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Field-Theoretic Model for High-Energy Scattering. II. Regge and
Non-Regge Damping in etN Scattering*

H. M. FRIED

Physics Department, Brown University, Providence, Rhode Island 08918
(Received 12 September 1969)

A field-theoretic formulation of xN scattering, combining soft virtual neutral vector-meson exchange with
simple nucleon, 3-3 resonance, and p poles, is shown to produce damped amplitudes containing both Qxed
and Regge poles, yielding polarizations and differential cross sections with a qualitative resemblance to
recent experiments.

I. INTRODUCTION

'N a previous paper' a 6eld-theoretic model of soft
~ ~ virtual neutral vector-meson (SVNVM) exchange
between nucleons was used to provide a qualitative,
few-parameter description of the strong damping ob-
served in nucleon electromagnetic form factors and in

pp scattering, at high momentum transfers and large
energies. The analysis of I may be described by the
sequence of operations: (i) Assume, in addition to the
usual hadronic interactions, a NVM-baryon coupling
(either a fundamental interaction or representing, e.g. ,
a phenomenological nucleon-ps coupling), and rewrite
every amplitude to make explicit the contributions
coming from the exchange of the SVNVM which modify
all the remaining nonsoft or "hard" interactions. (ii)
Perform a dipolelike approximation, effectively de-
coupling the soft and hard parts of every amplitude.
This approximation, which may be expected to be
reasonable for large s, —t, yields amplitudes whose soft
dependence occurs as a multiplicative factor. One draw-
back of this simple prescription is that an upper cutoff
to the SVNVM momenta must be inserted by hand.

An alternative procedure, more complicated but
probably more realistic, avoiding the temptation to
decouple soft and hard effects, is to let the hard pro-
cesses provide a natural upper cutoff for the SVNVM
integrals. This paper deals with the results of using the
simplest Born approximation graphs, corresponding to
simple poles in the s, t, and I channels, for the hard
portion of the xS elastic and charge-exchange ampli-
tudes. In the absence of a t-channel exchange, the
resulting amplitudes turn out to contain both 6xed and
Regge poles, the latter corresponding closely to
Reggeized p exchange, unsignatured for n+-P elastic,
signatured for charge-exchange scattering. For any
form of the xE interaction, the fixed-pole contribution
to do/dt turns out .to be insignificant in the forward
direction, leaving an effective Regge behavior. Polariza-
tions are given by interference between the 6xed and
Regge amplitudes. Inclusion of a f-channel p exchange
is possible but awkward in the present formalism and
an argument based upon the methods of I is sketched

*Supported in part by the U. S. Atomic Energy Commission
(Report No. XYO-2262TA-207).' H. M. Fried and T. K. Gaisser, Phys. Rev. 179, 1491 (1969),
hereafter called I.

to obtain an estimate for the asymptotic n+p total cross
sections. In this way, a crude model with the correct
qualitative features to fit recent experiments' ' can be
constructed using only the direct-channel nucleon and
3-3 resonance poles, together with a t-channel p ex-
change. No detailed calculations have been attempted
in this paper, and the need for a better calculation
involving SVNVM emission by pions is made clear.

Although the results resemble, in part, those of Regge
phenomenology, with the concept of duality appearing
in an essential way, the formulation of this problem is
within the context of conventional field theory. By
considering that portion of every hadronic matrix
element which contains SVNVM exchanges between
nucleons, one transforms the 6xed poles of the simple
Born approximation into fixed plus Regge poles. This
approach may be compared with recent eikonal ap-
proximations' where one effectively considers multiple
soft-meson exchange, soft in the sense that any given
exchange does not result in a signihcant momentum
transfer to the colliding particles. The assignment of
average values of initial and final momenta as eigen-
values of the four-momentum operators generates the
leading terms in a relativistic eikonal expansion corre-
sponding (roughly) to our soft exchanges surrounding
a single hard exchange in a crossed channel. This does
not produce Regge behavior in the 6rst paper of Ref. 4
because the momentum transfer is held small, as it
should be, in the absence of a hard exchange.

In the next section, an off-shell formula is derived
which exhibits the SVXVM effects as they modify the
hard part of any scattering amplitude. In Sec. III,
application is made to mg scattering using a nucleon

pole for the hard amplitude, while a crude model of the
3-3 resonance is employed in Sec. IV. A t-channel

p-exchange pole is examined in Sec. V, and an amalga-

2 Recent polarization results have been given by R. J. Esterling
et al. , Phys. Rev. Letters 21, 1410 (1968).

'See, e. g. , the report of G. Bellettini, in Proceedings of the
Fourteenth International Conference on High Energy Physics, -
Vienna, I968 (CERN, Geneva, 1968), p. 329, for a survey of
recent cross-section and polarization measurements.

