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The addition of a meson to the 2V sector of the Lee model provides an opportunity to study collision
problems involving two composite particles formed by the exchange of one and two such mesons. Following
Amado, we give a dispersion treatment which avoids five-particle intermediate states, but previously ex-
cluded four-particle states now make their appearance. It is found, as in the recent three-meson example of
Bronzan, that the dynamics reduces to the solution of a Fredholm integral equation in one variable brought
about by a factorization property of the connected S matrix in the 2V sector. Similarities and differences
between the two cases are pointed out. Dispersion-theoretic investigations of the one- and two-meson
exchange interactions of two nucleons in crossing-symmetric static models, and the scattering of a meson by

these nucleons are indicated for future consideration.

I. INTRODUCTION

N preceding papers'™ we have presented, from sev-
eral viewpoints, the complete solution of the 2V
sector of the Lee model with boson sources at zero
separation. Hereafter, we refer to this subspace as the
two-meson sector.* With this solution at hand, it is
natural to inquire into this system after adding another
meson. Thus this paper is concerned with a three-meson
sector. Similar higher-sector work has been carried out
by Bronzan® who introduces into the Lee model a third
static source U which couples to the original V particle
together with a meson. In fact, our case simulates the
dynamical situation considered by that author without
the introduction of the third particle. However, we are
forced into mathematical details of greater complexity
which tend to thwart our desire to simplify the final re-
sults as much as possible. It is of some interest that
these studies implicate many-particle intermediate
states. For example, the two- and three-meson sectors
contain four- and five-particle intermediate states, re-
spectively. Admittedly, in each of these states there is
a considerable simplification since two of the particles
are of the IV type. Nevertheless, these investigations
may provide insight into less tractable composite par-
ticle problems more closely descriptive of the physical
world.

We wish to examine the three-meson sector within
the framework of dispersion theory. For this purpose,
we adopt the computational scheme devised by Amado®
in his calculation of the elastic scattering of a meson by
the V particle. Previously,! we applied this approach to
the elastic scattering of a meson by the VIV system and
found that it was necessary to contract the composite
particle representing the VN bound state. That problem
was solved by operating with the product of a ¥V and
an IV operator in the usual asymptotic definition of a
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state. In this way, and with the help of certain knowl-
edge gained earlier in the Tamm-Dancoff formalism,?
we achieved a dispersion solution of the (VV)# elastic
scattering amplitude which circumvented intermediate
states containing four particles. In the case at hand,
which deals with the transition amplitude for (2V)6
elastic scattering, we contract the 2V composite particle
by operating with the product of two V operators in
the asymptotic state. This time we avoid intermediate
states carrying five particles, but the previously ex-
cluded four-particle states now make their appearance.
From this, one might conclude that the dynamical de-
scription of the three-meson sector is given by integral
equations in two variables. It turns out, however, that
the fundamental equation is an integral equation of the
Fredholm type in one variable. The reason for this is
found in a factorization property of the S matrix in the
two-meson sector. This property also emerges in the
two-meson solution of the charged-scalar theory” and in
the V@ sector of the Lee model.58 A detailed discussion
can be found in these references.

As already mentioned, it is desirable to capitalize on
the general relevance of our work to other composite
particle problems more closely approximating the real
world. In this direction it is of interest to consider static
models with crossing symmetry. In a separate paper we
plan to study the role of this principle in the charged-
scalar theory of two source particles corresponding
roughly to the neutron and the proton. We would first
seek the one- and two-meson solution of the associated
“deuteron’ problem. In light of the present paper, we
could then go on to explore the process of elastic meson-
“deuteron’ scattering.

In Sec. IT we reexamine the dispersion approach to
the one- and two-meson sectors. It is shown that the
solution in the latter case reduces to a consideration of
the transition amplitude ¥ for the elastic scattering of
a meson by the VIV system. Having already secured this
amplitude using Amado’s procedure, we now choose to
follow Ref. 5, which leads us to a Low-type equation

7 J. B. Bronzan, J. Math. Phys. 7, 1351 (1966).
8 J. B. Bronzan, M. Cassandro, and M, Vaughn, Nuovo Cimento
46, 128 (1966).
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1 THREE-MESON PROBLEM

for ¥. The solution to this equation is obtained via the
analytic properties of an auxiliary function constructed
from ¥ and the amplitude for (2IV)@ elastic scattering.
In Sec. IIT we undertake a study of the three-meson
sector, in particular, the S-matrix elements character-
istic of the (2V)6 channel. These elements are presented
in terms of two associated amplitudes which, in turn,
are determined by the solution of the fundamental
equation in the theory. The contents of this section in-
clude a brief account of the diagonalization of the S
matrix in the 2V sector. The final section contains some
remarks on the relation between the calculations per-
formed in this paper and those in Ref. 5. It concludes
with speculations on future problems involving two
static sources.

II. ONE- AND TWO-MESON SECTORS

Of the various methods® applicable to solution of the
Lee model, it is particularly characteristic of dispersion
theory that one utilizes amplitudes previously derived
in lower sectors in order to discuss higher ones. For this
reason, we first include a brief review of the dispersion
analysis of the one- and two-meson sectors before pro-
ceeding to the three-meson case under consideration in
this paper. A similar situation occurs in the dispersion
formulation of the three-meson example recently treated
by Bronzan®. Indeed, it is hardly necessary to point out
that two V particles are equivalent to his U particle
insofar as they both communicate with states involving
two mesons.

We begin with the S-matrix element describing the
collision between one meson and two N particles. By
definition, and with one contraction, we obtain?

