u'L’(Xb>DL'Su”n”M”(¢ab) . (40)

The summation over L’ extends from L'=M" to
L'=+ . However, the » summation will restrict L’
to a finite range, as we shall soon see.

The summation over & is

Gy =2 dntsn™ " (=) dnizn™" M (Ges)
&
]+, T n—pk ]+/I T n—k
I @
Jo Ty JIU- T g

This summation can be carried out if we use (18) and
(26) to express dn—rsa®'M". The k-dependent pieces of
the summation (41) are

2 CULT n—k; u'u!NYCTL T n—k; g u'\')
J TS n—k) (T T n—k
| H - o
/SR PR A I VA T 1
We now use the identity3?
JyJ! n—k}
J_ J. T
=(=)re 2 CULT T4 ui'm'7y)
XCUTT Lt mu YO T - e, wy N,

CULT! n—k; py'u/N) {

(43)
where
c= (_)J’+ (n'—n+M"'—M) /2[(2]++ 1) (2]_I+1>:|—1/2 . (44)

We shall henceforth drop the constant ¢, since it can be

absorbed into the dynamical coefficient @, s+ g of (37).
The sum over & in (42), which is one of the main steps

of our analysis, can now be done using the identity??

> CUT— n—k; 74/ 1 NYC(T 4T — =3 74/ 71"\
k

=6 "

ST B

(45)

Now that the summation over & has been done, we can
proceed to evaluate (41) and (18):

Gv= 2 CUYTLS"; mluN)

I‘ﬂ:,“;‘:l,m,m,,

XC(].,.”]J'L"; ,u+";.¢_”7\')

Xg(I‘+"‘l“""l‘+"+"‘”)d’ﬂ’C(J_'_,]’J.‘_; M+’m,T+/)

XC(]._J,JJ’; T_,m’u_”)C(J_”]']_; ,u_"m’v-_’)
XC(]-}—J"]+”; T+Imﬂﬂ+ll) . (46)
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’

The summation over uy’ and u.”’ can be done, since

7 ’ 7 7
! = =y
=7_+I_1’11___,’.,_I__7’,/_‘7_.4_I_’n//_l_1__l_”Z/I

=—2(m"+m'). 4

In order to simplify (46), we use the following rela-
tions??: ‘

CULT Ty udm/ v YCT I T 5 mom ")
=35 C'T"T; m'm' "' m)CTL' T 5 )

[J+' Ji }(_)J+’+J'+J+”+J”
o,

XLQIFDQIADT2,  (48)
X CUTT; mim"m)
:nil XCT'T'T" s mm' ' m) =855, (49)

Z C(J+'J_/S’; M+,N—,}\I)C(]+H]~HL,§ M+HNJI>\,)

pt’

XCU LTI s uylmp ! )YCT LTI p ! —mp )

JS IS

=3 C(JJT; mOm)C(S'JL'; NON)J T J I/
j -
J J J

XL@I/+D@77+D ]2, (50)

where the bracketed quantity is a 9-J coefficient.
Upon neglecting constant factors, which can be ab-

sorbed into the coefficient in (37), we arrive at

Gyv=Y byrsC(JJT; mOm)

JJTm
XC(STL'; NONYe~2mon  (51)
where
]+I J+II J J,_I ]_II J
wonen N
Jry Jur g J_
{]J,’ J s
X J+” ]_II LI (52)
J J J

All the manipulations since (41) have been made in
an effort to extract the \’ dependence in a clean manner.
We have accomplished this in (51), so we are now able
to carry out the summation on A\’ in (39):

3 dunS (—Xo)dyr o ¥ (X5) C(S'T L5 NOX')
)\I
=CS'TL ;s W' —u's w")dpr— o7 (X5) . (53)
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We can finally write (39) as
Su’n" = Z ijL'sC(]J-f; mOm)

L'JJm
Xe2mberd iy o (G)C(S'TL'; !y w" —u'y ")
XD gw ™' M (pas) . (54)

We are now able to examine the behavior of the
s-channel amplitude in the vicinity of ¢/=0. The ex-
pected ¢ dependence is given by (9):

St~ (L= bmin) W —H112 (55)
while the dominant behavior of (54) is
S,_;’ ’“NN62Jmax¢tb[5in|ﬂ’—l-'r”| (Xb) COS?-/max““‘/—I‘”I(xb):l
X (coshepgp) ™' —1M""=w""1 = (56)

where J pax=J"+J" is the maximum value of J allowed
by (48). We need not worry about the last factor, since
it is independent of #:

COSh¢ab= (*S+Ma2+sz)/2MaMb .