4 H. D. I. Arbarbanel and C. Itzykson, Phys. Rev. Letters 23,
53 (1969); R. L. Sugar and R. Blankenbecler, Phys. Rev. 183,
1387 (1969). Forms similar to those obtained in the &st of these
papers were found, in another context, by G. W. Erickson and
H. M. Fried, J. Math. Phys. 6, 414 (1965).
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expected to be valid for small t, and not too unreason-
able for larger values of —t&0.

In the asymptotic scattering regions we will be
interested in C ((p/2M)s (pq+ pq'), p's') for small values
of its arguments, and it is not diKcult to demonstrate
that it is sufhcient to consider C((p/2M)s (p~+p~'), 0)—=p((p/2M)s (p~+pq')); this step is not crucial, but
does simplify the analysis to a considerable extent.
Introducing the representation (6) into (3), one 6nds

cd'
p(x) =p,y(&)

e-' &

0 1+C

where f(t) = —1+F(t), in the notation of I, and

come fearfully complicated. From the derivation of I
it is also clear that the replacements p~ ~ pq+ap(P,
p~'~ pq'+a@5' inside Mrr are not to be carried out
inside spinor u, (p&') and N~(p&) factors, but only in the
invariant amplitudes 3 and 8, here written in the
form T=A+iy p2B, where

(p~'p2'
I
s I p~p2) =4' —&(2~) '~(p~+p2 —p~' —p2')

m'
Xl @(pi') & ~(pi)

(4F181%1&2
Thus,

A(pgpg'p2p2') = — d& exp5'(&)
2%

" dt' 1 ( 2m') 4m')
F(t)=t —

I
1—

I
1— —I, (8)

4 ~i't' —t~ with

X da e ""A~(pg+ap0', pg'+ay(P, p2, p2'), (12)

with go= gP/4n'. For small i, F i//3m2, while
F —ln(I tI/m') for —t&)m'. Near X 0+, (7) has
the form

5'(&X)~ ypf ln—X&~ixypf+ (9)

Renormalization may be imposed, in (9), by subtracting
from P((p/2M)s. (p~+p~')) its value at 3 +p,='. We
simplify matters by neglecting the variation of M(i),
retaining only the subtracted form in which f(t) in (9)
is understood to be replaced by

A(~ i I)=A(p~p~'p2P2')
I
m*=m"=--'. ns =un *=-.*,

and similarly for B(p&p&'p&p2'). In all calculations to
follow, we set m =0. Crossing synunetry of the com-
plete amplitudes under s+-+I interchange' is guaranteed,
as long as it is satished by the A~ and 8~, because of
the property P~(X)=5(—X), which follows from the
representation (7) for physical —t)~0.

For the s&)—t, m' situation, experimental quantities
are given by

f(~) —f( .') =F(~)—F(~.') =F(~)—u. '/3m'

With the representation and

F = Im(A—B~)
dt Sm-s

(13)

exp gI s (pg+pg')
I

42M J 2s.

da 1 (m' '( (M)' s ' ItI s
I

—
I I

—IA-- B +
4~M2& s E &m) 2m 4m~ 2m

Xexpo'P ) da exp( iaX+ia—pz (P)

6=—(1/2M)(p+p'), (10)

or, for —t&(4'~,

da 1t 2m '
I~I 2m

dh 16gr k s 4m' s )
(14)

the Fourier transforms indicated in (1) may be com-
puted to g epute to give

Total cross sections are given by

M(pypg'p2p2') = — dX exp'(X)
2Ã

dae ""MJI(Pg+ap(P, Pg'+ay(P) P2, P2'), (l1)

2m
O.p=Im 8— -A

S ii=0

III. NUCLEON-POLE CONTRIBUTIONS

(15)

which is our working expression of the SVNUM eGects,
as they modify the hard part of the scattering ampli-
tude. It should be noted that this is an off-mass-shell
effect, with a pair of the mass variables of
(p&+ay(P)'= (p&'+ap5')' carried away from their usual
values of p~'= p~"———m'. From (11) it is clear why the
present process of soft exchanges between protons only
is relatively simple, compared to the situation where the
SVNVM are exchanged between pions and nucleons,
and where our subsequent manipulations would be-

Ke now examine the results of using the simplest
possible expressions for IIII, the nucleon-pole terms
pictured in Figs. 1 and 2 for ~~p elastic scattering. The
form of the ~E vertex still remains to be specified and is
chosen to be of phenomenological axial-vector form, de-
scribed by an effective interaction 2'=iGfysp„&„~ ~P,
(2mG) '/4x (15, in order to demonstrate an extra-

Here, the complex conjugation associated with this operation,
and frequently omitted in the literature, is crucial; see, e. g. ,
S. Gasiorowicz, Elementary Particle Physics (John Wiley Bz Sons,
Inc. , New York, 1966), p. 367.
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ordinary diminution in the asymptotic behavior of the
6xed-pole part of the amplitude; this eBect occurs
automatically in the model, yielding an asymptotic
forward scattering amplitude of the same form as that
generated by a simple y5 coupling. Kith

2 II{plpl p2p2 ) G 'rp'r'p2 +o(pl+ p2)+5+'p2 y (16)

one has for the zr p amplitude

G2 , (
A (s,t) = — dh exp'(X) da e-"m(s —m')

I
2+ —

I

2~ ) mi

FIG. 2. The I-channel nucleon-pole
contribution to x+p scattering.