(2N 6y | S| 2N6)= (2N6y, out| 26, in)

=0+ 2mid(0 — o ) X (W) M (0), (1)
where the transition amplitude M (w) is given by
M(w)=X"Yw)(2N| 7| 2N, in). (2)
This amplitude satisfies the Low equation
M=— / ww @®)
w—wy TS, o' —w—1e

which is readily established by contracting the remain-
ing in-state;;meson. The’,Chew-Low solution of this
equation, that is, the one without Castillejo-Dalitz-
Dyson (CDD) poles,! may be written as

M (w)=—2¢°/G(w), 4)

9 A comparison of three such methods has been given by M. S.
Maxon, Phys. Rev. 149, 1273 (1966).
. 1 We follow, as closely as possible, the notation of Ref. 1; p(w)
is used as an abbreviation for kf2(w)/4ar.
(l;’ig). Castillejo, R. Dalitz, and F. Dyson, Phys. Rev. 101, 458
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where the denominator function G(w) is defined by

G(w)=20[1—B(w) H+Zomy —Ze. (5)
The function 8(w) has the integral representation
g ®  ple')do’
Blw)=—— (©6)

T Ju w'Z(w'—w—’ie)’

while the V-particle self-energy and field operator
renormalization constants are known to be

g [*p(w)dw g 7 p(w)do
my=— | ——, Z=1—— [ ——. (7)
w2 Ji w T Ju

The VN bound-state parameters wy and Z, are de-
termined by the conditions G(wo) =0 and G’ (wo)=Zo72,
respectively; the prime denotes differentiation. Upon
subtracting G(wg) from Eq. (5), we can give G(w) the
useful form

G(w)= (w—wo)a(w), (8)
where , W)
2g ® p(o)dw’
alw)=Zi 2+ —(w—wo .
( T ( ),/,. (o' —w0)2(w’ —w—1e)

In this way the root of G(w) is factored out and we en-
counter the function a(w) which has a cut for py<w< o
and no zeros or poles in the cut plane. It can be shown
by contour integrations that

1~ Ime(w)de’
alw)y=2Z+ - / , (10)
TSy o —w—ie
while
202 1 0 dw'
)= —2 4= / Im[G1()]——— . (11)
w—wy TS, o —w—1e

The amplitude M is related to the corresponding phase
shift # for this scattering by

e¥1@d=1+42ip(w)M (w). (12)

Next, we turn to the two-meson sector. In analogy
with V8, this case embraces two elastic scattering ampli-
tudes, a production amplitude, and a bound-state
problem, all of which have now been studied by the
Lehmann-Symanzik-Zimmermann (LSZ) formalism,?
the Tamm-Dancoff approximation,? and the methods
of dispersion theory.! It remains for future investiga-
tions to apply such approaches as the N-quantum ap-
proximation!? and the algebraic technique of Bolsterli!?
to the dynamics of the two-meson sector. In all of these
applications one must incorporate the necessary modifi-
cations required by the introduction of two nontrivial
source particles.

The S-matrix in the two-meson sector can be deter-
mined in terms of the transition amplitude ¥. We recall

12 A, Pagnamenta, Ann. Phys. (N. Y.) 39, 453 (1966); A.

Halprin, Phys. Rev. 172, 1495 (1968).
13 M. Bolsterli, Phys. Rev. 166, 1760 (1968).
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that
<B00k1 !S’ Boﬁk)= <B()01¢l, out , B(,Bk, 1n)
= 8w+ 2118 (0 —0) X3 w) Y (w), (13)
where
Y (w)=X""(w)(Bo| 7| Boby, in). (14)

The bound state of the VNV system will be treated as
a stable particle, called By, with energy 2m—+wo. To fill
out the scattering matrix we must also have the ele-
ments describing the remaining elastic collision and the
production process. These are readily found to be

(2N 64,01, Sl 2N 0x,0r,)
= (2N0k40k3, out] 2N0k20k1, 1n)
=1{2Nby,, out[ 2N 6y,, in><2N0k4, out] 2N 6, in)
+%<2N0k3, Out’ 2N0],;1, in)<2N0k4, outl 2N01¢2, 1n)
+ (Zwi/ﬁ)a(w4+w3 —w2 —wl)X(w4)X(w3)X(wz)
XX(wl)e”"“"a)@o(ws,wg,wl) (15)
and
<2N0k30k2 I SlBﬂokl)
= (BoOr,| S| 2V 61,0,
= (2N 0x,05,, OutlBookl, in)
= (47ri/\/7)95(w1+w0—wz—-wg)X(wg)X(wz)X(wl)
Xez"’l("’ﬂ),'No(wz,wl). (16)
A comparison between the above Eq. (15) and Eq. (102)
of Ref. 1 shows that

Qo(ws,ws,w1) = @(ws,ws,w1) — (1/V2) X~ (w2) M (w01) S5
—(1/V2) XY w) M (w9)rys, (17)

where the amplitude @ differs from an ordinary transi-
tion amplitude by having in-states on both sides, that is,

@ (w3,w2,w1) = X Hw3s) X1 (wz) X 1(wi)

X (2N 8, in| 72N 0461y, in), (18)
while the “associated” amplitude @, is obtained from @
by removing the disconnected parts as in Eq. (17). In
Eq. (98) of Ref. 1, the production amplitude ®(ws,w1),
defined as

®(wzy01) = [XHw2) X (w1)/29]

X (2N 6y, out|j|Bofy, in), (19)
is related to the amplitude N (w2,w;) which has in-states
on both sides,

N (wa,01) = [ X ws) XN w1)/22]

X (2N, in| j| B, in), (20)

@1

according to
P (wa,w1) = 21 @D N (wg,001) .
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When the disconnected part of N(ws,w;) is separated
out, we arrive at the “associated” amplitude

No(wz,w1) =N (we,w1)+ (gV2Z0/20) X~*(w1) dtyry, (22)

appearing in Eq. (16). On substituting No(ws,w1) for
N(ws,wi) in Eq. (16), one must note that the second
term on the right-hand side of Eq. (22) makes no con-
tribution because of energy conservation. It is straight-
forward to show that the associated amplitudes
No(ws,w1) and Qo(ws,we,w1) satisfy the coupled Omnés-
type integral equations

No(ws,w1)

oz 1
- EZ{Y(«:)—M@)]( +

W2 —Wo

) wl—wg—{—ie)
+- / 104 sinn ()N ofa01)
T™Jp

1
x( +

wtwe—w; —wo— 1€

)dw (23)

w—wat1e
and

Qows,wz,w1)

= —2¢7 QN o* (w1, w1+ws —wo—7€)

1 1
o )
wo—ws  wstwo—we—wi—1e

1 00
+ - / €@ siny(w) Rolw,ws,w1)
e

1
X( +

w—ws+1€e

)dw. (24)

wtws—we—w;—1e

In arriving at Eq. (24) we have employed the fact that
the function R(ws,w1), defined in Ref. 1 by

R(wg,wl) = X—l(wz)X—l(w1)<Bo ' ]' 2N0k20k1, in), (25)
can be replaced in the theory by
\/Z—QNo*(wh w1+w2—wo—ie) .