There are three possible mass cases to be considered:
(a) My#=M 4. In this case cosX, is analytic at =0,
while e#t~¢~1/2. Thus

Spryri~ =+ (57)
(b) My=Ma, M .M. In this case e?* is analytic at
t=0, but cosXy~ (M ,2—M 2)~/2%s~1, Thus

Syt T, (58)

(¢c) My=Ma4, Mygq=M,. In this case both e*® and
cosX; are analytic at =0, and we find

Syrurr~yr_yrr o7 " (k) ~const,

whereas we expected 1+ #1172,

In all three cases we find that the amplitude is more
singular than it is allowed to be. Thus the residues (35)
require extra factors of ¢ to restore the proper analytic-
ity. If J'4+J">S"+S", then case (c) does not violate
analyticity as badly as cases (a) and (b). (There is no
violation in the case of spinless external particles.) How-
ever, if an equal-mass channel is ever to couple to an
unequal-mass channel, then the damping factor of
17 +7" s required.

Since the ¢-channel residues factorize, the damping
factor must be split between incoming and outgoing
channels. We have thus verified that the most general &
dependence in the residue is given by

Benn()= 2= durs\""M (b1a)
n’/M,,JI'
TT u—k "
{J_ Ty g }i a"”M"J”S(t)7 (59)

where a is analytic at ¢=0.
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We have previously shown that the summation over
J”" is redundant. In the next section we shall use this
redundancy to show that the 6-; symbols and das\"¥
have expansions which make these functions much
easier to handle.

V. SIMPLIFIED EXPANSION NEAR ¢=0

One of the main new results of our work so far is that
the Regge vertex can be written in the following over-
complete manner (the sum over J is redundant):

Brsa@)==>" darsx” ™ (¢)asn s ()
MYt T

]+I ]'_I
d
Jo T4
where J.' =3’ M'), Jo=%(nkM). We achieve gen-
eral helicity dependence by the sum over M’. There are
two defects in this result which we would like to correct
in this section. First, (60) is in a form that discourages
practical applications, since the O(4) matrices and 6-5
symbols seem unnecessarily complicated to the person
who would merely like to know the first few terms of
the expansion for the first few daughters. Second, when
we argued that (60) contained the most general & de-
pendence, we had to conjecture that certain sum rules
were still valid even after the angular momenta became
complex.
We shall remove these defects in this section by focus-
ing on the behavior near /=0 (that is, we shall ignore the
behavior at pseudothresholds). We shall show that the

vertex Bren for the case M, M, can be written in the
form

jk}zf, (60)

201 12

i, 1I‘(2ak+k—|—2)]

T (M 1) T (s — A1) 0 /2100
[I‘(ak-l—)\—l-l)r(ak-—-M-f-l)]

Besa(t) =[

X fe.sn(t). (61)

It turns out that (61) is valid even for S<M.

The function f,:(f) is basic both to the discussion in
this section and to the nonparallel case, which will be
discussed in the next section. It is given by

k RIT 2o+-k+2)
fri@®=2
7=0 (k—J)IT Qaz+k—J+2)

(62)

as,it),

where @ ,:(f) is analytic at {=0.
As our first step in the derivation of (61), we must
consider the expansion of

0=3 {N - “"}w- ©. ()
& = a. .
§ J=0 (J_ + J 7

By using Eq. (62.12) of Edmonds,
{J+/ J! ak} {J_'_ J_ Olk}
Jo Jy JIUuU- Jp 1

I T
=(=)"* T <2]’+1>[ ) }
7z

J_ I T
T Ty T (IS T T
I P B
TR N 0 B U T (O &

we can get the following recursion relation:

J+I J_, (637
{ o
Jo Ty JH1
4 Vi
N (o
VA A d | R A
I TS a
{ * * }64, (65)
. 7. J—1

where c; are coefficients that are independent of %.
We can make use of Table 5 of Edmonds, which gives

