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TABLE II. Self-consistent p parameters for Veneziano and Veneziano-Regge models, with the indicated values of E, as a function
of the width of the e included in the input force. 100% 6 means an e width 4-, times that of the p, corresponding to the retention
of only a single Veneziano term in Eq. (3). Vnits and notation are the same as in Table I. Errors, where shown, indicate an appreciable
range of values yielding equally satisfactory self-consistency. For 100'P& e, there are two somewhat diferent solutions, as explained in
the text; the first is preferred to some extent by the criteria of Refs. 7 and 9.
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100'%%uo e, i.e., with y&
——0 and only a single Veneziano

term retained in Eq. (3), yields results in excellent
agreement with the experimental parameters of the p,
although, as mentioned above, there is some uncertainty
in the theoretical value for the p width. Vhth N=4,
if p& is chosen so as to significantly reduce the e width
from the value for a single Veneziano term, then the
results in Table II indicate that the bootstrap value for

the mass is slightly reduced, and the value for the width
becomes appreciably too narrow. For Ã =20, the
results are in reasonable agreement with experiment
throughout the range of e widths investigated for both
the Veneziano and Veneziano-Regge cases. They are
still perfectly consistent with keeping only one Venezi-
ano term, and, in fact, doing so gives a theoretical mass
in somewhat better agreement with experiment.
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A parametrization for Regge vertices is presented. These vertices have the most general t dependence
consistent with constraints at t= 0 and pseudothresholds, and are valid for general spins and general masses
and for nonparallel trajectories. The assumptions upon which this work is based are analyticity, crossing
symmetry, factorization (unitarity), and Regge asymptotic behavior. In the unequal-mass case, we Qnd
that the general Regge vertex has a particularly simple expansion around t= 0.

I. INTRODUCTION

'HE problem of constructing a Regge expansion
that has the proper kinematic singularities (the

conspiracy problem) has received much attention during
the last two years. ' One reason why so much work has
been expended by so many people is that different cases
have been treated separately. The equal-mass case' '
was thought to be entirely separate from the unequal-
mass case, ~7 daughters separate from conspirators.

' M. Toiler, Nuovo Cimento 53, 671 (1968).' G. Cosenza, A. Sciarrino, and M. Toiler, Nuovo Cimento 57A,
253 (1968).' D. Z. Freedman and J.M. Wang, Phys. Rev. 160, 1560 (1967).

4 M. I . Goldberger, M. T. Grisaru, S. W. MacDowell, and D. Y.
Wong, Phys. Rev. 120, 2250 (1960).

5 G. Domokos and P. Suranyi, Nuovo Cimento 56A, 445 (1968);
57A, 81.3 (1968); G. Domokos and G. L. Tindle, Phys. Rev. 165,
1906 (1968).

Some authors consider only low value of spin and.
Lorentz number M, others only consider residues for
the parent and 6rst daughter, or only the most singular
parts of the residue. The approaches range from elegant
group theory, "' which makes use of special symmetries
at I,=0, through techniques using Feynman diagrams
or Bethe-Salpeter models, '" and 6nally brute-force

'D. Z. Freedman and J. M. Wang, Phys. Rev. 183, 1396
(1967}.' L. Jones, Phys. Rev. 163, 1523 (1967); 163 1330 (1967) ~ S
Frautschi and L. Jones, ibid. 164, 1918 (1967).

8 J. F. Boyce, R. Delbourgo, A. Salam, and J. Strathdee,
Trieste Report No. IC/67/9 (unpublished); A. Salam and J.
Strathdee, Trieste Report No. IC/68/31 (unpublished).

9 R. F. Sawyer, Phys. Rev. 167, 1372 (1968).» W. R. Frazer, H. M. Lipinski, and D. R. Snider, Phys. Rev.
174, 1932 (1968); W. R. Frazer, F. R. Halpern, H. M. Lipinski,
and D. R. Snider, iNd 176, 2047 (1968.).
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techniques in which analyticity is enforced term by
term. " '4

We have previously presented a formalism' that is
able to treat the Regge vertex Psst(t) for the parallel-
trajectory case in a manner that is independent of ex-
ternal masses and spin, and that handles the nonleading
pieces of the vertex in a general way. In the present work
we shall discuss this formalism in some detail and, in

addition, shall extend our solution to the nonparallel
case.

Qur basic assumptions are the same as those of the
"brute-force" school" ":Regge expansion, factoriza-
tion of residues, analyticity, and crossing symmetry.
We shall, however, make important use of certain group-
theory identities, in order to demonstrate that our gen-
eral expansion satis6es the analyticity constraints.

In Sec. II we set up the problem and discuss our nota-
tion. The consequences of parity and charge-conjuga-
tion symmetry will be discussed. We also point out the
connections of the spin basis 5, X with the Breit-frame
multipole expansion. We finally present some rough
arguments to justify the introduction of daughter tra-
jectories and the Lorentz number 3f.

In Sec. III we discuss the basic building block of our
formalism —a nongeneral form for the residue, which
satisfies the constraints at t =0 and pseudothreshold, but
which does not have the most general nonleading be-
havior. The main group-theory identity is introduced in
this section.

In Sec. IV we generalize the expansion of Sec. III, so
that away from t=O, the vertices for daughter trajec-
tories are no longer determined once the parent vertex
is given. The formalism of this section applies to general
spins and masses, including the often-neglected case in

which S&3f. It is quite possible that the results of this
section are the same as the recent results of Cosenza,
Sciarrino, and Toiler, '6 though expressed through a
diferent type of expansion. As will be shown in Sec. V,
our expansion has the advantage that it leads to a simple
Taylor expansion for the vertex. That is, the residue will

be shown to have a simple expansion in powers of t once
the solution is known at /=O.

In Sec. VI we show that the previous results can be
easily generalized to the case of nonparallel trajec-
tories. '~ A straightforward proof is given for the tra-
jectory formula that has been given by Sronzan. '

"L.Jones and H. Shepard, Phys. Rev. 175, 2117 {1968).
'2 P. DiVecchia and F. Drago, Phys. Letters 2?B, 387 (1968);

Nuovo Cimento 61, 421 (1969).
'3 J. B. Bronzan, C. E. Jones, and P. K. Kuo, Phys. Rev. 175,

2200 (1968).
'4 J. H. Weis, Phys. Rev. 1?5, 1822 (1968); 184, 1527 (1969).
r' S. Kiein, Ciaremont Report, 1968 (unpublished); Bull. Am.

Phys. Soc. 13, 663 (1968).
'6 G. Cosenza, A. Sciarrino, and M. Toiler, CERN Report No.

Th.906, $968 (unpublished).
'~ I would like to thank L. Durand for emphasizing that the

nonparallel case is not quite as straightforward as I had originally
thought.

"G. Domokos, S. Kovesi-D&mokos, and P. Suranyi, Nuovo
Cimento 56, 233 (1968),

In the Appendix we outline the brute-force method
for the unequal-mass case. The brute-force method
verifies that our expansion is indeed the most general
expansion consistent with analyticity and factorization.

The main result of our approach is the formula given
in (121) for the most general Regge vertex and in (116)
for the most general trajectory. The expansion around
t =0, as given in (89) for the unequal-mass case, extends
Bronzan's residue formula to general spins.

We shall extend our formalism to cover thresholds,
nonsense factors, and simpli6ed equal-mass residues in
a future paper.

II. GENERAL FORMALISM

The basic object of our concern is the t-channel c.m.
helicity amplitude T&,,z„z,z, (8&) as defined by Jacob and
Wick." It will be convenient for us to combine the
helicity indices with Clebsch-Gordan coefficients as
follows:

)(( (SsggS ~ gs /san )( ) c "c+ e—(1)—
The phase factor is needed because of our use of the
Jacob-Wick "backwards-particle" convention. The
spins 5 and S' should not be confused with the t-channel
spins Ldefined without the phase (—) ~'+ " "'j which
are convenient for describing the t-channel threshold
behavior. Rather, the spins S and 5' are convenient for
describing the behavior near t=0 and pseudothresholds.