Cp
X m' —s —(atz)2 ——(s+m') —ip

M

G2

B(s,t) = — dkexpS(X) dae ' "
21r

X sI 1+—I+m' 3+—
I

(17)

corresponding to the simple tree graphs of Figs. 1 and
2; such amplitudes each behave as s in the asymptotic
limit, and generate a constant contribution to do/dt
With FQO, it is simplest to erst perform the parametric
u integrations. For the s-channel terms one obtains

1 Cp,

dkexp5:(X) dae '~" 1—
2x M

Cp,

X m' —s —(ap)2 ——(s+m') —ip
M

while the corresponding nucleon I-channel contribu-
tions to the zr+p amplitude are given by

62 atz)
A(u, t) = — d)(expo:(X) dae ""m(u —m')I 2+ —

I

2' u)

Cp,

X m' —s —(ap, )2——(s+m') —zp

M
z= —I:Q")—Q' )?'

p 0

Xexpt ~(~)+z~Q(-)j 1, ——Q(-)
M

+expLS*(l )—8 Q(+)g 1, ——Q(+), (21)
3f

(19)
Cp,

X m' u (a—tz)'— (u—+m') ip— —
M

where

Q(k)—
s+m' — 4M2(s —m') "'

1& 1—
(s+m')'

62
B(u,t) = —— dX exp%(X) da e ""

2Ã

(
X uI 1+—I+m'I 3+—

I

Gp
——1

X m' u (atz—)' — (u+—m—') ip .—(20)
3f

In the absence of soft effects, F=O, the X integration
produces a factor b(a), and one obtains the amplitudes

Further evaluation of (21) depends upon the specifica-
tion of P(X). For the asymptotic situation s»m', —t, tz2,

Q(+) s/3ftz, and the behavior of the Q(+) integrals of
(21) is determined by the small-X form of P(X), as in (9).
Further, Q( ~i M/tl, and the same approximation to
F*(X)may be used in the Q( ) integrals if M/tz& 1, with
this estimate becoming better for larger values of this
ratio; these terms generate the fixed poles, which do not
significantly contribute to the forward scattering cross
section for any. value of M/tz, although they do enter
into the polarizations. If 3f ~& m, and we imagine that
the NVM's are pps tz tz„ then 3f/tl& 1; in this case the
approximation of using (9) for P*(X) is not unreasonable,
since the corresponding integral of (21) will be effec-
tively cut off for X&1.

With these replacements, (21) becomes

FIG. 1. The s-channel nucleon-pole
contribution to m p scattering.

t~~ "Ir(1—&,y)-p .~.of-l
givvpf 1 ~(+)

E tz) s E3Pj

g
—~~&of 1 (-) .]

3f
(22)
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and the removal of the dominant part of the fixed-pole
contribution to the forward scattering amplitude is now
apparent. This term is generated by the numerator
s dependence of B(s,t), in (18), which appears there
multiplied by the factor 1+ay/M; from (22), such a
term enters in the combination s[1—(p/M)Q( &j 2m'

M'—=m'+rit for large s, and hence the 6xed-pole
portion of B(s,t) is reduced by a factor of s compared to
its behavior in the absence of the SVNVM. In essence,
the F0=0 fixed pole has been split into two parts, a
moving Regge pole visible in the Q(+~ terms, and a fixed
pole with an asymptotic behavior resembling that of
the gentler y5 interaction. This same feature occurs if
higher-spin baryons are used in place of the virtual
nucleon.

The amplitude C=B 2mA/s h—as, from (17) and
(18), the representation

=B(u,t) —(2m/lul)A(u, t), we obtain

( s r«m'+ ,'t-
C(u t)-Q

[
— - e' »j

(M2 s
(27)

while (24) and (25) would predict a, vr p polarization
proportional to

( s
Im[A (s,t)C*(s,t)]-—mQ'[

and

A (upt) mQ[(—s/M')» j+ e'~» j5 (28)

As they stand, (28) and (27) lead to a m+p polarization
dominated by the term

s
1m[A(u, t)C*(u,t)] mQ' sin(wool fI), (29)

M2

G2

C(s, t) = — dX exp%()(,) d(r e ""s 1+—
I

2x

Cp,

&( m' —s—(au)' ——(s+m') —ip
3f

for large s; from (22) this is evaluated as

(23)