Je J

(_)kﬂl{f_ T,

(¢33
1 ] =C4+ak(ozk+1)c;,, (66)

to write (65) as

IJ+’ J! ak} {Lr’ J! ak}
A 2 B W S S

J+’ J_, (477
X[Ceak(ak+1)+67]+{ }Cs. (67)
Jo Jy J=2
By induction we can immediately get
{J+’ J! ak}
J- Jy J
J T ar ) I—Tmi .
-1 " im0, @)
J— J+ Jmin =0

where
Jmin=max[ |J/ —J|,|J—J_|]=3F +|M"—M|).

We can now write (64) as

_P a’“} ) (69)
gk@—{ o,
where
foi)= }SZ“,O s (O [er(ert- 1017 (70)
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The easiest way to obtain the form (62) is to carry out
an argument by induction. We first assume

fo(0)= é 07 1)Lt DI

% RIT Qo t+-k+2)
720 (B=J) T Cay+-k—J+2)

a2 (07 (71)

for all N<N,.
Now examine the sum for No+1:

SraNotl= go ar (O)lar(at1)1 ]

Fanor1,1(O[an(art+ 1]V, (72)

The identity

No+1 No+1

II {er(er+D)+cr}= 2 [an(art+1)]7cs’

J=0 J=0

(73)

with the choice
cr=—nn+1)+J2n—J+1)
allows (72) to be written as
Je V(0 = fi 2 ()
EIT(2e+E+2)
(F—D'TQar+kt—J+2)

,brNo+1

(74)

Fanor1(t)

where
aJ,z(f) = dJ,l(l) +cNoti=J

We are continuing our convention that e ;(¢) and ¢ are
coefficients that are independent of %. The first term on
the right-hand side of (74) can be replaced by using
(71), and we finally get

No+1

RIT (20 4-k+2)
feal¥NoH (@)=

t7as4(t), (75)
%0 (k=TT Qax+E—T+2)

which completes our induction proof.

Since (75) is valid for arbitrarily large &V, and since
the factor 1/(k—J)! vanishes for J >k, all terms in the
sum with J>% can be dropped, and we see that fj,;
can be written as in (63).

It is clear from (71) that f%,:(¢) has the following im-
portant property:

Jea(O fe2(8) = fra(2).
In fact, as long as ax(az+1)¢ is small, we have
F(fri))=fri(®), (76)

where F(f) stands for an arbitrary function of various

f;c,,-(t)’s.
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By combining (69), (63), and (60), we see that the
Regge vertex can be written as

J+/ J! oy }
]—— ]+ Jmin
XlJmi"flc,SM'n'(t) .

The %k dependence of fx,saras is unnecessary (since
our expansion is overcomplete) and serves to remind us
that the residue can always be multiplied by a function
whose % dependence has the form f3,.(f) without dis-
turbing the analyticity.

We can simplify (77) even further by expanding the
remaining 6-j symbol in terms of gamma functions.
Since Jmim=max{|Jy —J4|,|J—J_|}, we can use
(6.3.1) of Edmonds to write

tJmin{]+’
I Ty
RITQay+k+2)r U
=[(k—k')1r(za,,+k—k'+2)]
I(or+M+1)T (. — M’ 1) MM 12
X[ I(a+M'+ 1T (s —M+1) J
XChratraa-

Brsn(t)= > dakSAn,M’(¢)[
n' M’

(7

J! ar }
]min

(78)

The =+ sign occurs for M2M’. The coefficient
Cr ar isindependent of % and can therefore be absorbed
into the dynamic coefficient of (77).

In order to show that (77) can be put in the form of
(61), we shall use the results of the Appendix, where a
brute-force expansion of the scattering amplitude in
powers of ¢ and s is examined. The brute-force method
may not be the most convenient way to get a general
expression for the residue, but it is a useful way to count
the number of constraints on the residue.* The result
that we find for the unequal-mass case can be stated as
follows: The first k& derivatives of Bzga(f) are determined
in terms of the first k£ derivatives of Birs\ with &' <k.
The higher derivatives of Brsa(f) are free.