This relationship'is analogous to that appearing in Eq.
(11) of Ref. 5.

Using the results found in Ref. 1 for N(ws,wi) and
@ (ws,w2,w1), or else solving Eqs. (23) and (24), we can
write expressions for @o(ws,we,w1) and No(ws,w) which
exhibit their dependence on ¥(w). These are

gV2G(wy)[ ¥ (w1) —M (w1)]

No(wa,wi) =

(26)

297 (G* (w2) G (w1+wo—w2)

and

MG(w1+w2—wo)R(w2,w1) _ g2\/262(w1+w2—wo)[Y(wrl-wz—wg) '—M(w1+w2'—wo)]

@o(wa,wz,wﬂ =

ZG* (w3)G(w1tw2—ws)

(27)
Zo2G* (w3)G(w2)G(w1) G(witwa—ws3)
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This shows that the complete solution of the two-meson scattering matrix reduces to the solution for ¥ (w). Let us
recall that in using Amado’s procedure for obtaining this amplitude we encountered the scalar product (2y| B¢, in),
where the bra vector denotes the normalized bare state of two V¥ particles. Since we had previously solved for the

_bare-state expansion of |Byf;, in) by the Tamm-Dancoff method, we were able to evaluate this product at once
without studying it any further via the contraction technique which would have only complicated the situation
by implicating intermediate states that we were trying to avoid. Instead of following Amado and contracting B,
from the left in Eq. (14), we could have chosen to contract the in-state meson. This procedure leads to the Low

integral equation

- T L [ A
n

wW—wo

w—A T w—w' —1e

+< g >2 o /‘” p(@No(w") |G+ —wo) | 2] V(o' +o’" —wo) — M (o't —ewo) | 2de’do’”
7I'Z() u u .

» (28)

|G(@) 2] G(o") |2+ —w—wo—ie)

which can be solved by the analytic method introduced
by Bronzan in the two-meson solution of the charged-
scalar theory. In developing Eq. (28), we have sub-
stituted into the integrand of the double integral an
expression for the square of the magnitude of R(w',w’)
which may be read off from Eq. (27).

The vertex T'o=(By| 7| B) was found in Ref. 1 to be

To=—(gV2Zp/Zo)[1—-Z°G(A)A(A) T, (29)

where Zp is the normalization constant of the physical
2V bound state |B). We let A=wp—uwo, where wp is the
energy of interaction associated with this state. It is
also useful to recall the eigenvalue condition

D(wB)E Z2(w3 —Zamv)[l —Zo_zG(A)A (A)]

+ZG(A)=0. (30)
The integral function 4 (w) is given by
1 p 1 \ do’
Aw)= - / Im( NI
TJu G(w')/G(w-l—wo—w')

As in the case of G(w), it may be convenient to factor out
the root in D(w—+wo) by subtracting D(wg)-
To solve Eq. (28), let us introduce the function

Flw)=go—w)[T ) =M )],  (32)

the analytic properties of which follow from Egs. (3)
and (28). It is found that F(w) has the discontinuity

F(o+1ie) = F(w—1e) = 8ig(w—wo) E(w) (33)

across the cut beginning at 2u-we and that there is no

cut beginning at u. The integral E(w) has the form
g et p(e)p(wtwo—w)de’
w2y / |6() 2| Glotwo—a)|*

The right-hand side of Eq. (33) vanishes at the high-
energy limit. At the values wy and A, we have
Flw)=2, w=wy
=2(A—wo)G71(A), w=A. (35)
Under these conditions, together with the assumption

that F(w) approaches a constant at the high-energy
limit, we obtain the representation

(0—w0)(ZZo)72

E(w)= (34)

Flw)=Z¢— F(w—w))C(w), (36)
w+wo—25mV
where C(w) is defined to be
4g2 o F(w)de
Clw)= * / ——(——— . 37
T Jopwy 0 —w—1€

It is immediately obvious that this expression for F(w)
yields F(wo)=Z,? and Eq. (33), while F(A) can also be
verified at sight with the help of the connection between
the known functions 4 (w) and C(w). From Egs. (11) and
(31), we find

1+ 202G (w) A (0) = Zo*G(w)/ (w—wo) + G(w)C(w) .  (38)

Using this relation and the definition of D(w=wo), we
see that

Flw)=

Z 2D (w+wo) —2Z 52 (w—wo) + (w0 —w0) C(w) D(w+wo)

(39)

D(w+two) —Z¢2G(w)

Thus F(A), as given by Eq. (35), follows at once from this form of F(w). It remains only to unite Eqgs. (32) and (39)

to secure the amplitude

g2M (w) [ZO2D(w+w0) —‘ZZ()—Z(O) —wo) + (w —wo)C(w)D(w+wo):]

Y(w)

- (w—wo) M (w)[D(w+wo) —Z()_ZG'(LO)]+g2[Zo2D(w+wo) —27Z (0 —w0) +(w—w0o) C(w) D(w—+wo) ] |

(40)
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We can eliminate C(w) from Eq. (40) by means of Eq.
(38) to obtain the more convenient expression
2Z 0"26(0.))
D(w+wo)[1—ZiG(w) A (w)]
1+72G(w) A (w)
ey,
1-Zi2G(w)A(w)

V(w)=M (w)(

which agrees with that found by other methods of solu-
tion. On multiplying both sides of Eq. (41) by the factor
(w—wo) and taking the limit as w — wo, we arrive at the
residue 2g%7,? as expected from Eq. (28). Similarly, the
residue at the pole w=A is calculated to be

2 2
Eﬁ V(w)=— (Z_g> {ZA1—-ZG(A)A(A)]

0

+ZG (A)+ 2 G (M)A ()} (42)

This quantity is derived from the first term on the right-
hand side of Eq. (41) by factoring out the root in
D(w+wo). In Ref. 2, Eq. (54), we have shown that the
inverse factor in Eq. (42) is equal to the inverse of
275 1—Zi2G(A)A(A)]? and thus, in accordance
with Eq. (29), it follows that the residue of Y(w) at
w=Ais equal to —T'¢% in agreement with Eq. (28).

