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A p bootstrap calculation, using the Balazs method, with the input crossed-channel amplitude given by the
Veneziano representation, was performed. Results for the self-consistent mass and width are in good agree-
ment with experiment. The results are consistent with the amplitude being given by only a single Veneziano
term, although they do not exclude the presence of additional terms with lower-order asymptotic behavior.

'HE Veneziano model' —' has the great advantage of
allowing one to write an explicit expression for a

scattering amplitude which has many of the properties,
such as crossing symmetry, Regge asymptotic behavior,
and resonances where the trajectories rise through
integers, which the exact amplitude is believed to have.
Since the resonances are treated in the narrow-width
approximation so that the model is not unitary, it
cannot provide a correct point-by-point representation
of the amplitude; however, it is reasonable to believe
that it may represent the physical amplitude correctly
on the average, so that corresponding integrals over the
Veneziano and the exact amplitudes would be equal.
This suggests that the Veneziano amplitude would be a
suitable input to a bootstrap calculation using the
N/D equations. One could then solve these by the
Balazs method~' which avoids the severe cutoff
problems associated with the exchange of higher Regge
recurrences. We report here on the results of carrying
out such a calculation of the parameters of the p meson.
This procedure might be especially advantageous, in
that it gives one a way of including contributions from
the intermediate energy region in the crossed channel,
assuming the Veneziano amplitude is, indeed, a reason-
able approximation to the average behavior of the
physical amplitude. Previous results'' have indicated
that the inclusion of f' exchange may be important in
calculations of the p, and this suggests that the inclu-
sion of the force due to the exchange of additional
intermediate energy resonances may also be important.

The foregoing is the program which we carry through
in this paper. Before describing our procedure and
results, however, we first discuss one difficulty. If
Regge trajectories in nature rise without limit, as they
do in the Veneziano model (where they are strictly
linear), then an N/D-type bootstrap cannot be carried
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out."This is due to the fact that if the Regge trajectories
never return to the left half of the j plane, the value of
the real part of the phase shift in the jth partial wave at
infinite energy, instead of being 0, will be ex, where e
is the number of trajectories; e is infinity in the
Veneziano model, but the same difhculties would
present themselves if there were only one infinitely
rising trajectory. This in turn means that more than
one subtraction is required in the dispersion relation for
the Omnes function, "or, equivalently, that Castillejo-
Dalitz-Dyson (CDD) poles are present in the denom-
inator function. If such a situation occurs, it indicates
a failure of the bootstrap approach, at least in its
conventional formulation; it is not clear how one could
then carry out the bootstrap program of calculating
scattering amplitudes without the introduction of
arbitrary parameters. The same conclusions arise from
the point of view of Levinson's theorem. " Since we
wish to pursue here the consequences of the bootstrap
approach, we adopt the point of view that the trajec-
tories are not completely linear and eventually turn
over and recede to the left half j plane, or at least that
the infinitely rising trajectories are due to multichannel
effects which may be neglected in a low-energy calcula-
tion. We suppose that the Veneziano representation is
a reasonable approximation to the amplitude in the
region where the trajectories are linear, and that this
region extends to relatively high energies, so that the

~ One might ask whether the N/D approach even has m'eaning
in the case of infinitely rising trajectories, since the partial-wave
amplitude A&(s) = J' &. 4~'A (s,t)P~(1+2t/(s 4))dt is unbounded-
as s~ —~. Therefore, the Cauchy integral formula for A&(s)
does not take the form of a dispersion relation and there are
nonvanishing contributions from the circle at inanity. However,
the Uretsky form of the E/D equations Pj. L. Uretsky, Phys.
Rev. 123, 1459 (1961)j, can be obtained by writing once-sub-
tracted dispersion relations over the right-hand, or physical, cut
only for the denominator function D&(s), and for the function
H~(s) =Xi(s)D~(s), where R~(s) is the contribution to A~(s)
from the integral over the right-hand cut. D&(s) is essentia11y the
Omnes function and hence well behaved, while R&(s) is asymptoti-
cally no worse than constant because of unitarity, i.e., because
n(0) ~1, so that both of these dispersion relations are valid. The
kernel of the integral equation for the numerator function involves
the function It (s) =A&(s) —ff~(s), but only for s)0, where it is
governed by the unitarity bounds on At(s) and Jf &(s). It makes
no di&erence for the validity of the X/D equations whether I,t (s)
satisfies a dispersion relation or whether there are contributions
to the Cauchy integral formula for L& from parts of the infinite
circle.