This constraint has important consequences for (77).
Simply by counting the number of free parameters, we
can conclude that a complete expansion of the residue is
given by either of the following equations:

RN i "

£) = da nt M’

Braa(t) & dawsh ¢{J_ To Tum
XtJminaSM'n’(t) 5

(79)
Brsn(#) =dapsn "™ (¢) frsn(t) -
In the unequal-mass case, the form in (79) leads to

the most convenient expansion of the residue. We can
further simplify Bxsx by separating d.sx**(¢) into two
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factors:
dasa™(¢) =dasn™™(2) | ogesn(?) ,

where dasa™™(#) | o=dx- p™ is the leading piece of d,ga"¥
near (=0, and grsa(f) =2_; cant’.

It can be shown that the constraints of the Appendix
lead to the conclusion that gsa(f) must be of the form
Tx(®)-

We shall illustrate how one shows gusa(f)= fi(t) by
showing that the first derivative of grsa(f) must have
the same % dependence as the first derivative of frgn(f)-

The logarithmic derivative of Bxsa(f) is given by

(80)

Brsy'(2) __”P'igksx' ' b4
Besn(t) P ' gk I Jr
np' l do’+a1k(2%+1—'k)

=T C1k ,
Qo

(81)

where the prime indicates a derivative with respect to
t. It should be remarked that our arguments should
really be made with the combination of residues, which
has a definite parity.

The result of the Appendix implies that 8:'/8: is
determined once its value for £=0 and k=1 is known.
Since a¢’ and @, are free parameters, we can conclude
that ¢z must have the same %k dependence as a¢' +a:k
X(2n+1—k), or else B2'/B82 would be free. This argu-
ment can be extended to imply grsx(f) must have the &
dependence given by fx(f). Thus the residue for unequal
masses can be put in the form

Brsa(t) =dasna™™ () | t=ofrar(t) -

We can now use (18) to find the singular part of
dasa®™™. For A\=M we can take n=n'=J,+J_ and
M=M=J,—J_. We get

Aagsu™™(9) =2 C(J4J —ar; u M —p M)
"

(82)

XCT4 TS5 M —u M)e@—Mé  (83)
where e?~(~1/2, Thus
Aagn™™($) | 1mo=C(J 4T —ax; T4 —J_M)
XCTJT-S; Jp—J_M)t'2, (84)
The £ dependence is given by
CU T —an; Jo—J— M)
=[(Zak+1)F(ZJ++1)I‘(ou,+k-—-—M+1)]”2‘ -
BT Qay+E+2)
We are finally able to write (60) as
(20x+1) 12
Brsu(t) =[t"k!I‘ (zam] Sesu(t).  (86)

This result is identical to that found in the Appendix,
which was obtained by the brute-force method. The
equivalence of these results serves to verify the validity
of our procedures in Sec. IV, where we analytically con-
tinued various Clebsch-Gordan sum rules.

If A% M, then more than one term of (83) would con-
tribute to the leading behavior, and the calculation
would not be simple. However, since the vertex for
A=M has an extra damping factor of /> M, we can
make use of our overcomplete expansion by setting
M'=\ We get

J+, J! O
Besrn=dasx™(9)| t=0{ l
. J. T
X=M2fy sa(l), (87)
with J.'=1(n\) and J=}| M —)\|,
1y ’ ’ ]+, -
ﬂks)\=C(J+ J Lag; J+ —J_ )\)l_"/?‘{]_ ]+ 7 }
=M2f sna(l),  (88)

where the Clebsch-Gordan coefficient is given in (85),
and the 6-5 coefficient is given in (78).
Thus we finally get

a1 12
t"“”‘_MfklI‘(Zak—{-k—f—Z):I

T+ M+1)T (g — A1) M- 12120
[I‘(ak-l—}\—f-l)l‘(ak—M—l—l):l

Brs(?) =[

Se.n. (89)

We can use (80) to prove an interesting result con-
nected with the signature factor. Let us examine one
term of (8):

_ 1+ reimn
Tsv,sn=—"
sinmn

2 Brsr—xn(ps)
XBrsa(@a)Dan(pe) (—)*.

In order to simplify our considerations, let us take
Brsr=da 2" (¢a). We can modify (90) by using

g "M (P0) M " =€ " d g "M ($a) | oM o™ f,1(8)
=daysa"(r—¢) | i=oM " fr1(2)
=dapsn* M (r—¢e) M " fr2(2) .
We will need the sum rule