X[—»n(2~»if[)3 (30)

Near the forward direction, the cross sections of (14) are
controlled by

(
s

)c
c

(cc +—
&)

f s»j m'+-,'t)
C(s, t) —Q [

e' »j+ [e ' »j
(3I' s )

and

(r s q»jt'm'+-;ty
I cos(~»If[)

km') ( s )
(31)

while

Q=—G'(3E/p)» I'(1—gof), (24)

-(s )»j
A(s, t) —mQ [ I

e' »j+e ' »j
kM')

(25)

In a similar fashion, u-channel quantities may be
obtained using

1 Cp
dhexpPP. ) due ' ~ 1,—

2' M

s y
"« tm'+-', t~'

+I
3jl') k s )

s ) oj m'+-,'t
+2( i ( ) ccc(2 C, i ji) (32)

in the two cases, while the total cross sections would be
given by

or(+) =ImC(u, 0) Q(m'/s) sin(myp I fl ) I (=p (33)

Cp,

x m'+ [u[ —(a&)'+ —([ul m') i—p
JIt/I

~)'« I'(1—v f)
u ) [u[ ~&)

m'+-,'t)
+c' "'~ 1 —(1+ ~, (26)

[ul

where the same approximations used in arriving at (22)
have been followed, and where

I
u

I
= —u))m', —t; from

now on we shall replace
I
u

I by s. Note that the absence
of phase in the moving-pole terms of (26) is a con-
sequence of crossing symmetry. The remarks made
above concerning the asymptotic behavior of the 6xed-
and Regge-pole terms are valid here also. With C(u, t)

(rr( —) =ImC(s, 0) Q(s/cV')»j sin(vrvol fl) I( o ~ (34)=

« t=0»If[ =vo[ltv(t) I+~(t.') j-vou. '/3m', with
this constant specified by the strength of the nucleon-
XVM coupling, while for —t(&4m', »I f[ (yo/3m')
X[u,'+ It[ j. The n+p polarization given by-(29) will
be positive, for small ltl, if yp[ fl (1, with a zero
occurring when yp I f I

= 1. Experimentally, this happens
for —t—0.6, and we now use this number to determine
yo, which comes out to be 2.2, corresponding to a
goo/4vr~7. On the basis of the crude analysis of I, had
we coupled the pion legs to the SVNVM, excluding
interactions between pions and nucleons, there would
result a "doubling" of the soft effect, with the pion con-
tribution serving to replace» by (1/4~') (g,~j(r'jg, ').
If g, ~2g~~, we would now find g, '/4n. 56.
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m'+ 4( S-
s kI'

sin'(i, n yof)

)&cos'(-,'nyof), (36)

while the amplitudes, written in terms of the o. intro-
duced above, are

7rG'f M ' 1 —n
ce»

W2 & y I'(n)

m'+-,'t f s ' 1
2i —+I I

1 ——e' ] (37)
s sing;

' C. B. Chiu, R. J. N. Phillips, and W. Rarita, Phys. Rev. 153,
1485 (1967).

Finally, if all possible SVNVM exchanges were per-
mitted, we would expect a further reduction in the value
of the coupling, with our crude estimate of g„„' less
than double its experimental value. This is our first
reason for associating po exchange with the SVXVM.

The above determination of yo now has as its con-
sequence the property that (y, l fl), 0——',, which means
that the forward scattering of (31) and (32) is dominated
by the Regge terms. Writing these cross sections as
proportional to s'~~('~ '&, we have derived an effective
Regge behavior, with an n(t)=1+y„f=,'+(2.2)F(t).
Since F is linear for small t, the intercept n(0) and slope
n'(0) are simultaneously determined by the vanishing
of the polarization. Of course, the numerical value of the
p mass has already been inserted in n by the renormaliza-
tion of Sec. II. Since our analysis is not valid for large
positive t, no statement can be made about rising tra-
jectories. For large, positive —t this trajectory is
dropping logarithmically, giving asymptotic power-law
behavior in the physical scattering region.

In the range 0& 3& 0—.6, -', ~& gol f I
~& 1, and the ~ p

polarization of (30) is negative and also vanishes at
Itl =0.6. These fits are similar to the older Regge
parametrization of the small momentum transfer data, '
and can be realized with about a third of the number of
parameters. In addition, the charge-exchange polariza-
tion, calculated in terms of the amplitudes

A'" = (1/K2) LA (N, t) A(s, t)7, —
8'»= (1/V2) I 8(n, t) —B(s,&)],
c'"=88» —(2m/s

is proportional to

iml A-c-*]-2~n2P/m2)»r
&&»n(~~0 l fl) cos'(2~~o

I fl ) (»)
and is positive in this —t region. The forward charge-
exchange scattering is given by

Fxc. 3. The t-channel p-meson-pole contribution
to x+p scattering.