Having completed the two-meson scattering matrix,
we now go on to study the three-meson sector—in
particular, the S-matrix elements involving the (2V)6
channel.

III. THREE-MESON SECTOR

In this section we concentrate on a dispersion formu-
lation of three collision processes, namely, the elastic
scattering of a meson by two V-particles in static inter-
action at zero separation, and the production of one and
two mesons by these particles. The two 7 sources will
be treated as a stable particle, called B, with energy
Ep=2m+wg. Owing to unwieldy mathematics, we shall
restrict ourselves to a somewhat formal consideration
and shall not attempt to express the final results in their
most simplified forms.

ToVi(w) N 1 ® o(w")P(w')Valw w)de
w—A V2 ,/,-, o' Fw—A—w,

®(w) =

LEONARD M.
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Since our calculations proceed along the lines pre-
scribed by Amado, it follows that we must contract the
B particle in order to make progress beyond the initial
meson contraction in the elastic scattering matrix ele-
ment. For this purpose we introduce the product
operator'* yp=yyy/ZpV2 and its corresponding cur-
rent operator

() =[Hs() ]+ 2m—+wp)p(l) = (wp—25my)¥s(1)
—(gv2/ ZZB)'Pv(t)lPN(i)% X(w)ar(®). (43)

The definition of ¥z is such that the matrix elements
(0]¢¥p|B)=1 and (0] fz| B)=0. The former property is
seen at once in Eq. (64) of Ref. 1, whereas the latter
follows from Eq. (43) and the bare-state expression for
| B) given in Eq. (42) of Ref. 2. We find

0] fz1B)
=27 Z(wp—206my) —gV2 % X(@ei(w)], (44)

where ¢1(w) is the expansion coefficient in |B) associ-

ated with the bare states containing all three particles

V, N, and 6. The vanishing of this expression is predicted

in the Tamm-Dancoff treatment by Eq. (43a) of Ref. 2.
Let us now consider the S-matrix element

(Bek’ lSl BH]C)"—‘ <B€kl, out[ Bﬁk, 1n)

=0+ 2m10(0—0') X 2(w)B(w), (45)
where the transition amplitude ®(w) is defined by
B(w)=X"Yw){B| j| By, in). (46)

Using the usual asymptotic definition of a state, we con-
tract the B particle on the left to get

0

e P50 | [ f(0),/10(2) | BOx, in)dr. (47)

—0

®(w) =iX~1(w)

The equal-time commutator [¥z,7] resulting from the
differentiation of the step function vanishes. In the
usual way, we introduce intermediate states and make
time translations to obtain

1 ® o(w) V1) B1(w’ ) dew’ n l @ % p(wi)p(ws) Val(wi,ws) Ba(wi,we,w)dwidws 48)

T ,/;, W' —A w2 _/; ,/,, w1tws—A—wy ’

Here we have introduced the definitions

Vi(w)=X"Y(w){0| f5| Bobs, in), (49a)
Va(wi,ws) = Va(wa,wr) = X W w1) X (w2){0] f5| 2N 01,6s,, in), (49b)
Ba(wr,w2) = X Hwn) X~ (w2)[(Bobey, in| j| BOsy, in)—Todiye,], (49¢)
Ba(wy,w2,ws) = Ba(we,w1,ws) = X W w1) X ws) X (ws)[(2N 6k, 0k,, in| 7| Bbiss, in) '
— (Bkye/VZ)(2N Oy, in| | B)— (8uqns/V2){2N b1y, in] 7| B)]. (49d)

14 The fdctor of 1/v2 in the definition of ¥ was inadvertently omitted in the concluding section of Ref. 1.
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The matrix element (2N 6;,in| j| B) is defined in Ref. 1 as X(w)P(w). There it was found that P(w) satisfies an in-
homogeneous integral equation, with the same kernel as in Eq. (23), having the solution

P(w)=gl'V2G(A)/ ZG*(w)G(A+woi—w) . (50)

Thus the amplitude ®, has disconnected parts to be removed in its definition, whereas the corresponding function
A48 of Ref. 5 has no such terms.

The vertex functions V1(w) and Va(w1,ws) can be calculated at once by appealing to the bare-state expansions for
| By, in) and | 2N 6y, 05,, in), which are given in Ref. 2. In this way we obtain

Vi(w) =2V2g(A—w)/ZoZpD(w+wy) , (51)
and
2V2g2(A — w1 —wetwo) G(w1+w2 —wo)
Va(wi,wse) = . (52)
Z¢*Z pG(w1) D(w1+w2)G(w2)

It is also of interest to consider a pure dispersion-theoretic derivation of these functions as this leads to the problem
of diagonalizing the connected scattering matrix of the two-meson sector. In fact, we shall need this matrix later
on. At the same time, this approach provides a check on Egs. (51) and (52). Application of the contraction tech-
nique to mesons in V7 and V; yields the following pair of coupled singular integral equations:

gZNV2 1 2 p()[V*()—M*(')]
Vilw)=— oty = / _ Vie!)des
ZZp TJa W —w—1ie
1 p(wi)p(we) R*(wi,ws) Ve(w,we)dwidws 1 2 e~ siny(w’) Vi(w')dw' (53)
/ / w1Fws—w—wo—1e T /,: o —w—1ie
and
M(w1) gZoVi(w1) QV2 = p(e)No*(w1,0")Vi(w')de'
Vz(wl,wz) = + R
3\/_ we—wo e O Fwo—wi—we—ie
p(w')p(w”) Qo* (w1, I,wll) Vo' ") de de’ N 1 fm e sinn(w’) Va(w,w')de 6
- . 4
1r2\/— / / o't —w1—ws—1e T Ja o —ws—ie