2 dapsn™ (—h0)ran*(0:)darsn™ (m— )
A
=Z d)\’rs,(_'Xbm)ds’:S"rnM(d’bc)dﬂ\S(Xcm) ) (92)

(90)

(91)

where Xt is the crossing angle from the ¢-channel c.m.
to the #-channel c.m. system, and

coshgpe= (M 2+M 2—u)/2M M ..
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The amplitude 75y, 51 can be written

TS’)\’.SA

2 Lanv S (=X d g ™™ (¢an)

sinrn
X AnS(Xo*) (M M )"
Fr(M oM )" [ 2(£)dr S (—Xp™0)
Xds 5:"M(Pen)dnnS5(Xe ) ].

For large s and fixed #, we are able to extract the
standard signature factor 1-4-7e¢~*™, In addition,
Durand, Fishbane, and Simmons?? have shown that the
form of the amplitude in (93) has the correct cut struc-
ture at the s- and #-channel thresholds as long as the
background integrals are properly treated. Since (93)
has the correct reality properties in the region s>0,
>0, >0, we have overcome a problem that plagues
simple Regge theory. In order to guarantee that the
amplitude is real below threshold, it has been pro-
posed® that the number of trajectories should be
doubled (four degenerate trajectories in the case M 50).
However, our analysis shows that this extra doubling
is unnecessary.

(93)

VI. EXTENSION TO NONPARALLEL
TRAJECTORIES

In this section we shall show that our solution can be
easily adapted to the case in which the trajectories are
no longer parallel. We shall rely heavily on the results
of the last two sections, which can be summarized as

h(”':i) =§ gk(n_k) t)f%(n—_k) t) ) (94)
where
gr(n—k, 1) =Brs'r ()Brsa(t) IR
XDn*(0)————, (95)
Slnwak
and
Silar,t) = fri() = .E.O [(ex+3)% Laji(t).  (96)

The main result of the previous sections is that /(1,f)
has the proper analytic structure in ¢ and 7.

If the trajectories are allowed to become nonparallel,
we can define the trajectory function as

ap(n,) =n—k+Ar(n,t), 97)

where # is a constant equal to the intercept of the lead-
ing trajectory.

The question before us in this section is to find the
most general form for Ax(n,#) and Brsa(f) that still
guarantees the correct analyticity for k(n,z).

33 L. Durand, III, P. M. Fishbane, and L. M. Simmons, Jr.,
Phys. Rev. Letters 21 1654 (1968).
34 G. Domokos, Bull. Am. Phys. Soc. 14, 49 (1969).
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Let us, for instance, simply replace z—% in (94) by
a;(f). We can use a contour integral to rewrite (94):

2 grlan,t) flam,t)

—— day (98)
21 k L—n—Ak(n,t)
=— par kzp e . (99)

We would be able to carry out the sum on £ without
violating analyticity if the & dependence of A(n,f) could
be written in the form f(L—&, ¢). This is true because,
as shown in (76),

fl(L_k: t)[f2(L'—k7 t)]p:f3(L_k7 t)-

Thus, if Ax(n,t)=f(L—Fk, ¢), we would be able to use
(94) to do the summation in (99). However, Ax(n,t) does
not even depend on L, so it cannot possibly have the
needed % dependence.

The resolution of the difficulty was pointed out by
various persons for the case S=0.1%35 The trick is to
include an extra factor of [1—dA(az,t)/dax ], where
Alar,)=A(n,t). We have here written Ai(axt) as a
function of ay and ¢ rather than as a function of # and
t. This is permissible, since «ax(#) is a function of #,
k, and ¢. The summation (98) can now be written as

(100)

8k (Clk,l)f(ak,t)

1 k L—k’ )
= dL Y i Ik _t) (101)
b [L—n—Ag(n,t) J(1—dA/doy)

ge(L—Fk, 1) f(L—Fk, 1)

2mi L—n—Ru(L,2)
dar
=Z '—hp(n’t) ’ (102)
» dn?
where
hz(n:t) =Z gk(n_"k: l)f(%—k, t)[zk(L;t)]p) (103)

and Ax(L,t) must be of the form f(L—#, ) in order for
the summation over % to have the correct analyticity at
1=0.