"For example, see G. F. Chew, S 3fatriz Theory of Stron-g
Interactions (W. A. Benjamin, Inc. , Xew York, 1961)."R.L. Warnock, Phys. Rev. 131, 1320 (1963).
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important contributions to the input "force" are well
represented by using the Veneziano model for the
crossed-channel amplitude. The Veneziano model must,
in any event, partially break down at very high energies,
where the trajectory functions develop appreciable
imaginary parts, so that they can no longer be exactly
linear, and where a narrow-width approximation for the

amplitude is no longer reasonable. We assume that the
departure of the physical amplitude from the Veneziano
model is such as to render a bootstrap calculation

meaningful.
In performing the p bootstrap, we follow the proce-

dure of II with two exceptions: Air&a&(v) is now
calculated from the Veneziano model and v~ is here the
point of separation of the elastic and inelastic regions,
while the point above which the Regge representation
holds is now designated by v&z. In II we had v&z= vD.

We consider two models. In both of them, A ir i~& (v),
the contribution from the low-energy region of the
crossed channel, is represented by the contribution of
the first cV Veneziano resonances. Air&~&(v), the high
crossed-channel energy contribution, is equal to zero
in the first model, which we call the Veneziano model.
In the second model we use a Regge representation for
A &r &~& (v) in the same way as in II. viiz is set to a value
corresponding to the mass of the highest resonance
retained in calculating Air&~'(v). This second model
we refer to as the Veneziano-Regge model. For both
models, we demand self-consistency in the sense of
requiring the output p parameters to equal the param-
eters of the p in the input force. We have not attempted
to obtain self-consistency for the other resonances,
although we have verified that there is an output f'
whose parameters are in at least fair agreement with
the input. As discussed in Ref. 9, we feel that the output
f' may be fairly sensitive to the details of the treatment
of inelasticity.

The input force into the A'jD equations through
Eqs. (I1), (I2), and (I9), is given by Eqs. (II14)—(II20)
for A ir &~& (v) in the Veneziano-Regge model. For
A ir'~&(v), we have

1 &az

Ai & '(v) = —[C,r+( 1)rC rj dt' ImA(s, t')
2' p 4

m++~ -+ ~++or and C,vr is given by'

I g st

0
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2

0

We take A (s,t) to be given by the Veneziano rep-
resentation with the possible presence of one "satellite"
term. That is, we write

I'(1—n (s))I'(1—n (t))
A(s, t)= Q yg

I'(to —n(s) —n(t))
(3)

(Ai'"'(v) = ~ eil 1+—I, -Lc. '+(—1)'c-'j
=o E 2vf 2n've!

x[v ( )4-( ( ))— 4-( ( )—1)j
+C- 'L1+(—1)'j(—1)""

where
for m=0

= g (j+z) for v~1;
/~1

n(s) is the Veneziano trajectory and is given by

and
n(s) =n(0)+n's;

a(s) =1—n(N) —n(t), n(t.) =m+1,
X=n (4vD s+4) —1.

(6)

We determine p1 by comparing the p term in Eqs.
(I10) and (4) and find

The 7~ are constants to be determined. The asymptotic
behavior of the amplitude is controlled by the first
term in (3). We have not included possible additional
terms of the form I'(m —n(s))1"(m —n(t))/I'(2m —k
—n(s) —n(t)), with m) 1 and m) k~ 0, which likewise
do not affect the asymptotic behavior. Substituting the
imaginary part of (3) into (1) and integrating over the
8 functions, one 6nds

XC ~'

&DB

Ct' ImA (4—s—t', t')

t'q
xe,l1+—l, (1)

2v)

xel 1+—I+[1+(-» j
2v)

y1=3Fp.

7,=V,[n(0) 2n' vv] . —(9)

p& is determined by a choice of the relative widths of
the p and the e, the j=0 resonance roughly degenerate
with the p. Taking F2=0, i.e., keeping only one
Veneziano term, corresponds to an e width about 4—,

'
times that of the p; we refer to this as 100'/go e. The c

may be canceled entirely by choosing

where A (s,t) is the amplitude for the s-channel reaction The experimental status of the e is highly uncertain;
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TABLE I. Self-consistent values (in MeV) of the p mass zs, and
the p full width h~n, for the Veneziano and Veneziano-Regge
models. y2 is chosen in accordance with Kq. (9) to eliminate the c.
vp is the optimum matching point, in units of m, chosen as in
Ref. 9.E is deimed by Eq. (4) so that IV+ 1 is the angular momen-
tum of the highest-spin resonances included in the input force.