The first of these equations has been modified by the addition and subtraction of the last term on the right-hand
side. This term and the last one on the right-hand side of the second equation can be removed by treating the re-
maining terms in each equation as some unknown function. Standard methods then give

24 o\/_ p(@")LY*() =M *(') IV 1(e)a* (') do
Vilw)=—
i) Zga (w) mo(w) ,/ o —w—ie
/oo 0 p(w')p(w")R*(w',w”) Vﬁ).(wl,w”)ﬂ* (w/ 4o —wg)dw'dw” (55)
w2a(w) ,/ o' o —w—wi—ie
and
M (w1) gVi(wr) V2 % p(w)No*(w1,w) Vi(e)a* (o +wo—wi)de
Va(wi,we) = X
Zpo(w)V2  ZG(w2) wa(ws) Ju o Fwo—w;—ws—1e
" p(@)p (@) Go* (w1, r’w//) Vz(w' ")a*(w'—l—w" —w1)de'de’!
R -
72V2a(w2) & o’ —w1—ws—1ie

On substituting Eq. (55) into the second term on the which shows that V; and V, are not independent func-
right-hand side of Eq. (56), we are led to the relation tions. Of course, this result is already present in Egs.
(51) and (52), and reduces the problem to finding one
4G (0014003 —00) V(01 Fwa—ao) unknown function of a single variable. We let that func-

Valwnws) = (57) tion be
ZG(w)Glw2) ’ V(w)=a@)Vi(w), (58)
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and rewrite Eq. (55) as
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Viw)=—

’ .
B ™ W —w—1€

It will now be shown that Eq. (59) is actually an
Omnés-type singular integral equation. To achieve this,
we must diagonalize the connected .S matrix S¢ of the
two-meson sector. This matrix has the factorized form
S¢=SpSSp, where Sp is the diagonalized, unitary, dis-
connected S matrix, defined in terms of its matrix
elements

<B0wIISDlB()w>= 6(&)—00’), <2Nw1w2]SDlBow)= O,

(2Nwiws| Sp | 2Nwsws)= 2~ (@)—in(we)
X [6(w1—ws)d(wa—wa)+ (w1 —wa)d(wa—ws) ],

(60)

where the states | Bow) and |2Nwiws) have the represen-
tation

27|'2 1/2
lBow>=<k—§> % 8(w—a) | Bbi),
w ’
2w 272 \ 12
l 2Nw1w2> = ( )
k1w19 kzwzﬂ

X% % S(w1—w)d(we—w’) | 2N6:0:); (61)

these states are normalized to § functions of energy. The
problem of finding the eigenvalues of S¢ requires its
matrix elements with respect to the states in Eq. (61).
When written out, these elements express a factoriza-
tion property which enables us to show that the eigen-
value equation

Sc,w,)\)= >‘le>‘> ) (62)

with energy w, and with |w,\) given by the form

]w;>\> = Cl(w:)‘) l BO“’>

wtwo—p
+/ Co(w',w,\) | 2N, wtwo—w')de’,  (63)
m

has precisely two eigenvalues, say, A\; and Ag, distinct
from unity, these being the roots of

A2 —2M{1+1ip(w) ¥ (0)+iG* (@)Y () —M () JE(w) }
+2iG¥(w)[ ¥ (@) —M ()]
X e21@) E(w)+2ip(w) ¥V (w)+1=0.
Noting that the product of these roots is equal to the

A-independent terms in Eq. (64), while also equaling
the determinant of S¢, we conclude, after some minor

(64)

gZNV2 1 f‘” p(@)[V*(w) —M* () Je2 "V (o' )dos’

/‘” do’[G*(o') LY *(o") = M* (") JE() V (o) (59)
Qw0 W —w—1e '
manipulations, that
Y v* -1
saseman=(2 (T )
M(w) M*(w)
D*(w+wo)
=, (65)
D(w+wo)
It is convenient to define \;=¢%¥% so that
()\1)\26—‘2”— 1)/21= ¢t Or+0x—1) sin(01+ G -T])
=[Y(w) =M () JLo(w)e 2+ G*w) E(w)]. (66)

This result proves that V(w) satisfied the Omnés
equation

gZO\/Z 1 ®
+_/ e—tl01(0”)+02(w’)—n(w’)]
ZB TJu
Xsin[81(w")+02(") — (o) ]
XV (o)dw' /(o —w—1e).

Viw)=—

(67)

Since the integral in Eq. (67) vanishes at the high-
energy limit, it is routine to obtain the solution

Zo\/j 1 *© 01 w' +02 w' dw'
S exp( f [0:(')+0a(e)]

W —w—1e

1~ g()do’
—- / ~—> . (69
)y o —w—ie
In view of Eq. (65), and the relation In\ ;o= 2:(61+ 62),
we can replace 6;46, in Eq. (68) by the quantity

B T

1 | <D(w'+wo) D*(w'+w)
— —1In .
2 W' —A / o' —A )

We then write the resulting integral in the complex «’
plane over a contour which runs from c to y infinitesi-
mally below the real axis, encircling the point x, and
then back to « infinitesimally above the real axis. When
w—o, we find that D(w+wo)/(w—A) approaches
2ZZy% The function G(w)/(w—wo) plays a similar role
in the second integral in Eq. (68) and has the asymptotic
value Z. Thus by the residue theorem, we find

V(w)=2V2g(A —w)G(w)/ZoZs(w—wo) D{w+wo). (69)
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It remains to combine Egs. (58) and (69) to obtain V1(w)
as in Eq. (51). Finally, by Eq. (57) we confirm the ex-
pression given for ¥, in Eq. (52).