~G' M) '1—n
A'" —m

v2 p ) I'(u)

) 0.—1

X —2i+
I

L1+e'" ]
sinxn

(38)

It is interesting to note that neither amplitude has
a t-channel pole at n=1; this avoids any question of
double counting, since our original renormalization
assumed that there is a p pole in M~, arising from the
graph of I'ig. 3, which has yet to be considered. These
signatured amplitudes have t-channel poles at alter-
nating integers.

The differential cross sections given by (31) and (32)
contain a dip/bump structure, decreasing in amplitude
as —t increases, with the position of successive extrema
weakly dependent on the values ot s/m'. As they stand,
they are not capable of reproducing the very sharp
falloff of the experimental do/di curves away from the
forward direction. The charge-exchange cross section
given by (36) has pronounced dips, vanishing whenever

yol f I

= 2n+1. It is clear that these simple expressions
are successful only in superimposing a dip/bump
structure upon a mixture of a diffractive, or Regge low
—t contribution, plus a fixed. -pole part becoming signih-
cant at larger momentum transfers. v Finally, the total
cross sections given by (33) and (34) are both positive,
with 0-z (—))O.z (+), but are falling off too rapidly with
energy to compare with the data.

' Were it not for the s dependence of the fixed-pole terms, this
model would be a partial realization of the form suggested by
H. D. I. Arbarbanel, S. D. Drell, and F. Gilman, Phys. Rev.
Letters 20, 280 (1968).The similarity increases when use is made
of (54).

IV. NUCLEON-RESONANCE CONTRIBUTIONS

The polarizations predicted by (29) and (30) have the
unfortunate property of reversing sign as —t increases
past 0.6, while the latest experiments show that the
elastic polarizations retain the sign of their low momen-
tum transfer values. In this section, we would like to
make essentially an arithmetical observation to produce
amplitudes whose polarizations follow the experiments
more closely. One way of understanding such forms is
to consider them as contributions following from the
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and the new C amplitudes are given by

FIG. 4. The s-channel 5++-pole contribution
to x+p scattering.

C(vr+p) =C(u, t)+gC(s, t)+(2m/s)(g &)A—(s,&),
(40)

C(ir—
p) = C(s,t)+ gC(u, t)+ (2m/s) (g —$)A (u, &) .

The new polarizations are proportional to

propagation of the 3-3 resonance, in particular, the 6++,
used in addition to the nucleon pole above. This is not
an unambiguous matter, since we are going to use the
resonance propagator at energies far from the actual
resonance. Aside from a possible awkwardness of too
large an asymptotic growth (of the Regge part of the
amplitude only, since the axed-pole contribution again
shows the special cancellations of the previous section),
the one new —and, for this discussion, essential —feature
of the 3-3 resonance is that it permits s-channel con-

tributions (Fig. 4) to elastic ir+p and I-channel contribu-
tions (Fig. 5) to elastic ~ p scattering. The question of

evading a too large growth has been met with before in

the literature, ' and will not be considered here; rather,
since the motivation is to mix crossed-channel quanti-
ties at high energies, we take the simplest route of
assuming that the amplitudes constructed from the 6++
propagator can be crudely expressed in terms of the
previous nucleon-pole amplitudes, and write for the
now complete elastic amplitudes

A(ir+p) =A(N, t)+ (&A(s, t),
B(m+p) =B(N,i)+giB(s, t),
A(ir—

p) =A(s, t)+t2A(N, )),
B(vr p) =B(s,t)+g2B(m, t),

(39)

where $i, ~ and gi ~ are four real parameters. Crossing

symmetry then requires that (&——(2—= f and pi= ~12=&,

fmLA( -p)C*( -p)j-—~n
X((s/M')»fLg —2 cos(irido[ f[)g sin(myo[ f[)

+(™/~)L2(&—~) —~(1+~/4~')j»n(2~~o[fl)} (4»

and a Inechanism to preserve the signs of these quan-

tities as —t increases past 0.6 is now apparent. Suppose
that the coeKcients of sin(irido[ f[) and sin(2iryo[f[) in

(41) and (42) are all positive. Since [t[ = 0.6 corresponds

to gol f[ = 1, for [tl (0.6 the (s/M')»~f~ terms in each

expression are dominant, providing a situation similar

to that in (29) and (30). On the other hand, for
I

3 [)0.6
the m'/s terms are the most important, and these act
to preserve the signs of the lower —t values. To
guarantee that the coeKcients are positive we require
the conditions

(i)

(ii) $(1+2')(1,
(iii) g) 0,
(iv) 2(&—i1)=0.83',

(43)

which limit ~1 to lie between 0 and 0.3, with ( bounded

by 1/(1+2~))~=v2&.
The total cross sections are given by

op(m p)--,'G'(+7r)(nz'/s)'",

O.r(m-+p) ~-'gG'(Qn) (m'/s) "',
(44)

where both now have the same-order asymptotic falloff

(but still too fast), with or( —))0.~(+).
That portion of the differential cross sections im-

portant for near-forward scattering will be given by

1mLA(ir+p)C*(~+p) j mD'

X((r/~')"'I:1 —(+2(n cos(~vol jl)j»n(~so I fI)
+ (m'/s) (P ~1)(3+//4m') sin(2iryo[ f[)} (41)

and

FxG. 5. The u-channel A~-pole contri-
bution to m p scattering.