Let us now examine the summation more carefully in
order to take parity into account. We can write (7)

35 L. Durand, III, P. M. Fishbane, and L. M. Simmons, Jr.,
Phys. Rev. Letters 22 261 (1969); J. C. Taylor, Oxford Univer-
sity Report (unpubhshed) P. K. Kuo and P. Suranyi, Phys. Rev.
Letters 22, 1025 (1969).
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as

14 rein(i—v)
Ts'x',sx=de—_——“

sinm(L—v)

X2 Bu(L,)DanZ75(0,)(—)*,  (104)

P
where
Besnt(@)Besxt () Brsn(D)Brar™(1)

Bi(Lt)= — , (105)

L-—k—a;ﬂ“(n,t) L—k—ak"(n,t)
Brsat(t)=[Brsnzznaiic(— ) Brs—r]

dAzE L)1
X[l— 2 (—-Q] , (106)

dL
_ JJ T L—k
Besa= 2 dL-k,S)\L_k”M’(d))[ ]
k' M’ J_ J+ J
Xawyuw@t7. (107)

If we substitute (106) into (105) and use oz =n—Fk-+Ay,
we get

Bi(L,})
=7nafa(—) S,—u[BkS'—N (t)Bksrl‘ﬂBks'x'Bks_)\]Fk"”(L,t)
+[BrsvBrsatnBrs—vBrsFi(Lyt), (108)

where

Fki(L)t) = 1/[[‘—” —Zk+(L)l):]
+1/[L—n—A(LY)] (109)

and n=nans77a(—)5*".

If we substitute the first of the two terms of (108)
back into (104), we arrive at a summation that is iden-
tical to (8) except for the extra factor F;(L,). We
showed in Sec. III that, except for the extra factor
Fy*t(L,t), the sum over % has the correct analyticity at
t=0 and pseudothreshold. In Sec. IV we showed that
the residues could always be multiplied by a function
whose & dependence is given by f(L—Ek, #) [see (77)]
without destroying the analyticity. The proper & de-
pendence of Fit(L,) can thus be guaranteed by
requiring

AE(LY)=fo(L—F, 1). (110)

It is a bit more difficult to guarantee that the second
term of (108) has the proper analyticity, since the
helicity indices differ from what was encountered in
Sec. IV. In order to do the sum over %, we must reverse
the sign of the helicity in one of the residues. This can
be accomplished by multiplying one of the vertices by
the factor

W =MD (L—k+M+1)/T(L—k—M+1). (111)

Since fa is a function whose %2 dependence is of the
form f(L—k, ), we do not distrub the analyticity by
multiplying the residue by such a factor.

In order to see how the factor f' is able to reverse
the sign of the helicity, we shall need the following iden-
tity, which can be easily checked by examining (78):

Jy J! L—k
fmin’{ ]dk’M'(t)
]—- J+ min
J+’ ._/ L_k
- { }de_M,a) , (112)
]+ ]-. jminl
where

min=min(M,M"),
Tnin=3F+|M-M']),
Tmi =3+ | M+M']).
Upon multiplying the residue by fi’, we get
Tu'Brs
=fu'/ fmin 2 dp—g,F M ($)
k' M’

{]—I Ji' L—k
I T
=fM,/fminl Z dL—k,S—)\L_k,'MI((ﬁ)
k'M’
A
I Ty

= far,w(L—k, £)Brs()-

L—Fk

w1 (0)
]min} K

(113)

In order to arrive at (113), we have used the symmetry
das\®M(p) =d 52" M(¢) and the observation that the
k dependence of fu'/fmin' is of the form f(L—Fk, ¢).