We now proceed to discuss the associated amplitudes
®; and ®,. This part of the theory embodies the dy-
namical content of the third sector. The coupled integral

)
wi—A

+

we—w1t17€

B1(w1,w2) =To[ ¥ (ws) — Gg(‘””(

IN DISPERSION THEORY 591
equations satisfied by these amplitudes contain terms,
due to the known function P, for which there are no
counterparts in the corresponding equations of Ref. 5.
Contracting the meson with energy w; in ®;, and the
meson with energy ws in (2N6j,0s,, in|j| Bbs, in), we
obtain

n ? /n i p(w)P(w)R(w,w2)<

wtws—wo—wi+17€

1
+ )dw
wtwi—wp

1

+ j—r /" i p(w)[Y(w)—M(w)]Gsl(w,wz)(

w—w1t1e

)dw
w+w1——w2—A——ie

1 p° p= 1
= [ ] snR s wot Yot
w2ty Ju ot —wi—wotie wtow' twi—wr—wp—ie

1 0
+—-/ ein(@) sinn(w)(B1(w,w2)< )dw (70)
TJy w—witie wtwi—ws—A—1e

and

(onnin) = —Plod DM~ bt

Baeo1,009,008) = — —®

POLEREs V2 “ “ e w3—watie  witwr—ws

+ ;r /; ) p(w)P(w) @o(wl,%wa)(

w+w3—w1—w2+ie

1
)+gZ0031(w1,w3)(
A

1
-+ )dw
wtws—wp

-+
w3t A —wi—wst1e

)
w2 — Wy

1
+QV7F0A70(w1,w3)< +
w3+wo—w1—w2+ie we—
iy RN (
- ) ® B
™ ,/,:pw pemITee wtwo—wi—ws+ie

1
)dw
wtwr—wz—A—1e
1 1

1 0 0
+ % /; /‘: p(w)p(w") Qo(wi,w,w") Bo(w,w ,w3)<

1 00
+ - / €@ giny(w) (Bg(o)l,w,wg,)(
T™Ju

w0 —wi—watie

)dwdw'

wto +twes—ws—wp—1e

1

)dw. (71)

w—wstie wtwstwi—wz—wp—1e

As before, we have added and subtracted the last term on the right-hand side of Eq. (70). This term and the last
one in Eq. (71) are to be eliminated by treating the remaining terms as in the case of the vertex functions. In choos-
ing to contract mesons from the left as indicated above, and not from the right, we have avoided introducing inter-
mediate states containing five particles. It follows straightforwardly that

®1(w1,w2) =[a*(w1)a(we—wi+A) I

y (I‘oa(A)a(wa)[Y(wz) —®(w2) J(w2—A)
(w1—A) (wz —w1+ie)

FP(wi—1t€, wa) P (we—wi+ A--1e, w2)) (72)
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and

(w1w2—2wo)
csz(wl,wz,wa=(g/zo>[a*(w1>a<wa+w3—wl—waa*(wm—l[ O orFws—wo—ie, o)

(w1—wo) (w3 —wo)

(wst+A—ws—wo) Dorh-A—abie, w0 (wst+A—w1—wo) Porh-A—orhie, )
w3 —w2 T 1€, W3 w3 —wi1T 1€, W3
(w1—wo) (w3+A —w1—was+1€) (w2—wo) (ws+A —w1—wa+t1€)
M (w3) — ®B(ws) (A —wp) (witws—wsz Y (ws3) — M (w3) J(ws—wo) (wz+wo—w1—A
+%I‘oa(A)a(w3)< [ M (w5) — B(ws) I( )'( ) LY (ws) — M (ws) I( .o)( + 1—A4) |
(w1—w0) (A —w1) (ws—wat7€) (w1t we—wp)  (w1—wo)(we—A)(ws—wi1€) (wstwo—wi—wzt1€)

[ Y (w3) — ®B(ws) J(ws—A) (ws+A—wi—wo)
(we—wo) (w1—A) (ws—w1+17€) (w3 A — w1 —wat1€)

+(1= 2))] . (73)

The Bose symmetry of Bs(w1,ws,ws) under interchange of w; and ws accounts for the factor of 1 and the presence of
the terms denoted by (1= 2) in Eq. (73). The ¢ function appearing in these expressions is defined by

Y(wi,we) = —

™

1 /°° (@)Y () =M () 1B1(w,wr)a(w)a(wr—w+-A)dw

w—wi1

gv2 /‘“’ plwtwi—wa) [V (w) —M (w) 1P (w+wo—ws) G(w)a(w)a(ws —w—+A)dw
ptw2—wo

77 oG (ws) (0—w1)Glwtwo—ws)
g ® [V (w) —M () ]G(w)a(w)a(we—w+A)  fo#t90 do'p(w)p(w—w+wo) Bo(w—w’+wo, ', w2)
+— / dw / (74)
WZZO 2p—wg wW—w1 B G(w')G(w—w'—i—wo)

Here we observe that Egs. (70)-(74) come into formal alignment with the corresponding set in Ref. 5 when we
arbitrarily set A= w,. Under this condition, P satisfies the same integral equation as before, but with no inhomogene-
ous term and, consequently, no homogeneous solutions. Indeed, Eq. (50) shows that P would vanish since G(wo)=0.
Of course, this situation is not obtained here, but an analogous one does arise for the equation satisfied by the dis-
connected parts of 4,,% in Ref. 5.

Clearly, at this point the same procedure as in Ref. 5 yields a singular integral equation for ¢(wi,ws) in its first
variable. Inspection of this equation then shows that it may be reformulated as

gv2 ©  plotwr—w)[V(w) =M (@) P (w+wo—w2)G*(w)
Y(w,we) = ———— a(watA —0) P (w1,w,ws)dw
WZOG(‘”) utwz—awg (w —wo)G(w+w0—w2)

1 2 p(w)[V(w) —M (w) Je 21 P(wy,0,ws)dw
+I‘oa(A)a(w2)<[Y(w2)—(B(w‘z):l(wz—A)—/ Pl (_A()z]e_ +i)( )

™

1
FHLV (w2) = B(w2) J(wr—A)-

™

/ ? [V (w) =M (w0) JGH (@) 1(0,02) B(w1,0,02)dw
2u—wo (0—wo) (wa+A—w—wo+ie)

(A—wo) *  [Y(0)—M(w)]G2(w)I2(e,w2) P (w,w,wse)de
+[ M (ws) — ®B(w2) ———
Lt (o] /2#—~wo (0—wo)(w—A)