C{s.+p) ' ( s )'»r
L1+q' —2g cos(~~0 I f I )3

n &a~i

+2I
I

I

—I(~[1—
& cos(~0[~[)j

I ~')

For example, K. Abers and C. Zemach, Phys. Rev. 131,
2305 (1963).

Xcos(~»l yl)+&»in'(~»l fl)}
(m'

+I —
[ u' cos'(irido[ fl )+b' sin'(syo[ f I )j (46)

&s
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V. y-EXCHANGE CONTRIBUTION

In this section we briefly discuss the situation of
(Nn-Reggeized) p exchange, as the t-channel contribu-
tion to Mrr (Fig. 3). For elastic scattering there are only
the invariant Bp,~+ amplitudes, with Bp,~+= —B,,~,
to be inserted under the integrals of (12):

Bp+(P,P,'P2P2') = — d1( exp%()() da e ' "
2'

Because

X&a,,"")(p1+(1]1(t',p1'+()p&, p2, p2'). (48)

27' (P2+P2 ))-tp, H (P1P1 P2P2 )
=1.(p ',p ', (p -p.')')~." (p -p.')

XI'+(p2', p2", (p1—p1')') (p2+ p2')„
where I'„6,)'"I'+E„denote the (p1]1'X vertex)(the p
propagator)(p)r2 vertex), inclusion of the off-mass-
shell P12, P1' dependence of I'„ is essential if an overly
damped, zero result for (48) is to be avoided; this is due
to the circumstance that any hard amplitude depen-
dence on the variable p1—p1' will be free from soft
effects, so that the parametric a integral produces a
factor of Bo(), and

l
exp%()() l

~)( &«-+0. Use of a
more exact representation for F(t1z (P,t1222) does not
change this situation. Within the present formalism,
which neglects pion SVNVM exchange, this hard

C()r p) ' ( s )'»f
D+~' 2~—cos(~'pl fl)j

O . Empi

t s )»f m2)
+21

I
l(ul-)] —cos(2rvpl f l)1

1M2j s I

Xcos(2rypl fl) bsin—'(2rypl fl))
(m2)'

+l —
l
Lo'cos'(~vplfl)+b'»n'(~plflG (4&)

] si
with

~=2(k —~) —(1+ )(1+t/4 '),
b = 2(P—)])+(1—„)(1+t/42)2') .

These forms display the previous property of a function
gradually changing from a Regge to a fixed-pole regime,
as t incre—ases. However, the introduction of the P, )]

parameters changes the previous dip/bump structure,
and rough estimates suggest that the fully amalgamated
amplitudes of Sec. VI can be made to yield the experi-
rnental wiggles of da/dt, especially near the dramatic
dip at ltl 3 BeV2 in )r p scattering. It hardly needs
to be emphasized that the use of these $, )] parameters is
quite crude, and that a better estimate of the 6++
contributions is needed.

t-channel amplitude does not provide the natural cutoff
for the virtual NVM momenta, and one must either
resort to the methods of I or introduce off-mass-shell
structure for the pEE vertex.

We discuss the second possibility 6rst, and in the
simplest context, where one sets

1.(P",P.",(P.-P ')')
=y ]12(+2+p1 —Zb) )I (g +p1~ —Q) 2l 2 p,

and 6nds

B,~-p]/„)»fr(1 —ppf)b, +(t) cos(-,~&of)el »r'"', (49)

where b,+(t) are the ordinary Born approximation
t exchanges, with bp+= —bp . The cutoff A, which has
been assumed large, ]]/)1))1, in arriving at (49), could
now be evaluated in terms of the constant asymptotic
limits of the total cross sections, provided that opposite
phases are assigned to m.+p and vr p; but it is hard to
understand and justify this assignment, since the p
propagator is supposed to separate the details of the
pEE vertex from those of the pxm vertex. Assigning the
same phase to both Bp+ removes this objection, but
makes one of the two total cross sections come out
negative, and is also hard to reconcile with crossing
symmetry, which involves a complex conjugation and
suggests that these phases are opposite. One might
imagine that a better calculation of the exchanged p,
taking into account its structure, would generate an
answer in which the term (1V]1)&«of (49) is replaced by
an energy-dependent factor such as (s/)12)»f, thereby
removing the crossing objections to the same phases;
but then one would 6nd an asymptotically decreasing
contribution to Oy.