I et us now assume that the amplitude has a Regge
asymptotic expansion:

&s z, ax P8 v "t(&)Psx 't(&)Du (8~)

&& (1+re ' )/sinvrn. (2)

The function Dzz (8) is the analytic continuation of the
rotation matrix diaz ~(8) that has the asymptotic be-
havior Dqq. (8) (cos8) even for n( ——,'."

We shall not attempt to justify (2) except to say that
it is largely motivated by the unitarity conditions. A
Regge trajectory is characterized by its spin 0,, signature
r, normality o, and charge conjugation $.

Normality is defined for external particles as 0-

= ri, (—)s' "~, where ri is the intrinsic parity, and where
v=2 for fermions and v =0 for bosons. For a Regge tra-
jectory this definition must be altered, since the "spin"
becomes complex. The normality of a trajectory is given
by 0.=pv. , where z is the intrinsic parity of the particles
on the trajectory. The main significance of 0. for our
purposes is shown in the following relation, which sum-
marizes the consequence of the invariance of strong in-

"j.& &ronzan, Phys. Rev. 178, 2302 (1969);180, 1423 (1969);
181, 2111 (1969).

M. Jacob and G. C. Wick, Ann. Phys. {N.Y.) /, 404 {1959).
2'Bateman Manuscript Project, Higher Trcnscendenta/ Func-

tions, edited by A. Erdelyi (McGraw-Hill Book Co., New York,
1953).
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teractions under a mirror reRection' ":

$=G(—)' if B= F =0
= (—)'—rf' if 8~0 or I'WO, (4)

where 8 is the baryon number, V is the hypercharge,
and G is the G parity of a particle ((=C for a neutral
particle).

If we use invariance under charge conjugation in the
case 8= V=O, or invariance under exchange of iden-
tical particles in the case 8/0 or V@0, then we can
derive the identity

&»"(&)= rk( —)' '&» "'(&).

This relation implies that a Regge trajectory can couple
to two like particles only if ( )s

"=or&I.

—
tt is interesting to note that the parameters S and 0.

have a special significance. The residue Ps&,
' given by

Psg =—P Pi.g,(t)(—) " {C(SQ,S; X,—X,X)

(—)s—vC(S& S )(,—)(,—X)) (6)

is exactly the Breit-frame multipole vertex de6ned by
Durand, De Celles, and Marr. ""The t-channel c'.m.
frame of particles a and c becomes the Breit frame when
one replaces the incoming particle c with an outgoing
antiparticle. The phase factor (—)s i in (6) is canceled
by this replacement rule.

To show the correspondence with multipole vertices,
let us consider the DEp couplings. As the A has two pos-
sible helicities, and the p has three possible helicities,
the total number of couplings must be six (if we allow
the p to have both parities). The multipole moments for

p exchange are given by

pi, i+ magnetic dipole, Po, i+ electric quadrupole,
Pz, z electric dipole, Ps, z

—magnetic quadrupole,
Pi, o longitudinal dipole, Ps, o+ longitudinal quadrupole.

The subscripts S,'A refer to the 0Ã system, and 0 is the
parity of the p. The p found in nature has 0 = 1.Ke have
an (electric, magnetic) multipole for g, 1,o (v—)s "
= (+1 —1)

"L.Durand, P. C. De Celles, and R. B.Marr, Phys. Rev. 126,
188' (&962).

vv L. Jones, Phys. Rev. 163, 1530 (1967).

J3 '(1)= . .(—)' "P — (1)

where r7,
=—r1,( )—'s', so that ran=1 for an antiproton. We

are led to use this unusual convention for parity be-
cause the backwards-particle convention in (3) leads to
an extra minus sign if the backwards particle is a
fermion.

The quantum number $ is relevant when the Regge
trajectory is coupled to like particles. %e define like
particles to be either a particle-antiparticle pair or two
identical particles.

We shall follow Toiler' in defining f:

~s ~,si,=Z Pss»+Pssi+Du ""(~s)
k

]+rSe—v'vv(vvv+ —v)

sinn-(as+ —s)
—(term with o = —1), (7)

where k labels the 4th daughter. We have placed a
minus sign in front of P P merely for future conve-
nience. We could have used a plus sign and multiplied P
by Q(—1).In addition, (7) does not commit us to have
trajectories of both parities, since we could have P =0.

From (3) we can determine the signature of the
daughters by the following considerations. If the6rst
daughter is to help cancel unwanted singularities arising
from the parent trajectory, then the term with k = 1
must have the same phase near t=0 as does the parent.
The unitarity relation can be used to show that the
ratio of residues

Pos z P'~si'/Pos i 'icosi'

is a real analytic function. Since these residues do not
allow for any relative phase factors, we 6nd that we
must have r~= —~0 in order for the phase factor
1+roe ' ( ' "& to be unchanged. The same argument
can be extended to higher daughters, giving the results

Freedman and Wang, following a suggestion by
Mandelstam, were the 6rst to show that if 3f &3E,
and/or M &AM& (either the UU (unequal-mass-
unequal-mass) or the ZU (equal-mass —unequal-mass)
casej, then each leading Regge pole must be associated.
with an infinite number of daughter poles in order to
guarantee the proper analyticity at t=0. Freedman and
Wang showed that at t=O the trajectories must be in-
tegrally spaced. In order to have the daughters contrib-
ute to the same processes, we shall require all daugh-
ters to have the same isotopic spin, hypercharge, and
baryon number. The dependence of charge conjugation
$ on the daughter number k is more subtle. This is be-
cause the charge-conjugation selection rule involves the
helicity of the state and the signature of the trajectory.
In order to satisfy the constraints the odd daughters
must decouple at t =0.This condition is only compatible
with $z= $o. Thus if the parent trajectory has a normal
charge conjugation (—)~, then the odd daughters must
have an abnormal charge conjugation (—)~+'.

%e shall find that in order to have the proper ana-
lyticity at t=0, it may be necessary for the parent tra-
jectory to be doubled, with the two trajectories having
opposite parities )labeled by ns'(1)$. In the case of a
single parent (which only occurs for certain boson
trajectories), all daughters must have the same nor-
mality o- in order for them all to contribute to a process
involving the scattering of scalar unequal-mass particles.

According to our preceding arguments, the helicity
amplitude should have an expansion of the form
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In Secs. III—V we make the drastic assumption that
all trajectories are integrally spaced. This assumption
seems to disagree with the real world, where particles of
a given mass seem to have a unique spin, but we are for-
saking the real world because the assumption ns'(t)
=ns(t) —k allows a considerable simpli6cation in our
treatment of the problem. In Sec. VI we discuss how our
formalism can be modified to give expansions for res-
idues and trajectories in the m022Purallel case.

The assumption of parallel trajectories allows (7) to
be written as

M =Sf„MI,=Sf&, we note that t; =0 and the analy-
ticity constraint is still given by (9).

In order to guarantee this analyticity, we must in-
troduce an extra quantum number 3f. The need for this
quantum number can be crudely seen as follows. To
highest order in s, Eq. (9) becomes

(12)

However, by crossing (8) to the s channel and invoking
parity conservation, it becomes apparent that the s-
channel amplitude must be of the form'7

Ts'x'sx

where

e—A (a—. v)

Q $'g Sgd( ') PS S' X'P2SX—
sinn. (n —v)

+r).rt. (—)' "PsS ~AS ~)D~~""(t)~)(—)', (g)

ps''= pssx+—~rt.8.( )' "ps—s ),

S........,-L~....(t)v.,;(t)
+7-..—..(t)7-.,—.,(t)3s" (13)

In order to get (13),we have made use of our limitation
that not more than two trajectories have the same o.I,.
If (12) and (13) are to be compatible, then 7(t) must
have the following behavior:

The question to which we are addressing ourselves in
this paper can now be asked: What is the most general
expansion of Ps+&, (t) that does not violate the analyticity
constraints at t =0 and pseudothresholds?