If we apply (113) to (108), we see that the second
term of (108) has the proper analyticity only if Fy=(L,)
is able to provide the necessary factor of fu'. From
(109) and the argument following (102), it can be seen
that the proper % dependence in fz~(L,#) can be guaran-
teed by

Zkui-(l’)t) —Zk_(L)t) =fM’f2(L,t) . (114)

We can now bring (110) and (114) together to give
the most general expansion for a Regge trajectory:

k+aki(L)t) =f1(L—k7 i):th,f2(L_k’ t) ) (115)

where fi(L—k, 0)=%. The contour integral over L
always picks out the pole at L=rk4ax=(L,f). At this
pole the trajectory ax* becomes a function of # and ¢,
and we have

T (art+M+1)M
I(at—M+1)

kot = fi(awt,t) %= falart,t).  (116)

In order to help understand the significance of (116),
let us consider the trajectory for the case M =%. It is
convenient to introduce the variable W =¢!/2. The two
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terms of (116) can be combined to give

ktapt= ; [ (at+3)W Jas (),

where ao(0)=#. We can also combine the two terms of
(116) for general M in the following manner.
If M is a positive half-integer, we have

[(at+37+1)
ktat=Y -
7 T(at—3T+1)

and a¢;(f)=0for J=1,3, -+ -, 2M —2. If M is a positive
integer, then we have

(EW)7as@)  (117)

(4T +1)
7 T(aE—J+1)

with the extra condition as(f)=as,_(¢) for J<M.

It is misleading to think of (116) as a simple param-
etrization for the trajectories in term of the coefficients
as(?). First, (116)-(118) are highly nonlinear implicit
equations for a;* which must be solved by iteration.
The explicit form for ax*, which is given by Bronzan, is
much more complicated in appearance. Second, even if
one has an explicit expansion for a;*, the coefficients
may blow up.

As an example of this second problem, let us consider
the top two trajectories for the case M =0:

ktapt= tYar . (t), (118)
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ao(t)=ao(t), (119)
14-01(8) = ao(t) k[ 201 (t) + k41 TJtas (£)
=ao(t)+2[en()+1]Jtas (1),
14a1(t) =ae(t)/[1—2ta1(8)]. (120)

We should not consider (120) to be a parametrization of
a1(?) in terms of ag(#) and a4(7), since there are the follow-
ing constraints on @(f), which cannot be ignored. When
ao(?) goes through zero, we see that fa:() =% if the tra-
jectories are nonparallel. Similarly, when «;(f) = —1, we
must have a;(f) = . For the pion trajectory, it is likely
that the first daughter goes through «;(t)=—1 quite
close to {=0. It would thus be a mistake to consider
a1(f) as a smoothly varying function near ¢=0.

Just as the dynamic coefficient a,(f) in (120) is not
completely free, we can also see that the coefficients in
the expansion of the vertex must also be constrained.
The vertex is constrained to give the correct sense-
nonsense behavior when oy is an integer. In addition,
the coefficients in (107) must be constrained to cancel
singularities due to the “parallel-breaking” factor in
(106).

In conclusion, we would like to present our main for-
mula for the most general Regge residue (106), and (107)
in an altered form. If we use the results of the previous
section to expand the 6-j symbol of (107), we finally get

k S
Bkski(t)E Z Z [dakis)\aki-‘-k‘k,’Ml((ﬁ):l:naﬁc(—)Sﬂudakisﬂ}\akﬂﬂ_k—k"ﬂl,(¢)]
S

k=0 M’'=—

[r(aki+M+1)r(aki~M'+1)]<M—M'>/2IM—M'I[ BT (2out+2+2)
(k—

D(at+M'+1)T (et —M+1)

1/2

k')!I‘(Qaki’—l—k—k'—!—Z):l
dA* (e, )
X[l—————

—1/2
] Qpa (DUIM=MIEED 2 (121)
daki
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APPENDIX

In this appendix we shall examine the brute-force expansion of the i-channel amplitude (8) for the case of unequal
masses and parallel trajectories. The amplitude with A= —N =2/ is particularly simple to analyze, since the discus-
sion near (13) and (14) showed that Ts_y, su and T'g a,s—n are the only helicity amplitudes that have the full
Regge behavior. For other values of A and )\, the scattering amplitude has extra factors of / or s~

The scattering amplitude (8) can be written as

Ts—a,su=2 Bt Dar_p®(z,) (—) (1 +71ei™ @) /sina(ag—1)
%

where

Bian(t) =[Brsnt()Besxt(t) —Brsn— (@) Brax=(t) Jio,
/l—z J 2
——) F<—J+M, —J—M, —2J, ——)
PU+MA)TI—M+D\ 2
1—z t(-—s-i—u)—}—A(t,a,c)A(t,b,d)—A(O,a,c)A(O,b,d)_