In contrast, it is easy to imagine how the inclusion of
SVNVM exchange between nucleons and pions can
produce the necessary phases, and this is our second
reason for associating meson resonances with the NVM
exchange. To see this we now revert to a crude type-I
calculation in which the NVM momenta are cut off by
hand; the amplitude corresponding to Fig. 3 would then
be written as

P +(t) = svNNf(')b +(t), (So)

where F and F ~ denote two-particle "phase-space"
integrals analogous to the FNN of (8), but containing
both pion and nucleon mass in F z and only the pion
mass in P . The signs of the y ~ terms in the exponent
of (51) are opposite, because 2r+ an. d 2r couple to pp with

with 7—(gp2/8)r2) ln(1+t1,2/]12) and ]1, the effective
cutoff. This Bp+ is a real quantity. In order to obtain
phases, we imagine SVNVM exchange in all possible
combinations; in the spirit of this approximation, one
would write

+(t)& YNN]NNN(t) I NN(PP )]+7«[r«(&)—Z~~(PP)]-
P P

Xs+2&NN(N~N(~) —N~N(')] (g1)
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opposite signs. Equation (51) is merely the transcription
of the results of the pp calculation of I to this somewhat
more complicated case, using a different y for po exchange
between EE, E7I-, and mz. Note that the calculation is
independent of the renormalization point of the s- and
u-channel SVNVM, because these soft effects appear in
the combination f sr(u) f rr—(s) =F ~(u) —F tv(s).

We may reasonably take a minimum value of p»
from the nucleon-form-factor estimates of I, y~~ 2.5.
Neglecting very small contributions coming from the
structure of the p resonance itseU, the phases of (51)
result from ImF (tt, ') s and ImF rr(s) vr for s))stt',
so that

ImB p+ sin(rc 2vr—y sr+vry )b p+

Mg'Y~, y PX&(&)—&AN(P p )]gyvrvr ll' (&)—«I" (P )]
P

&&e+sv.rr P' rr[~1 «r" rr[—8)1 (52))

and we must now 6x the relative magnitude of y ~ and
. These numbers reflect the ease with which virtual

po's are emitted by pions and nucleons in this crude
cutoR calculation, and one has the intuitive feeling that
this eRect should be far more appropriate for nucleons,
or y~~&)y ~&)y . In this case, ImB,+ will be essen-

tially proportional to sin(2' si), and B,+ will be
almost imaginary if y~z=s+sn To k.eep the in-

equality strong, p»))y„~, we take the smallest y &
value of ~~.

Recent experiments on the pion's electromagnetic
form factor' suggest that y is small. This is because
a factor ev-~"['1 1+(y /3rrt ')t would modify any
calculation of the hard part of the form fac-
tor near —t 0, producing a correction of order

[1+(y m, '/18tN ')]"' to previous p-dominance esti-
mates of the pion rms radius. Since the experimental
upper bounds are only slightly larger (&10%) than the
estimates, we conclude that p is very small indeed.
One expression of this difference in magnitude, which
takes into account the different emission probabilities
in a crude way, is given by a "factorization" hypothesis,

y~~. Combining such a guess with the previous
numbers leads to y 1/40, which is sufficiently small
to keep L1+(y m, s/18m ')]'r' from exceeding unity
by about S%%u~. A larger y 0.1 can be accommodated
in the same way. While the pion-form-factor experi-
ments are suggestive of a small rms radius, they are by
no means conclusive, and it may be that a larger y
is appropriate. For the 0-p estimate of this section, y
has been assumed zero.

In the asymptotic region, F 1v(u) ReF iv(s), so that

B,+-wib, +(t)

~evrrrr [sNrr [t) Fire [up')[+vw~ [s ~w—(t) Res'~+[up')1 (53—)

An excellent review of the experimental situation has been
given by K. Kang and M. WidgoG (unpublished). Recent esti-
mates of the pion rms radius may be found in W.-S. Lam, Ph. D.
thesis, Brown University, 1969 (unpublished).

Since ar(&) Imc(&)
~

r—p in the true asymptotic
region we pick up only the contribution of 8,+, acting
as our Pomeranchuk exchange. ' If

b,+( f)=~g...'/(m, s —t),

this means that .(~)
B +-+i ~gag~&NN (&)+y & (&)

P

1—t/'ns, '

where, with g, '/4s. 2.2, rrr is determined as

2
gp7rm'

(~)~ e virrrs'irrr[sr 3~10 mb
2$$p

(54)

(55)

which compares favorably with the experimental values
of 25 mb. In eRect, the SVNVM have provided the
phase which then permits this Born approximation
estimate of the (maximum) rrr. Of course, the preceding
steps really need to be justified before one can attach
numerical significance to (SS), but it is gratifying that
the order of magnitude is correct. It is amusing to note
that a change of renormalization point, from f=+tt, '
to t=0, raises the estimate of (55) to 17 mb. The
inclusion of other hard-resonance exchanges would have
the same effect, as would a nonzero value of y in (51)
and (52); a y 0.4 yields a mrs 25 mb.