These constraints are easily expressed in terms of the
s-channel c.rn. helicity amplitude for the process Ob ~
cd. We shall now state our analyticity assumption. We
assume that the s-channel amplitude has the following
dominant behavior for small t and large s24:

(9)

where p=—p~ —
p&, p'=—p ~

—p~. Note that the combination
of helicities in the definition of p is the combination
relevant to the t-channel reaction. The factor t—t;„
vanishes on the boundary of the physical region and is
necessary because of angular momentum conservation.
This factor is also motivated by the helicity crossing
matrices. ""We 6nd that t~;„ is given by

(pa gs)2 (ps ps)2
= fM.'—M.'—M s2+M~2

—Lh(s, a,b) —d (s,c,d) js}/4s
= —(M 2 —M )(Ms —Ma )/s

(M +M—,'-M. ' —M.2)

&& (M, 'M s' —M,2Md')/s'+0(s '), (10)

y„.„,(t) y„.„,(t)6&—

&".(t)-v....(t)t "' (14)

where p is an arbitrary function that is analytic at t=0,
and M t2 is an integ—er (in order to have analyticity at
t =0)

We see that a Regge trajectory gives a nonzero con-
tribution to the s-channel c.m. amplitude at t=Q only
when the spin Rip p is equal to M. '5

We have found so far that the trajectory is charac-
terized by the parameters (rs(t), M, 0, r, and P. The
Regge residue involves the coupling of the trajectory to
two external particles. Thus the residue depends not
only on all the parameters of the trajectory, but also on
the parameters of the external particles. Whenever pos-
sible, we shall omit most of the parameters and simply
write the residue as Psst.

GI. LEADING BEHAVIOR OF RESIDUE

In this section we shall demonstrate our methods by
investigating the following nongeneral form for the
residue, which was also discussed by Sitar and Tindle":

PSST =dasSX (4(a) p
'

Pss'l" (toss'x' (4'tb) q

where

p,'= A(s, (s,b)/2s'" where 22=—(rs(t) and

~(...,b)=~L.-(M.+M )'3L -(M.—M )'j}'". (11)

sinh(t ~,=p, '/M =h(t, a,c)/2tr(2M„

sinyh, sP/Mss D(t, b,d)/2t'"Ms. ——(16)

Thus the analyticity constraint for the case M,&3f,
and/or Ms&Md is simply the requirement that the
s-channel c.m. helicity amplitude should be analytic at
t=0, thresholds, and pseudothresholds. In the case

24 H. Stapp, Phys. Rev. 160, 1251 (1967).
» L. L. +lang, Phys. Rev. 142, 1187 (1966).
2~ G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.

(N. Y.) 46, 239 (1968); G. Fox, Ph.D. thesis, Cambridge Uni-
versity, 1967 (unpublished).

The function d, sz"~(p) has been widely discussed by
many people. ' ' ' It is dined as the representation of
a boost that takes particle u from rest to momentum
p, ' in the s direction:

&4x dss x"~(P)—= (rIMs'x'
I
e—~*eI 22M'). (17)

2' G. Fox and E. Leader, Phys. Rev. Letters 18, 628 (1967); 18,
766(E) (1967)."K.Sitar and G. L. Tindle, Phys. Rev. 175, 1835 (1968).
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The states
I tbMSX) are basis states of the homogeneous

Lorentz group. If m is an integer, then we have

d ~
" (y) =P C(J JM; tt tt h)

XC(JpJM'; ttt+tt X)e&a+ &-'t', (l8)

with J++J =e, J+ J=—M.
We have obtained (18) by making use of the following

properties of the homogeneous Lorentz group:

IttMS~)=Z
I J+t+ J t )C(-J+-J~'t+t -~)

(J+'t+'I &"*'IJ+t+) =&""b~,~ b. ~

(J t I~~~—'~I —J t )=e—"—db~ ~ bn a--
We shall need to know d q),

"~ for the case in which
e—3E is an integer, but of much greater interest is the
case in which we allow I (but not M) to become com-
plex. There are three cases for which we would like to
have expansions for d sb"~(hatt): (1) u is an integer; (2)
n —n is an integer and coshttt —b 0; and (3) tt n is an-

integer and cosh' —b ~. These expansions have ap-
peared various times in the literature, ' "and there is no
need to repeat them here. In Sec. V we shall, however,
examine the expansion for case (3) in some detail.

The reason we have written (15) is ttot because of any
group-theoretic arguments about the symmetry of the
scattering amplitude near 1=0. Rather, we are led to
investigate (15) because of the following sum rule:

P d.,S b "~(—4 tb) db b b(~t)d.bSb™(4t.)
k=0

X,)d, ,„- g„.)d,„(x.), (19)

where X, and Xq turn out to be the Trueman-Wick cross-
ing angles for particles a and b from the t-channel c.m.
system to the s-channel c.m. system, and @b, is the boost
angle from the frame in which particle a is at rest to the
frame in which b is at rest:

coshtttba = (—s+M '+M b')/2MaM b. (20)

The derivation of (19) for integral tt is straight-
forward. We simply sandwich the Lorentz-transforma-
tion identity"

Bitar and Tindle claim to have derived (19) by using
Carlson's theorem and the analytic continuations of
Salam. An alternative justification of (19) is given by
the brute-force expansion discussed in the Appendix.

In order to check whether the choice of residue given
by (15) has the proper behavior at t=0 and pseudo-
thresholds, we must examine the amplitude when
crossed to the s-channel c.m. system. The crossing for-
mula has been given by Trueman and Wick" and by
Muzinich3'.

Sc'd' a'b' =~ Q Tbd acdaa' (Xa)dbb'
abed

X (Xb)d, Sc(Xc)ddd, d(Xd) (22)

The (&) phase ambiguity is of no importance to us, and
we shall simplify our formulas by ignoring such over-all
phases. The crossing angles are given by

(s+M, ' —M b') (t+M '—M, ') —2M, 'tcb

cosX~ =—
A(s, a,b) A(t, a,c)

cosxb = +Ltt ~ b, c ~ d$,

cos&, =+I a &-+ c, b &-+ d],
cos&d= —

I

hatt

—b d, b++cj, -

(23)

where 6 =M ' —Mb' —M '+Md'. Our choice of phases
for the crossing angles is motivated by (21).

When we combine (15), (22), (1), and (8), we get

+~Id/ ~l Qt

1+rS—tzr(n —v)

Lobed( —)' "
Sintr(tb —tt) bbV, abed

Xdn bS'—b' (+tt't—b)dn —bSb (tt ta)

+'Patte( ) "dn—tcS'—b' (+ttttb)dn —bSb (tttta)]

XDb b" "(ttt)(—)"C(S.S,S; tt —cZ)

XC(SbSdS; b dX )d, s.(X )d„,sb(x, )

Xd ~ (X,)dd„. (Xd), (24)

where we have use the symmetry property"

dn —bSb (tata) =dn —bS—b" (tt ta) (25)
S+&zdtbd z&vetS ~z-dta Sz&vttcd —rrz@baS t&vxa —(21) By using another symmetry property of the boost

functionsbetween the basis states
I
ttMSX) and (ttMSV

Upon inserting a complete set of basis states between
the boost and rotation operators, we obtain (19). The
summation over k stops at 0 =e—M.

If tb becomes complex, then (19) is more di%cult to
justify. The main problem is the question whether the
states IttMn —B) with k=0, . , ~ form a complete
basis. A second question is how to continue analytically

~, dn —I 8)",and d Bs )"

d-»™(4)= (—) 'd. s,—." (—4) (26)

and the analytic continuation of (19), we can immedi-
ately carry out the sum over k:

P "n—b, S,—b" (ctttb)Db &,
" '(&t)dn —b, Sb" (tttta)( —)

s'n&n+s & p db, s ( xb)Ds s.n'br(ctt, b)d, bs(x ), (27)

"T.I . Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 332
S. Iaein, Ph.D. thesis, Brandeis University, 1967 (unpub- (1964).

lished). "I. J. Muzinich, J. Math. Phys. 5, 1481 (1964).
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where Ds sz"M is the analytic continuation of ds sz"M
that has the same asymptotic behavior as Dq q"(8). The
sum over the helicity indices is also straightforward,
with the following Clebsch-Gordan identity":

P C(S.S,S; a —cZ)d. (X.)d.. '(X.)d,&s(—X.)