1
3
5
9

12
13
15
18
20
25

Veneziano model
VP mp Amp

—5.40—5.40—5.40—5.40—5.37—5.37—5.37

711
711
711
711
711
711
711

32
41
44
56
65
72
74

Veneziano-Regge model,
vy tmp Amp

—5 40 711 23—5 40 711 26—5.40 711 31

—5.35 711—5.35 711—5.30 711—5.30 711—5.30 711

64
105
106
106
100

"C. Lovelace, W. M. Heinz, and A. Donnachie, Phys. Letters
22, 332 (1966); A. B. Clegg, Phys. Rev. 163, 1664 (1967); L. J.
Gutay, P. B.Johnson, F.J.LoeQier, R. L. McIlwain, D. H. Miller,
R. B. Willman, and P. L. Csonka, Phys. Rev. Letters 18, 142
(1967); W. D. Walker, J. Carroll, A. Garhnkel, and B. Y. Ott,
ibid. 18, 630 (1967);E. Malamud and P. E. Schlein, ibid. 19, 1056
(1967).

its existence has been reported with widths which are
poorly determined but tend to be quite broad. "

The behavior of the solutions of the p bootstrap as a
function of e, the number of poles approximating the
left-hand cut, shows the same features as that of the
double p and f' bootstrap reported in II. Thus we
restrict our attention to the seven-pole case, at which
point we believe the solutions to have leveled off
appreciably as a function of e. The exact form of the
output width as given by Eqs. (II8a) is used through-
out. The choice of parameters is the same as in II,
except for n(0) =0.483. This choice is suggested by the
Adler self-consistency condition for the case p2 ——0'.
If one wishes to preserve the Adler condition, n(0)
should, strictly speaking, be varied with p2. We have
not done this, since the results turn out to be quite
insensitive to variations of n(0) within the range
allowed by experiment. i&&n =

t iV+1—n(4) j/4n', where
1V is defined by Eq. (4).

Table I shows the effect of increasing the number of
terms retained in the Veneziano series, with 0% e

included, on the p bootstrap solution. There are some
blank spaces in the table, since we did not always
expend the computer time to obtain solutions where we
felt the additional information would reveal nothing of

significance. The solution becomes comparatively
insensitive to E for large E, as expected, since the
convergence of the sum in Eq. (5), i.e., of the integrals
in Eq. (1), is guaranteed by the fact that, for large t,
the behavior of the Veneziano amplitude is given by
A(s, t) t~'i, with the integral being carried out at a
value of s where n(s)(1. It should be pointed out,
however, that large E does not necessarily represent
the best approximation to the physical amplitude, since,
as we have already noted, we expect the linear-trajec-

tory and narrow-width approximations to break down
at some point. In the Veneziano-Regge case, especially,
one might expect it would be a better approximation to
keep only a relatively few Veneziano resonances, i.e.,
to use a fairly smaQ value of pa~, since the Regge
representation for the t-channel absorptive part may
well be superior to the Veneziano representation at
moderate t-channel energies. The duality concept, of
course, suggests that the Veneziano-Regge results
should be quite insensitive to the choice of s Dg, that is,
to the choice of the dividing line in energy between
the regions where the amplitude is given, respectively,
by a resonance and by a Regge representation. As seen
in Table I, however, the bootstrap results for the p
width are fairly sensitive to the choice of E, or of sag,
up to about E= 12 for the 0% e case.

Table II shows the effect of the e particle on the p
bootstrap solution in both models. In the Veneziano
model we take X=20, which, according to Table I, is
the value at which the results seem to become quite
insensitive to E. For the Veneziano-Regge model, we
take iV=4. This corresponds to taking the amplitude
to be given by its asymptotic form above about 2 BeV;
we judge from Table I that these results should not be
too sensitive to the precise choice of E.For comparison,
we also give some Veneziano-Regge results for X=20.

The effect of the e in both models is very similar.
Above 70% e the p mass starts to decrease at an
accelerated rate, up to about 85% e, where the solution
disappears altogether and instead of it there appear two
solutions which at 100% e are well defined. One, with
a p mass of 750 MeV, has the properties of series 1 as
discussed in I, and the other solution with a p mass of
about 700 MeV has the properties of what would be, in
the notation of I, series 0. Arguments of the type used
in I, based on a criterion proposed by Williamson and
Everett, ' give preference to series 1 over series 0. We
did not carry out calculations for y2 corresponding to e

widths greater than 100%.
As a number E of terms retained in the Veneziano

series is increased, the sensitivity of the values of the
output mass and width to the input width decreases.
At the same time, it becomes more and more difficult
to require agreement between input and output widths
to within a few percent, the output width always being
wider, and one has to settle for about 10% agreement
(about 20% for 100% e) as giving a bootstrap. These
two effects combined result in a bootstrap width which
is not precisely determined.