VI. AMALGAMATION AND SUMMARY

The next step in this analysis is to combine the separate
parts of the scattering amplitude discussed in the pre-
vious sections, and choose a handful of parameters in

order to make a comparison with the data. Attempts at
detailed fits using the exact kinematical expressions for
P and do/dt as well as the exact forms of (22) and (26)
are in progress and will be reported separately. Here one
follows the procedure of using a type-I calculation for
SVNVM exchange between pions and between pions
and protons in the nucleon direct-channel terms and
everywhere in the t-channel exchange as in Sec. V. For
simplicity, we here omit dependence on y „and 7~~,
except that these constants provide the identical phase
contribution to every term, as in (52). Thus, with
e ""/.& Wi, we have

A (w+p) i [[A (u, t) +—&A (s,t)],
A(s.—p) +i(A(s, t)+(A(u, t)],
B(vr+p)~ &Tb [+)(t)evrrrr[rsrrr[r) —s'rrrr[mr )1

+B(u,t)+r[B(s,t)], (58)

B(& p) +.&p [ )(t)evrr—rr[J'rrx( 1
—s'rrrr[~r'11—

+B(s,t)+r[B(u,t)]. (59)

"A corresponding p-exchange I= 1 contribution appears
in the charge-exchange amplitude defined by 8; = (1/V2)
PB,+ 8, g, bnt has the nice prope—rty of vanishing in the forward
direction; this is simply due to the structure of (53) and
(54), with F(N) —ReF(s)~~t~/s for s&& t, nss, so that 8;*—
~(s/v2)or (1—t/rrtr ) 4v rr((t ~ /s) exp[r'vrrtrFrrrr (t)+v,F (t) g
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The common i f—actors of (56) and (58) will have no
effect in the do/dt and P computation of n+p scattering,
while the +i factors of (57) and (59) have no effect on
the ~ p processes; the total, constant, asymptotic cross
sections are still equal and given by (55).

One should note that all of the preceding operations
and considerations can be carried through if a phenom-
enological pseudoscalar-pseudoscalar pion-nucleon inter-
action, 2 =ipse, ~ ~ip, is used in place of or in addition
to the axial-vector interaction of Sec. III, and this
introduces one more parameter, g, into the ampli-
tudes (56)—(59). Having chosen p' p,,', yo 2.2,
g, '/4m 2.2, and with o.z 25 mb, we then have five
parameters to specify: g, 2mG—=gz, $, g, and y».
Speaking qualitatively, the p» dependence acts to
damp out the t-channel exchange contribution as one
moves away from the forward direction, just as the
Regge behavior dominant in the direct and resonance
nucleon terms provides damping as

~
t~ increases; the

difference between these styles of damping is that the
latter displays shrinkage while the former does not, and
whether or not the complete amplitude shrinks depends
upon the relative weighting of the individual pieces.
The comparative flattening out of the observed 7r p
elastic cross section, after the minimum at

~
t~ 3 BeV'

is in this model given by the emergence of the Axed-pole
parts of the amplitudes, with order of magnitude given
by the g, gz dependence (multiplied by the previously
neglected y ~, y non-Regge damping, common to all
parts of the amplitude). Crude estimates suggest that
the dips and bumps in this relatively Rat portion of
do/dt are in part controlled by the g and g parameters,
while the N-channel part of the fixed-pole dependence
generates a small backwards peak. The question of
polarization sign preservation is now far more compli-

cated than in Sec. IV, and we defer further comments
until the detailed calculations have been completed.

Whether this model can be taken seriously, and, in
particular, the sects of a better treatment of resonances
and vertices, is clearly a matter for more detailed com-
putation. There are certainly many more hard ampli-
tudes which should be considered, but it would be a
pleasant economy if just the simple Born terms written
here were sufhcient to give a good fit to the elastic and
charge-exchange data. An economy of another sort has
been demonstrated in this paper, in the sense that
effective Regge poles in ~p scattering have been gener-
ated using a slightly refined calculation based upon the
same physical model which gave, in I, a single-param-
eter qualitative 6t to the pp data.

Note added in proof. It should have been stressed that
the method of renormalization used in this paper was
chosen because it produces something resembling a p
trajectory. The alternate method used in I would have
retained g= —1+7 in the s- and N-channel amplitudes,
and required multiplication by a constant exp', which
these calculations estimated to be 10. The present
renormalization goes beyond the ordinary multiplica-
tion by constants, and is an s-dependent effect which
changes the output Regge parameters into those 'of the
phenornenological p exchange.
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