=C(S~,S; a' —"'.)d;;s (x.+x,). (28)

The final result is

cia(n —s)+r
S,s,,s= Q C(SQ,S; a —c'p)

sin7r(rs —t)) /

XC(SsSsS'; b —d'p) d, , s'( x,+ x)

Xd. ."("+X)L~.—.(-)'- D-.- (~")

+..—.(-)'- D-.™(~.)& (29)

One can sh()w that sints(X, +X,) has the behavior

sin-,'(X/+X/)- {(t—t~;,)/t t—(M.+M,)sj}"' (30)

by using (23) and the identity sin(8+8') =cos8 sin8'
+sin8 cos8'. Since cos—',(X,+X,) and sin-,'(X,+X,) are
well behaved at t=0 and pseudothreshold (they do not
blow up), so too must be the function d„.S (X,+X,). It
is now easy to check that S,q, ,q does not violate the
analytic behavior that was assumed in (9).

The asymptotic behavior of (29) as s —+~ can be de-
termined by using (30) and

D, nM(y )~&n IM sI— —

where t; is given by (10). Thus we get

~in (n—y)

Q C(SQ,S; a —c'p")
sin7t- e—v

XC(S++~; b d'//") (t t;„)(I w"—vl—+Is"—v'I) /s

X(sn—IM—P"I+ sn IM+P" I)
—
(32)

where tr =a c, p=b=d, —and q=g, ps' gs( )—
s" behavior is given by

SAr(n —e)+&
~c~,it- s

sin% (/s 'v)

Xft (I M—y I+1M—v'I )/s+ r/t (I M+( I+ I M+~' I ) /s j (33)

The singularity structure given by (32) is consistent
with the expected kinematic singularities of the s-
channel amplitude, shown in (9). The discussion follow-
ing (12) shows that (32) and (33) have exactly the de-
sired asymptotic behavior.

"A. R. Edmonds, A.ngular Momentum in„'Quantum Mechanics
(Princeton University Press, Princeton, N. J., 195/).

Pss) (t) = g g dn —/, sx" '' '(Pa)
It'=0 M'=—S J' J' e—k

X ass M (t), (35)

where
J~= ,'(Na-M), J~'=-,'(/s —k'aM'),

J=-,'(k'+ iIM —M'll),

and where {} is a 6-j symbol defined by Edmonds. "
We can show that (35) is the most general expansion

of Pzs), (t) for arbitrary t, by expressing as/, M. (t) in
terms of P/, s),. In order to invert (35), it is convenient to
use the following expression for d„qs)," s

,
M'(g, ):

d, s) "M'(4.) =C,~C' „sM (t)dM ) s(X."), (36)

sinhP, =P,/M, = (sinhX, ")—',
C.„=P(—) I (,+l +1)1( .—y+ 1)j /,

) t'/sM. q-.
C.,SM '(') =

I I I
kA(t, a,b)l

—(2S+1)I'(a,+Mg1) I (&„—M+ 1)-)/s
X

I'(2(rs+1)r (n„+S+1)I'(rr, —S+1)
We have obtained (36) by comparing the s" pieces on
both sides of (19). The angle X," is the limit of the
crossing angle X as s —+~.

Since the summation n —k' in (35) is bounded by k,
we expect that we can solve for ass M in terms of Pqs),
with k&k'. Let us assume, for example, that asI, M is
known for k'(k. We must show that we can find
assM(t). We can write (35) as

I —1 S
P/s)(t) = 2 2 dn —s, s)" ' '(p)

k'=0 M'=—8

J,' J' ~—k
X J J+ J ask'M'(t)+Cnsx Q CaI sM'(t)

Mt=—S

J+' J ' e—k
XdM ) s(X) J J+ J assM'(t) ~

IV. GENERALIZED k DEPENDENCE

In the previous section we demonstrated that if we
choose

Pks) (t) =d —ss)" (4'/ )as(") (34)

then the scattering amplitude satisfies the analyticity
constraints. However, (34) has an important deficiency:
It is not the most general function that satisfies the con-
straints. That is, the k and l), dependence of Pqs), (t) is
severely constrained. Once the residue for k=A. =O is
known, (34) gives the residue for all other values of k
and lt. In this section we shall modify (34) to allow for
the most general k dependence and A. dependence.

The most general expansion of P&s),(t) is given by
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We can now solve for as),~(t):
J' J' e—k+

us) )L(t (t) = CnasMt J- J+
S

X g C. i 'd)~'( —x)

J" J// e—k
X ss) ')(I"(t)

k—1 S
X P~s), (t) —2 5 d- ., s)," '~"

I'=o m ~=—S

We can use a permuted form of the main sum rule (19)
to carry out the sum over X":

2 D) )
" '(III)d -)Sx"""~"(4I)d),"n"s(& )

=Q & -).r. ) ""~"(+PI()
LI

X~), ~'(X()DI, s,"""~"(y.(,) . (4O)

The summation over I' extends from I.'=M" to
L'=+~. However, the k summation will restrict L'
to a 6nite range, as we shall soon see.

The summation over k is

It is apparent that the expansion (35) completely
spans the k, ) space, since the inversion is nonsingular,
except possibly at points where e—M is an integer. Ke
shall examine the behavior of the residue at these non-
sense points in a future paper.

It will be useful for us to express the residue in an
owercomP/etc expansion:

P) Si(t) = g dn ),S),
""-"(Itlln)

~I/~II Jfi

G) =P(E Is):"'~'( yI()d—. )r:), ""~"QI(,)
I(:

J+' J-' J // J //

(41)

This summation can be carried out if we use (18) and
(26) to express d is),""~".The k-dependent pieces of
the summation (41) are

Q C(J+'J ' n k; tl, p')I, 'X')C—(J+"J "n—k; p+"tl, "X')
J+" J" n —k

X J J+ J"
Pis) (t)= P d Is) —"'

, '(Itll()

(iIl ir ttjtt St(t)t
(37)

J+' J ' e—k J+" J // e—k
X J J+ J' J J+

We now use the identity"

(42)

J+ J e—k
(tntt)It I'8'(t) I

J' e—k
C(J+'J '

n k; p+'p '—
A.') J J J/

J~'= —( i'&nM'). We should point out that k', k",
~

M"—M ), and
)
M' —M

~

are integers. The summation
over J' and J" is rot needed for completeness, but we
shall find it a useful extension. The statement that (37)
is overcomplete means that the functions can be ex-

panded in terms of the coefficients a ~ J"q but that
these coeKcients are not unique.

We shall now demonstrate that the analyticity con-
straint at t =0 is equivalent to the following condition
on the expansion coefficient:

gn"))f"J"S(t) ((' ))("Jn" S(t)t (38)

where Qn 3r J s(t) is a dynamical coefficient that is
analytic at t=0.

Our procedure is to examine the s-channel amplitude
just as was done in (24). From the discussion following

(24), we see that our main task will be to carry out the
following summation:

S, ,-= Q &, )'(—X()d.-),s), "'~'(—4I()

=(—)' EC(J+'J'J+;t+' ' ')

XC(J J'J ', r 'm'p ')C(J+J n —k, p~ltilp), (43)

where

c—( )J'+( ' +ALII' M)/2$(2 J +1)—(2J I—+ I)j
We shall henceforth drop the constant c, since it can be
absorbed into the dynamical coeKcient a„~ g.s of (37).