™

o—wp) 7 V(0) — M (w) |GHw)I 3(w,ws) P(wi1,w,ws)dw
—I-[Y(wz)—'M(wz)](w )/‘ [V (@) =M () JGH(@) I s(w,w2) P(w1,w,002) ), 7s)

(w—wo) (we—w+1€)

™
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where the integrals 7,(w,ws) are defined by

11(40,(.02) =
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g2 /“”_"+‘”° p(@)p(w—o' +wo) (watw +A—w—2wo) (w—w')dw’
7 ZoJ, [G(w) 2] G(w—0'+wo) | 2w’ —w—woti€) (wtwo—w’ —A—ie) ’
p(w)p(w—w +wo) (& +ws—wp) (w—u’)dw’
(76)

g2 w—ptwo
In(w,w9) = — f
B

7I'Z ()2

|G(w') 2| G(w—w +wo) | 2(watw —w—wotie)(A—w) ’
p(0")p(0—0' +wo) (wetwo—w —A) (w—o')dw’

g2 w—ptwo
I3(w,we) = —— /
7I'Z02 n

1

B (w1,w,w2) =
wW—w1

6'27:’1(00')

1 00
= [ AL -] 5

1 r= ®
+ - / il01(N+02(0") =] gin[ 6 (') +62(w’) —7(w’) ]
T™Jp

|G(") 2] Glo—a' +wo) | A(wr—o' +i€) (wtws—e —A—ie)

and the function ®(wy,w,ws) satisfies the integral equation

(o' — 1€, w, wo)de'

w —wi

— P(wetA—w'+1€, w, wo)dw'

+2< s )2 / " WD TG / wmwten dolp(w")p(o —'+ao)
TZD 2u—wg ®

(0" —w1) (0 —wo)

|G(") [*]G(o' —o""Fw0) |*

X (/=)=

/

Again, if we arbitrarily set A=y, the integrals 7;(cw,ws)
and 73(w,ws) reduce to E(w), while the terms in Eq. (75)
proportional to A—w,, or containing P, vanish. As
before, this reduction recreates the mathematical situa-
tion found in Ref. 5.

If the singular integral operator in Eq. (77) is elimi-
nated by a now familiar procedure, the ensuing result
shows that the dynamics in the channel under consider-
ation reduces to the solution of a Fredholm integral
equation for & in its first variable. When & is known, it
then follows from Egs. (72), (73), and (75) that B(w) is
determined algebraically by Eq. (48). As can readily be
seen, the expression thus obtained for this amplitude is
indeed a very complicated one and no attempt is made
here at manipulating it into a final simplified form. If at
this point the considerations of Ref. 5 continue to serve
as a guide, it may be possible to express ®(w) in terms
of integrals over the solution of the fundamental equa-
tion. However, this may not be practical in the present
case because of the mathematical incumberances.

In the remainder of this section we display the

W' —w'’ —1e

)@(wﬁ—A —w e, w, we).  (77)
wat+A—w —wot+ie

S-matrix elements with B6 on one side. These quantities
are formulated in terms of the associated amplitudes
®; and ®, which, as we have shown, are determined by
the fundamental function ®. The method of approach
follows that used in Ref. 1 in analyzing the production

element described by Eq. (16). We begin with
SIE <B00k30k2, out( ngl, 1n) y (78)

and contract a meson from the left. This yields the
expression

S1= (271/V2)d(wsFwa—w1—A) X (ws)
X X (w02) X (w1)®1(we,w1) ,  (79)

where the factor of 1/v2 comes from the identity of the
mesons, while the amplitude ®; is defined by

0)1(0)2,(.01)=X_1(w2)X_1(w1)<B()0k2, outl leﬂkl, in). (80)

Introducing a complete set of intermediate in-states
into Eq. (80), and noting that the scalar product
(Bobr, out| B) vanishes, we find

®1(ws,w1) =X wo) X (w1) 2 (Bobs, out|Bobx, in)(Bobs, in|j| B, in)
k

+X_1(w2)X_1(w1)Z Z (Boakz, out] ZNokaf, in)(ZNGkBk:, inlj[BOkl, 1n) (81)
k K

The first and second matrix elements in the single sum, and the second matrix element in the double sum of Eq.
(81), are defined by Egs. (13), (49c), and (49d), respectively. In addition, a simple calculation involving the con-
traction of the out-state meson in the remaining matrix element of Eq. (81) shows that it can be replaced by
2738 (watwo—w—w') X () X (') R(w,w’). Thus, on substituting these expressions into Eq. (81) and making use of
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Kronecker and Dirac §’s to evaluate some sums and integrals, we obtain

(91((.02,0)1) =I‘0X_1(wz)X—1(w1)(B()0k2, Out]Bookl, in)—i—eXp[Zi(SB“”(wz)](Bl(wz,wl)+2i\/2_p(w2+wo—w1)P(wz+wo-—w1)R
2
X(wetwo—wi, wi)+ — / dow p(w)p(wetwo—0w)R(w, watwo—w1) Ba(w, wetwo—wi, wr). (82)
T Jp

The phase shift §%°(w) for Bof elastic scattering is defined by
exp[2689%(w) ] sind®o%(w) = p(w) ¥ (w) . (83)

Finally, on combining Egs. (79) and (82), and keeping in mind the energy conservation imposed by Si, we have

S1= (21ri/\/7)5(w3+w2—wl—A)X(wg)X(wz)X(wl)(exp[ZiéBo"(wg)](Bl(wz,wl) +2iV2p(wp —ws) P(wp —ws) R(wp —ws, w1)

2 r®
-+ ——/ dw p(w)p(wa+two—w) R(w, we+wo—w) Be(w, weFwo—w, w1)) . (84)
™ Jp

The form of the first term on the right-hand side of Eq. (84) is reminiscent of the production amplitudes found in
the second sector [see Eq. (21)] and in the V@ sector [see Eq. (58) of Ref. 6]. In these instances there is a contribu-
tion to the amplitude coming from intermediate scattering states involving one meson. As shown in Eq. (81), the
present example must also account for intermediate scattering states with two mesons leading to the new terms in
Eq. (84). »