T'(2J+1)eim7—20
D_MMJ(Z) =

(A1)
(A2)

(A3)

1—z

2 A(t,a,0)A(,D,d)

=IS. (A4)
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We see that S is regular near =0 in the unequal-mass
case, since

Aa,)={[t—(M.+M)*][t1—(Ma—M)* ]} 12 (AS)
Combining (A1) and (A3) gives
Ts—m,sum
={0P % (=)*T (= —M)T (—a~+M) (1S)
2
xp<~ak+M, — =M, —2a, l_z) /
XT'(—2a3)27 cosm(ar—M), (A6)

where &= 7+4-¢~i"(@0—2), We now expand the hypergeo-
metric function

P © _
2 Brarnu(t1S)*: (=)

Touy=———""—""—"—
27 cosm(ag—M) k=0

(M —ap+)T(—M —ap+J)

- — (A7)
JIT(—2a,+J)(18)7
=<I>S“°I‘(M—ao)§ cr@S)—7 éo Brearar(—)¥
XTQao—J —k+1)/(J—F)!, (AS8)

where J=J-+k and

cjg= I‘(Olo-M-l—l)
X[al(ao+M —JT+1)T(e—M —J+1) 1.

The summation over £ must give a result that is able to
cancel the factor /. That is, we must have

¢y i B(—)*T'Qag—J —k+1)/(J—F)!=as(®)t7, (A9)

k=0

where a;(f) is analytic at £=0.

If we examine the nth derivative of both sides of
(A9), we arrive at the condition used in Sec. V: The
first #—1 derivatives of the nth residue are determined,
while the higher derivatives are free.

The combinatorial identity

T'(2ag—J —k4+1) (=)~ 20— 2k'+1)
T (=R —T) T (Qag—k —T+2)

(A10)

.—:akkr

allows us to solve (A9) for B(f):

- aJ,r(t)tJ
Bi(t) =Qau+1) 20
7 (k=I)IIQag—k—J+2)

= (Zak—{— I)Ek !I‘(Zao—k—f—2)]—1fk,r(t) ’

(A11)
where

aJ_r(t)=aJ(t)/CJ (A12)

and f;,(#) is the function discussed in Sec. VII. We
have chosen a;(f) in such a way that (A8) can be
written as :

T_MM=¢F(M—OZQ($))Z aJ(t)S“O_’. (A13)
J

The form of (A13) shows that 7_rx has the desired
analytic properties and also shows the role of the dy-
namical coefficient as(f).

The expansion in (A13) will have a pole when-
ever ap=M+2n+¢ for n=0, 1, 2, ---, and where
£=1[1—(—)M-77]. Also, (A13) gives zeros at cp=M
—2n—1+4¢, wheren=1, 2, - - -. These are the character-
istics of the sense-choosing mechanism. Other ghost-
eliminating mechanisms can be obtained by modifying
the factors in ¢;.

We will now obtain the factored residue Brsa* from
(A11). However, we see in (A2) that 8, cannot be simply
factorized. In order to separate Bis* from Bren™, we
must examine Tg y,sn in addition to T'ss—u,sar. This
allows us to find Brar—z. 141

BkM—M = ﬂa'ﬁc(_)s“"

X Brs 1 Brsu™+Brs s Brsa ).  (Al4)

These results can be applied to elastic scattering
(Mo=M,., My=M,), where, by combining Bisrsu and
Brar—u, we are able to determine 8zg3+ and Brsy—. The
results are in agreement with (86), which serves to
verify the correctness of the analytic continuations used
in Sec. IV.

Once the residues for the parallel-trajectory case have
been determined, the extension to nonparallel trajec-
tories is straightforward. The discussion of Sec. VI con-
cerning nonparallel trajectories applies to the brute-
force method as well as to the method involving the
Lorentz-group sum rule.

The main limitation of the brute-force method is that
it does not have the proper behavior at pseudothreshold
even for the case S=0. This means that the unequal-
mass case does not go smoothly to the equal-mass case.
The residues given by (86), on the other hand, are valid
for all mass configurations.