The sum over k in (42), which is one of the main steps
of our analysis, can now be done using the identity"

Q C(J~J n k; r+'r —'X')C(J~J n —k; r+"r "iV)

tt& $& ttt t, (45)

Now that the summation over k has been done we can
proceed to evaluate (41) and (1g):

C(Jp'J 'S'; p~l)ji '),)
p yl p gl I~l~)l 1

XC(J IIJ IILII. II II7 I)

J' J' e—k J// J" e—k
X J' J J+J J+

XD) )"" '(OI)d —~,s"x"""~"(4I)d)" S"(x )

(39)

Xc(P+ lt lt+"+n ")t)tl ltC—(J JJ—. I I I)+,' p+m r+g

XC(J J'J ";r 'm'I ")C(J "J'J;„«ml, I)

XC(J+J"J+",r~'m"tI+") . (46)
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The summation over p+' and p~" can be done, since We can finally write (39) as

p+I p —p+ +p
/ I I I / /I i I //=7+ 'fg T 5$ V+ m ~7 5$

= —2(m"+m') .

C(J~'J'J+,. p~'m'r~')C(JpJ"J~"; r+m"pp")

=QjC(J'J"J; m'm"m)C(Jp'JJ+", ppmp+')

J+.' J+" J
( )j+ly jig jI+/+ j&b

J+
X

J// J/

Xt (2J+1)(2J++1)]'', (48)

In order to simplify (46), we use the following rela-
tions

S„„"=Q bjjr, sC(JJJ; mOm)
L'JJm

Xe-- d -,"(X)C(5'JL'," p',-")
XDr, s,"" (y.b). (54)

S„I„»~(t—t~;~)~"

while the dominant behavior of (54) is

(55)

e2 jmsx4
P jSnlP l4 l(Xb) COS2 jmsx IP P l(Xb)]

X(cosh& b)"" ~~" &"~ (56)

We are now able to examine the behavior of the
s-channel amplitude in the vicinity of 3=0. The ex-
pected t dependence is given by (9):

m'm"
C(J'J"J; m'm"m)

cosh&, b
——( s+—M,' jMb2) /2M, Mb.

where J,„,„=J'+J"is the maximum value of J allowed

by (48). We need not worry about the last fa,ctor, since
it is independent of t:XC(J'J"J"';m'm"m) =4j ", (49)

Q C(Jp'J '5'; p+'p V)C(J~"J "L'; p+"p "X')

XC(J+'JJ+", p+'mp+")C(J "JJ '; p
"—mp ')

-J+' J ' S'
=Q C(JJJ; mOm)C(5'JL', X'OX')' J~" J " L'~

There are three possible mass cases to be considered:
(a) MbNMd. In this case cosXb is analytic at t=0,

while e«' f '".Thus

(57)

(b) Mb Md, M, 4M b.
——In this case e«b is analytic at

t=o, but cosxb~(3II '—M ')t ' s ' Thus

$, „~]—(J'+J") (58)

XL(2J '+1)(2J' "+1)]'" (50)

where the bracketed quantity is a 9-J coeKcient.
Upon neglecting constant factors, which can be ab-

sorbed into the coefFicient in (37), we arrive at

J' J II J J' J" J
bJJSL =

JII J/ J JII

-J+' J ' S'-

X- J+" J " I.' . (52)

All the manipulations since (41) have been made in

an eA'ort to extract the V dependence in a clean manner.
We have accomplished this in (51), so we are now able
to carry out the summation on V in (39):

d, „,s ( Xb)d„,~„i (X,)C(SIJL X~OZ).

Gb& Q bjjsli ~C(JJJ; mOre)
JJm

XC(5JL'; VOV)e '~«b (51)
where

(c) Mb Mj, Md M, . I——n this——case both e~&b and
cosx& are analytic at (=0, and we find

S~ ~"-d, ,«o'+ j—"(-,',~)-const,

whereas we expected t~&'—&"
~ ~'.

In all three cases we find that the amplitude is more
singular than it is allowed to be. Thus the residues (35)
require extra factors of t to restore the proper analytic-
ity. If J'+J")S'+S", then case (c) does not violate
analyticity as badly as cases (a) and (b). (There is no
violation in the case of spinless external particles. ) How-
ever, if an equal-mass channel is ever to couple to an
unequal-mass channel, then the damping factor of
3

'+ "is required.
Since the t-channel residues factorize, the damping

factor must be split between incoming and outgoing
channels. We have thus verified that the most general k
dependence in the residue is given by

Pbsx(t) = Z A—b si"" "g i~)
~r /~I/ J'//

J+" J" e—
kt

I't "sn"~r"r»s(t), (59)J- J+ J"
=C(5'JL'; p', p,

" p', p")d„„oj(&b).—(5,3) where a is analytic at t=0.
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J+' J '
O, A, J+ J nA,

J J+ J J J+

We have previously shown that the summation over By using Eq. (62.12) of Edmonds,
J" is redundant. In the next section we shall use this
redundancy to show that the 6-j symbols and d 8&"M

have expansions which mak. e these functions much
easier to handle.

V. SIMPLIFIED EXPANSION NEAR /=0

One of the main new results of our work so far is that
the Regge vertex can be written in the following over-
complete manner (the sum over J is redundant): 1 J' J+

J' J J
(64)J' J

PIcSX(t) Q dagS) (4')&J Ma'(t)
M', n', J

we can get the following recursion relation:

J' J' Ol,

X (60)J- J+ J
Jg J Qlt;

1+1
C2

where J~'= ~(e'&M'), J~——2(n+M). We achieve gen-
eral helicity dependence by the sum over M'. There are
two defects in this result which we would like to correct
in this section. First, (60) is in a form that discourages
practical applications, since the O(4) matrices and 6-j
symbols seem unnecessarily complicated to the person
who would merely like to know the first few terms of
the expansion for the 6rst few daughters. Second, when
we argued that (60) contained the most general k de-

pendence, we had to conjecture that certain sum rules
were still valid even after the angular momenta became
complex.

We shall remove these defects in this section by focus-
ing on the behavior near t =0 (that is, we shall ignore the
behavior at pseudothresholds). We shall show that the
vertex 8A, Bq for the case M QM, can be written in the
form

( ) i+cd =c4+ni, (n1,+1)c~, (66)

to write (65) as

J+. J QA,

J- J+ J
J+ J 0!Ic

J J+ J—1

J+ J (XA; J+ J
( ) ic+cy

J J+. J J J+

J+' J '
O.J,

c4, (65)J J+ J—1

where c; are coeffi.cients that are independent of k.
We can make use of Table 5 of Edmonds, which gives

P) s),(t) =
t"-i"—erik iF(2n +k+2)

—1/2 J+ J 0!g

X[c6nq(nq+1)+c7 j+ cq. (67)J- J+ J—2

-F(n +M+1)F(n l)+I)- (M—i)/2)M —xi By induction we can immediately get

I"(ni, +X+1)F (n), —M+1) J+.' J '
O.I,

Xfi, s) (t) (61) J J+

It turns out that (61) is valid even for 5(M.
The function f)...(t) is basic both to the discussion in

this section and to the nonparallel case, which will be
discussed in the next section. It is given by where

J+ J 0!Jc

J J+ J, ;

J—Jmin

c;[n~(ni, +1)7', (68)
i=0

f .(t) Q - tJ (t) (62)
™n~m~x[I I+' —I+ I, I

~-' —~-I j=k(k'+ IM™I ) .
J=o (k —J)!F(2n),+k —7+2) We can now write (64) as

where aJ, ;(t) is analytic at t =0.
As our first step in the derivation of (61), we must

consider the expansion of
where

ga(t) = J+ J 0!@

f~.'(t)J J+ J; (69)

J+ J

(Yacc

a~(t) = 2 t'~~(t).
J=0 J J+ J (63) fa,;(t) = Q ag(t)[n), (nA, +1)tj~.