From the results in Tables I and II one concludes
that, using the Veneziano representation for the input
to the iV/D equations, solved by the Balazs procedure,
one can obtain a solution in which the input and output
parameters of the p are approximately self-consistent.
The Veneziano-Regge calculation with X=4 and with

' M. Williamson and A. E. Everett, Phys. Rev. 147, 1074
(1966).
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TABLE II. Self-consistent p parameters for Veneziano and Veneziano-Regge models, with the indicated values of E, as a function
of the width of the e included in the input force. 100% 6 means an e width 4-, times that of the p, corresponding to the retention
of only a single Veneziano term in Eq. (3). Vnits and notation are the same as in Table I. Errors, where shown, indicate an appreciable
range of values yielding equally satisfactory self-consistency. For 100'P& e, there are two somewhat diferent solutions, as explained in
the text; the first is preferred to some extent by the criteria of Refs. 7 and 9.

00
10
20
30
50
70
76
80
83

100
100

Veneziano-Regge
VP' fg p

—5.40 711—5.40 711—5.40 711—5.40 711—5.50 711—5.60 711—5.65 711—5.65 710—5.67 706—6.50 753—5.80 712

X=4
Amp

29
32
36
42
42
52
64
77
91

100&25
86&9

—5.45 711 83~6

—5.65

—6.51—5.80

710

753
712

61+6

90+40
72a36

Veneziano-Regge S=20
Vg mp d,mp

—5.30 711 100+6—5.35 711 89&6
72
89
98
93
89&6
83&8

—5.37—5.40—5.40—5.45—5.50—5.60

—5.70—5.70—6.51—5.80

710
706
753
712

77a8
77&8
80+30
72+36

Veneziano Ã =20
, mp

711
711
711
711
711
711

100'%%uo e, i.e., with y&
——0 and only a single Veneziano

term retained in Eq. (3), yields results in excellent
agreement with the experimental parameters of the p,
although, as mentioned above, there is some uncertainty
in the theoretical value for the p width. Vhth N=4,
if p& is chosen so as to significantly reduce the e width
from the value for a single Veneziano term, then the
results in Table II indicate that the bootstrap value for

the mass is slightly reduced, and the value for the width
becomes appreciably too narrow. For Ã =20, the
results are in reasonable agreement with experiment
throughout the range of e widths investigated for both
the Veneziano and Veneziano-Regge cases. They are
still perfectly consistent with keeping only one Venezi-
ano term, and, in fact, doing so gives a theoretical mass
in somewhat better agreement with experiment.
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A parametrization for Regge vertices is presented. These vertices have the most general t dependence
consistent with constraints at t= 0 and pseudothresholds, and are valid for general spins and general masses
and for nonparallel trajectories. The assumptions upon which this work is based are analyticity, crossing
symmetry, factorization (unitarity), and Regge asymptotic behavior. In the unequal-mass case, we Qnd
that the general Regge vertex has a particularly simple expansion around t= 0.

I. INTRODUCTION

'HE problem of constructing a Regge expansion
that has the proper kinematic singularities (the

conspiracy problem) has received much attention during
the last two years. ' One reason why so much work has
been expended by so many people is that different cases
have been treated separately. The equal-mass case' '
was thought to be entirely separate from the unequal-
mass case, ~7 daughters separate from conspirators.

' M. Toiler, Nuovo Cimento 53, 671 (1968).' G. Cosenza, A. Sciarrino, and M. Toiler, Nuovo Cimento 57A,
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57A, 81.3 (1968); G. Domokos and G. L. Tindle, Phys. Rev. 165,
1906 (1968).

Some authors consider only low value of spin and.
Lorentz number M, others only consider residues for
the parent and 6rst daughter, or only the most singular
parts of the residue. The approaches range from elegant
group theory, "' which makes use of special symmetries
at I,=0, through techniques using Feynman diagrams
or Bethe-Salpeter models, '" and 6nally brute-force

'D. Z. Freedman and J. M. Wang, Phys. Rev. 183, 1396
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