J=O
(70)
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The easiest way to obtain the form (62) is to carry out
an argument by induction. We 6rst assume

fi, ;"(t)=p—aJ,1(t)[~i(~1+1)t&'
J=O

k!F(2n +k+2)
-a&,2(t)t'

z=o (k —J)!F(2ng+k —J+2)
(71)

for all E&EO.
Now examine the sum for No+1:

fr, r '+'= g ag, r(t)Lni(na+1)tf
J=O

+aN~1, 1(t)[ ~11(.1+1)tgNo+r. (72)
The identity

By combining (69), (63), and (60), we see that the
Regge vertex can be written as

J+ J GIe

PiS1(t) = p ifnOSin™(4) J J+ J;
Xt "fa.s3r' '(t) ~ (77)

The k dependence of fq, sir; is unnecessary (since
our expansion is overcomplete) and serves to remind us
that the residue can always be multiplied by a function
whose k dependence has the form fi...(t) without dis-
turbing the analyticity.

We can simplify (77) even further by expanding the
remaining 6-j symbol in terms of gamma functions.
Since J; =max([J~' —J~[,[J ' —J [}, we can use
(6.3.1) of Edmonds to write

J=O J=O

with the choice

cg ———n(n+1)+J(2n —J+1)
allows (72) to be written as

f No+1(t) f N(t)

No+1 No+1

g (ai(ai+1)+cz}= Q Lax(~1+1)j~c ' (73) t 'a
J+ J Ay

Jmin

k!F(2nq+ k+2) t"'

(k —k')!F(2ni+k —k'+2)—

—1/2

-F(ni, +M+1)F(ng —M'+1)t~ ~' +'"

F(ng+M'+1) F(ni —M'+1)

k!F(2ni, +k+2)
+aNo+1(t) tNo+1 (74)

(k —J)!F(2nr+k —J+2)
where

ag, o(t) =ay, r(t)+cgtNo+1

We are continuing our convention that a~, ,(t) and cJ are
coeS.cients that are independent of k. The first term on
the right-hand side of (74) can be replaced by using
(71), and we finally get

No+1 k!F(2ni, +k+2)
f„No+1(t) t'a, ,(t), (75)

~=o (k —J)!F(2ni,+k —J+2)

which completes our induction proof.
Since (75) is valid for arbitrarily large N, and since

the factor 1/(k —J)!vanishes for J)k, all terms in the
sum with J)k can be dropped, and we see that fk;
can be written as in (63).

It is clear from (71) that fi, , ;(t) has the following im-
portant property:

fi:.1(t)fi,o(t) =f~,s(t) .

In fact, as long as nq(nq+1)t is small, we have
As&(t) =&nosi" (4)fi si(t) ~

Xt min sa1'LE'n( )to
(79)

X~1 cv, iver. (78)

The % sign occurs for 3f&&Sf'. The coeKcient
CI,.~.~ is independent of k and can therefore be absorbed
into the dynamic coeKcient of (77).

In order to show that (77) can be put in the form of
(61), we shall use the results of the Appendix, where a
brute-force expansion of the scattering amplitude in

powers of t and s is examined. The brute-force method
may not be the most convenient way to get a general
expression for the residue, but it is a useful way to coleus

the number of constraints on the residue. "The result
that we 6nd for the est, quul-muss case can be stated as
follows: The first k derivatives of pcs&, (t) are determined
in terms of the first k derivatives of pi, si' with k'(k.
The higher derivatives of pi, si,(t) are free.

This constraint has important consequences for (77).
Simply by counting the number of free parameters, we
can conclude that a contp/ete expansion of the residue is

given by either of the following equations:

J+' J '
P1 SZ(t) = Q dnOS1n™(4)

J+ Jm in

(76)
In the unequal-mass case, the form in (79) leads to

where F(f) stands for an arbitrary function of various the most convenient expansion of the residue. We can
f~, '(t)'s further simplify 8&sz by separating dash"~(P) into two
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factors:
dasP (4) =d.sP~(t)

~ ogksk(t), (80)

where d sk" (t)
~

o
——dk p" is the leading piece of d~sk"~

near t=0, and gksk(t) =p; c;ktr
It can be shown that the constraints of the Appendix

lead to the conclusion that gksk(t) must be of the form
k(t)
We shall illustrate how one shows gks&(t) =fk(t) by

showing that the first derivative of gksk(t) must have
the same k dependence as the first derivative of fksk(t).

The logarithmic derivative of Oksk(t) is give~ by

This result is identical to that found in the Appendix,
which was obtained by the brute-force method. The
equivalence of these results serves to verify the validity
of our procedures in Sec. IV, where we analytically con-
tinued various Clebsch-Gordan sum rules.

If IMAM, then more than one term of (83) would con-
tribute to the leading behavior, and the calculation
would not be simple. However, since the vertex for
X~3II has an extra damping factor of t~~ ~~, we can
make use of our overcomplete expansion by setting
m'=~. We get

Pksk'(t) imp' gksk' fk'
+ +-

peak(t) p gksk fk
Xt~" ~ I'fk, ski(t), (8&)

np' uo'+aik(2ri+1 —k)+cik+, (81) with J~'=-', (N&!i) and J=-', ~M —Ii),

Pksk(t) =dms&, " (t)
~
i=ofksk(t). (82)

where the prime indicates a derivative with respect to
t. It should be remarked that our arguments should
really be made with the combination of residues, which
has a definite parity.

The result of the Appendix implies that pk'/pk is
determined once its value for k=0 and k=1 is known.
Since ao' and a~ are free parameters, we can conclude
that c» must have the same k dependence as ao +sik
X(2N+1 —k), or else Po'/Po would be free. This argu-
ment can be extended to imply gksz(t) must have the k
dependence given by fk(t). Thus the residue for unequal
masses can be put in the form

J+' J '
ny

pkak=C(J+'J 'nk', J+' —J-'-&)t ""
J- J+ J

teak
—Mi /2f (t) (88)

where the Clebsch-Gordan coefFicient is given in (85),
and the 6-j coefFicient is given in (78).

Thus we finally get

Pkak(t) =
t" ik ~ik!I'(2nk+k+2)

-1(nk+M+1) I (nk —&+1)- &
—&~ ~

—
~

X fk, sk (89)
I'(nk+ X+1)I'(nk —M+ 1)

We can now use (18) to Find the singular part of We can use (80) to prove an interesting result con-
d~sr"~ &or &=M we can take N=e'= J++J and nected with the signature factor. Let us examine one
u=m'=J+ —J . We ge& term of (8):

daksjr"~(P) =Q C(JyJ—nk; tk M —
tk M)

XC(JyJM; ki M —
tk M)e&'I' ~&&) (83)

P Pks -k (A)
sinew

XPksk(4s)Dkk '(4i)(—) ~ (90)

where e& $ '/'. Thus

d, sk"~(4)
~
i=o= C(J+J nk, J+—J~)

XC(J+JM; J+ J~)t "" —(84).
The k dependence is given by

C(J+J nk, J+—J M)

-(2nk+1) I'(2J++1)I'(nk+k —M+1)- &to

k!I"(2 +4+2)

We are finally able to write (60) as

In order to simplify our considerations, let us take
pksk=d ks&,"~(p,) We can .modify (90) by using

e—iwnd „e (y )M n —e
—ra'nd „nkr(y ) ~

M fk i(t)
=d.,w, "~(~ 4.) ~

~=oM."fk, i(t)—
" ( —4.)M."f, (t) (91)

We will need the sum rule

Zd ksk" (—4»)dkk"'(ei)d ksk" (~—4,)

=RA '( x)dk—,s" a(4k)d k'( '") (92)

l4skr(t) = (2n,+1)
fk, mr(t) .

t"k!I'(2nk+k+2)
(86)

where X'" is the crossing angle from the t-channel c.m.
to the I-channel c.m. system, and

cosh/, =(M '+M ' I)/2M M, . —
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The amplitude F8 q, sq can be written

~S'X', Sh,

Let us, for instance, simply replace n —k in (94) by
nb(t). We can use a contour integral to rewrite (94):

Q gb(nb, t)f(nb, t)

Z r.d', '(—»")ds 8~""(4.b)
sine.e ~

yd xs(X ")(cV cVb)"

gb(L —k, t)f(L—k, t)
dI. P

27ri L—n —

tabb(n,

t)
(98)

+r(1VbcV, )"fb,s(t) dh, 8'(—xb"')

ds'$ nbf(rt b)d xs()( uk)) (93)

g.(L, k, t)f—(L,—k, t)(~,(n,t)).dLQ- — . (99)
2z'z (L-n)&+'

For large s and 6xed t, we are able to extract the
standard signature factor 1+re "~. In addition,
Durand, Fishbane, and Simmons" have shown that the
form of the amplitude in (93) has the correct cut struc-
ture at the s- and I-channel thresholds as long as the
background integrals are properly treated. Since (93)
has the correct reality properties in the region s)0,
t&0, u)0, we have overcome a problem that plagues
simple Regge theory. In order to guarantee that the
amplitude is real below threshold, it has been pro-
posed'4 that the number of trajectories should be
doubled (four degenerate trajectories in the case M&0).
However, our analysis shows that this extra doubling
is unnecessary.

VI. EXTENSION TO NONPARALLEL
TRAJECTORIES

In this section we shall show that our solution can be
easily adapted to the case in which the trajectories are
no longer parallel. Ke shall rely heavily on the results
of the last two sections, which can be summarized as

We would be able to carry out the sum on k without
violating analyticity if the k dependence of A&(n, t) could
be written in the form f(L k, t). T—his is true because,
as shown in (76),

ft(L —k, t)gfs(L —k, t))'= fs(L —k, t). (100)

Thus, if tabb(n, t) =f(L—k, t), we would be able to use
(94) to do the summation in (99).However, Db(n, t) does
not even depend on I., so it cannot possibly have the
needed k dependence.

The resolution of the difhculty was pointed out by
various persons for the case S=O."'~ The trick is to
include an extra factor of L1—dZ(nb, t)/dnb) ', where
5(nb, t)=A(n, t). We have here written Zb(nb, t) as a
function of aI, and t rather than as a function of e and
t. This is permissible, since nb(t) is a function of n,
k, and t. The summation (98) can now be written as

gb(nb, t)f(nb, t)

b 1—dZ(nb, t)/dnb

where

h(n, t)=g g, (n —k t)f (n k, t), —(94) gb(L —k, t)f(L—k, t)
dL P (101)

2vri b LL—n —Ab(n, t))(1—da/dnb)

gb(n —k, t) =Pbs x (t)Pbsx(t)
1+T(—)b8 A a

XDvx"'(eg) — (95)
Sln7t 0!It;

and

1 gb(L —k, t)f(L k,t)—
dLQ

27ri L—n —Zb(L, t)

f'(n. ,t) =f..*(t)=2 t.(n.+s)'t)'a, *(t) (96) h„(n, t),
JQ~

(102)

The main result of the previous sections is that h(n, t)
has the proper analytic structure in t and e.

If the trajectories are allowed to become nonparallel,
we can define the trajectory function as

nb(n, t) =n —k+hb(n, t), (97)

where e is a constant equal to the intercept of the lead-
ing trajectory.

The question before us in this section is to And the
most general form for t)b(n, t) and psst(t) that still
guarantees the correct analyticity for h(n, t).

"L. Durand, III, P. M. Fishbane, and I. M. Simmons, Jr.,
Phys. Rev. Letters 21, 1654 (1968)."G. Domokos, Bull. Am. Phys. Soc. 14, 49 (1969).

where

h, (n, t) =P g, (n —k, t)f(n k, t)LA„(L,t)), (103)—

and Zb(L, t) must be of the form f(L k, t) in order for-
the summation over k to have the correct analyticity at
1=0.

Let us now examine the summation more carefully in
order to take parity into account. We can write (7)

"L.Durand, III, P. M. Fishbane, and L. M. Simmons, Jr.,
Phys. Rev. Letters 22, 261 (1969);1. C. Taylor, Oxford Univer-
sity Report (unpublished); P. K. Kuo and P. Suranyi, Phys. Rev.
Letters 22, 1025 (1969).
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as
1 +rs—Ar (L n)—

&s x,sr=
sinn (L—v)

In order to see how the factor fM' is able to reverse
the sign of the helicity, we shall need the following iden-
tity, which can be easily checked by examining (78):

&&g LI„(L t)D„, r k(g,)( )k (104) I+' I ' I k—
fmin Sk' M'( )t

Jmin

() ()
(105)

L k n—k (—N, t)

Pks ) +(t)l4S)+(t) Pks k t Pksk
Bk(L,t) =

L—k —nk+(e, t)
where

J' J' L—k
nk M (t), (112)

J+ J— Jmin

Pk Sk+(t) = (PkSk~ iInitn( —) "Pk S—kj
dZk+(L, t)

X (106)

min =min(M, M'),
J;.=-', (k'+ ~M —M'~),

Z„;.'=-', (k'y [M+M'[).

J+' J ' L,—k
Pksk= Z dr. k, sk

' '—(p)
It."M' J J+ J

Xsk M (t)t'. (107)

Upon multiplying the residue by fM', we get

fM'Pksk

=fM'/f '-' 2 dr. k, sk' ' '
'(~t)

If we substitute (106) into (105) and use nk=a —k+5k,
we get

&k(L,t)
'Vditd( ) Pks' —X'(t)Pksk+'gPks'X'Pks —kiFk (Lit)

+pPks ) Pksk+)IPks kPks kj—Fk (L—,t), (108)
where

Fk+(L,t) =1/PL-~-Z, +(L,t)j
+1/LL —e—hk

—
(L,t)j (109)

J' J' I.—k

J J+ J;'
—fM /fmin g dI, ks X

' (4&)—

J+' J ' L —k
X

J+ Jmin

= fM, M (L k, t)Pks —) (t)—.

ak M (t)

~Ik .M (t)

(113)

and q = i),)I k)t, itd( )S S'——

If we substitute the first of the two terms of (108)
back into (104), we arrive at a summation that is iden-
tical to (8) except for the extra factor Fk+(L, t). We
showed in Sec. III that, except for the extra factor
Fk+(L,t), the sum over k has the correct analyticity at
t=0 and. pseudothreshold. In Sec. IV we showed that
the residues could always be multiplied by a function
whose k dependence is given by f(L k, t) Lsee (77—)j
without destroying the analyticity. The proper k de-
pendence of Fk+(L,t) can thus be guaranteed by
requiring

In order to arrive at (113),we have used the symmetry
d sk"M(p)=d s k M(g) and the observation that the
k dependence of fM'/f;„' is of the form f(L k, t). —

If we apply (113) to (108), we see that the second
term of (108) has the proper analyticity only if Fk (L,t)
is able to provide the necessary factor of fM'. From
(109) and the argument following (102), it can be seen
that the proper k dependence in fk (L,t) can be guaran-
teed by

Zk+(L, t) —Zk
—(I.,t) =fM' f2(L,t) . (114)

Zk+(L, t) =f~(L k, t). —
We can now bring (110) and (114) together to give

(110) the most general expansion for a Regge trajectory:

It is a bit more dificult to guarantee that the second
term of (108) has the proper analyticity, since the
helicity indices differ from what was encountered in
Sec. IV. In order to do the sum over k, we must reverse
the sign of the helicity in one of the residues. This can
be accomplished by multiplying one of the vertices by
the factor

fM'=tMr(L k+M+1)/r(L k M+—1). (111)——

k+nk+(L, t) =fi(L—k, t)&fM'f~(L k, t), (115)—
where f,(I.—k, 0)=N. The contour integral over I.
always picks out the pole at I.=k+nk+(L, t). At t»s
pole the trajectory n&+ becomes a function of e and t,
and we have

r (nk" +M+1)tM

k+nk+ =fi(nk+, t)+ f2(nk', t) . (116)
I'(nk+ —M+ 1)

Since fM' is a function whose k dependence is of the In order to help understand the significance of (116),
form f(L k, t), we do not dis—trub the analyticity by let us consider the trajectory for the case M=~. It is
multiplying the residue by such a factor. convenient to introduce the variable 5'=t'~'. The two
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terms of (116) can be combined to give

k+np+ =p pa (ni, ++-,')W7~ag(t),J
where ap(0) =i2. We can also combine the two terms of
(116) for general 3II in the following manner.

If 3f is a positive half-integer, we have

r (n, ++-',J+ 1)
k+n2+ ——p (aW') ~ag(t) (117)

~ I'(n2+ —-'2 1+1)
and aJ (t) =0 for 7= 1, 3, , 2M —2. If M is a positive
integer, then we have

(118)

with the extra condition aJ,+(t)=ay (t) for j('J!/I.
It is misleading to think of (116) as a simple param-

etrization for the trajectories in term of the coeS.cients
aq(t). First, (116)—(118) are highly nonlinear implicit
equations for nj,+ which must be solved by iteration.
The explicit form for n&+, which is given by Bronzan, is
much more complicated in appearance. Second, even if
one has an explicit expansion for Q.I,+, the coefficients
may blow up.

As an example of this second problem, let us consider
the top two trajectories for the case M =0:

np(t) =ap(t),

1+ni(t) =ap(t)+kg2ni(t)+k+17tai(t)

(119)

=n p (t)+2 Ln 2 (t)+17tai (t)

1+n,(t) =n, (t)/L1 —2ta, (t)7. (120)

We should not consider (120) to be a parametrization of
ni(t) in terms of np(t) and ai(t), since there are the follow-
ing constraints on ai(t), which cannot be ignored. When
np(t) goes through zero, we see that ta, (t) =-', if the tra-
jectories are nonparallel. Similarly, when ni(t) = —1, we
must have ai(t) = ~.For the pion trajectory, it is likely
that the 6rst daughter goes through ni(t) = —1 quite
close to 5=0. It would thus be a mistake to consider
ai(t) as a smoothly varying function near t=0.

Just as the dynamic coefficient ai(t) in (120) is not
completely free, we can also see that the coefficients in
the expansion of the vertex must also be constrained.
The vertex is constrained to give the correct sense-
nonsense behavior when nI, is an integer. In addition,
the coefficients in (107) must be constrained to cancel
singularities due to the "parallel-breaking" factor in

(106).
In conclusion, we would like to present our main for-

mula for the most general Regge residue (106), and (107)
in an altered form. If we use the results of the previous
section to expand the 6-j symbol of (107), we finally get

A: S
p„„y(t) p g p „ny++2 k, M (y)~ —

( )s—ed a/++2 k'/a'(y)—7,
Ic'=0 3f'=—S

k!I'(2np++k+2)

(k —k')!I'(2n), ++k —k'+ 2)

—1/2

dt's+(n + t)
——i/2

,( ) t([t3P M(+2')/2 — (121)
do!Ic

ACKNOWLEDGMENTS

I would like to express my appreciation to the Aspen Center for Physics and to the Lawrence Radiation Labora-
tory for their hospitality while this paper was being written.

APPENDIX

In this appendix we shall examine the brute-force expansion of the t-channel amplitude (8) for the case of unequal
masses and parallel trajectories. The amplitude with X= —A. =HI is particularly simple to analyze, since the discus-
sion near (13) and (14) showed that Ts. 2/ s2/ and Ts.2r, s 2/ are the only helicity amplitudes that have the full

Regge behavior. For other values of X and X', the scattering amplitude has extra factors of 3 or s '.
The scattering amplitude (8) can be written as

where

Ts ~,s2/=Q p)) zt 'D))r 2r '(—eg)( —) (1+r/e' i ' "))/sin2r(np —e),
jb

P/), x(t) =LP2s v+(t)P) s)+(t) —Pps ) (t)Ppsx (t)7t ',
T(2J+1)ekri J—M)

(A1)

(A2)

(A3)

1 z t( s+u)+A(t, a,c)D(t,—b,d) —6—(0,a,c)6(0,b,d) =—/S.
2 D(t, a,c)A(t,b,d)

(A4)
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We see that 8 is regular near t =0 in the unequal-mass
case, since

A( t, a, c)
=—{Pt—(M.+M,)'jLt —(M.—M.)'3&'".

Combining (A1) and (A3) gives

~S'—3f,SM

=t-.oc Q (—)kr( —ak —M)r( —a,+M)(t8)"

r 2
XF

~

—ak+M~ —ak —Mi —2ak~
l 1 st

XI'( —2nk) 2~ cosm (nk —3II), (A6)

where C—= r+e ' & p "& We n.ow expand the hypergeo-
metric function

~—M3I Q pkkr~(tS) "(—)
2n cosvr(np —M) k-o

r(M ak+J)I'(—M nk+—J)—
(A7)J!I'( —2a,+J)(tS)'

=CS oI'(M —no)p cz(tS) Q pkkrkf( )'—
X I'(2~o —J—k+1)/(J —k)!, (A8)

where J=J+k and

cg = I'(eo —M+1)
XLvrI'(ao+M —J+1)I'(&o—M J+1)j

The summation over k must give a result that is able to
cancel the factor t ~. That is, we must have

cg Q P(—) I'(2ao —J—k+1)/(J' —k)!=aq(t)t, (A9)
It:=0

where az(t) is analytic at t=0
If we examine the nth derivative of both sides of

(A9), we arrive at the condition used in Sec. V: The
6rst e—1 derivatives of the eth residue are determined,
while the higher derivatives are free.

The combinatorial identity

I'(2n —J—k+1)(—)"' ~(2n, —2k'+1)
=8kki (A10)

(J—k)!(k' —J)!I'(2no —k' —J+2)

aJ„(t)=ay(t)/c g (A12)

and f~,;(t) is the function discussed in Sec. VII. We
have chosen az(t) in such a way that (A8) can be
written as

2' ~~——CI'(M —no(t))Q ag(t)S p ~.
J

(A13)

The form of (A13) shows that T krkf has the desired
analytic properties and also shows the role of the dy-
namical coeKcient aq(t).

The expansion in (A13) will have a pole when-
ever ap=M+2n+$ for m=0, 1, 2, , and where
(=oL1—(—)~ "rg. Also, (A13) gives zeros at np=M
—2e —I+/, where'=1, 2, .These are the character-
istics of the sense-choosing mechanism. Other ghost-
eliminating mechanisms can be obtained by modifying
the factors in cJ.

We will now obtain the factored residue Pkek+ from
(A11).However, we see in (A2) that Pk cannot be simply
factorized. In order to separate pkek+ from pkek, we
must examine Tq ~,8~ in addition to Tq. ~,8~. This
allows us to find pkkr kr.""
Pkllr kt —'gage( -)

X(pkS'ki pkSki +pkS'ki pkSM )t ~ (AI )

These results can be applied to elastic scattering
(M, =M„Mk=Me), where, by combining Pk~kr and
Pkki. ~, we are able to determine Pkekr+ and Pke~—.The
results are in agreement with (86), which serves to
verify the correctness of the analytic continuations used
in Sec. IV.

Once the residues for the parallel-trajectory case have
been determined, the extension to nonparallel trajec-
tories is straightforward. The discussion of Sec. VI con-
cerning nonparallel trajectories applies to the brute-
force method as well as to the method involving the
Lorentz-group sum rule.

The main limitation of the brute-force method. is that
it does not have the proper behavior at pseudothreshold
even for the case S=O. This means that the unequal-
mass case does not go smoothly to the equal-mass case.
The residues given by (86), on the other hand, are valid
for all mass con6gurations.

allows us to solve (A9) for pk(t):

a&„(t)t'
Pk(t) =(2~k+1) P

~ (k —J)!I'(2ap —k —J+2)
= (2nk+1)/k! I'(2np —k+2)) 'fk, ,(t), (A11)

where