The production of two mesons in the B channel is indicated by the S-matrix element

So=(2N0,,0x0r,, out|Bby,, in). (85)
The contraction of an out-state meson, say, 6,, leads to the analog of Eq. (79), namely,
So= (2m1/V3) (s ws+ws —w1 —wz) X (w5) X (w3) X (w2) X (1) Pa(ws,wa,w1) , (86)
where the production amplitude @®; is defined by
Ca(ws,w2,w1) = X ws) X~ (w2) X (w1) (2N Oxy, oUt| 7| Bby,, in). 87)
If a complete set of intermediate states is inserted in Eq. (87), we obtain the expansion

0)2(0)3,602,001) =X‘1(w3)X_1(w2)X_1(w1)Z <2N0k30k2, OutlBoek, in)(Boﬁk, in!leHkl, 11’1)
k

+ X (w5) XY w2) X (w1) X 3 (2NOiif,, out|2N0:8s, in)(2N048y, in| j| Bbsy, in). (88)
k K

Clearly, the matrix elements with Bf on one side are common to both Egs. (88) and (81). The single and double
sums in Eq. (88) also contain the two-meson sector S-matrix elements for production and four-particle elastic scat-
tering, respectively. Expressions for all of these matrix elements are provided by Egs. (15), (16), (49c), and (49d).
After introducing these into Eq. (88) and simplifying, we find that ®, becomes

®a(ws,w2,w1) =2V2miQT 06 (w1 wo — w2 —ws) P(we,wr)
+2V2ip (wetws —wo) P(ws, watws —wo) B1(we+ws—wo, wy) 4211w+ By (05w w1)
+((2N6s,, out| 2N, in)/VZ) X~ () X~ (ws) P (cz) e2in(e»
+((2N0ks, out|2N04,, in)/VZ) X~ (01) X} (ws) P(w3)e?(@%) +2ip (w3 twa—cw1) P(wstwa—w1) e P @y

w2
X (w2, w1, wsFws—w1)+

e”"“"”f p(w)p(wstws—w) Go(ws, @, wstws—w) Ba(w, wstwe—w, w)dw. (89)
m

™

It remains to combine this result with Eq. (86). In so doing we note that energy conservation rules out the first,
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fourth, and fifth terms on the right-hand side of Eq. (89). Finally, we obtain

So=(271/V3)5(watws+ws —w;—wB)X(w4)X(w3)X(w2)X(w1)(62"["(“’3)+"(°’2)] Ba(ws,ws,01)

+2V2ip(wetws—wo) P (we, wetws—wo) B1(wetws—wo, wi)
+2ip(w3+w2—wl)P(ws—i—wz—wl)ez"”(“’” @0({.02, w1, w3+w2—w1)

V2
+

™

To give a complete discussion of amplitudes in the
three-meson sector, one should also study the collisions
involving two mesons incident on the VN system, and
the scattering of three mesons by two N particles. The
analog of each of these processes can also be found in
Bronzan’s example, and it is expected, as in his case,
that the corresponding amplitudes can be determined in
terms of the ® function.

IV. CONCLUDING REMARKS

It is interesting to compare our three-meson sector
with the one recently proposed by Bronzan. In both in-
stances there is a factorization of the S matrix in the
two-meson sector permitting the dynamical equations
of the third sector to reduce to the solution of a Fred-
holm integral equation in one variable. This factoriza-
tion property is characteristic of the transition ampli-
tudes for the mesodisintegration of the V or VN
particles and for the connected amplitudes describing
the scattering of two mesons by one or two N particles.
Mathematically speaking, the dynamical equations are
more complicated, and thus less manipulatable, in our
case than in Ref. 5. For this reason we do not attempt
to express ®(w) in terms of integrals over the solution of
the fundamental equation. However, on pretending
that A=w,, we have found that our dynamical equations
resemble those in Ref. 5. This equality is equivalent to
saying that the energy of interaction between two V
particles is twice the energy of interaction between an
N and a V particle. An inspection of Eq. (31) in Ref. 1
shows that its inhomogeneous term vanishes when
wp=2wy. As a consequence, the disconnected parts of
®: also vanish. This behavior describes a valid situation
for the associated amplitude 4% of Ref. 5, and explains
why our equations simplify under this condition.

In Sec. II we have derived the Low equation for the
elastic scattering amplitude ¥ by following a conven-
tional contraction procedure. Guided by the solution for
Y found previously, we have solved this equation
through the introduction of an auxiliary function having

62"’““’2)/ p(0)p(wstwe—w) Ro(ws, w, wstws—w) Be(w, wstws—w, wl)d“’) - (90)
m

no elastic cut and a known inelastic cut. In a similar
way, we can obtain the Low equation for B(w) and try
to solve it directly from a knowledge of the amplitudes
gained in Sec. III via Amado’s novel form of contraction.
The usefulness of this procedure, as expounded in Ref.
5, is that it may suggest how to obtain solutions to
crossing symmetric Low equations.

In this paper, we have used dispersion methods in a
discussion of reactions involving two composite par-
ticles formed by the exchange of mesons between two
static sources at zero separation. The lack of various
properties such as spin, recoil, and crossing symmetry in
these reactions makes it virtually impossible to com-
pare results with physical reality. However, we feel that
these calculations are of interest in their own right and
may provide insights into more suggestive theories,
particularly static models with crossing symmetry.
Some exploratory work on the charged-scalar theory
of two static nucleons has already been carried out; dis-
persion methods yield, at least in the one-meson ap-
proximation, a system of simultaneous equations for
vertex functions and scattering amplitudes reminiscent
of the analogous Lee-model problem.!* As we have
stated in Sec. I, the idea is to continue this work into
the two- and three-meson dynamical equations. Finally,
to refine all of these considerations, we can also think of
applying the methods of dispersion theory to the Chew-
Low!® model with two sources. Although this model is
also an obvious simplification of strong interactions, it
does reproduce the essential features of low-energy
mesonic phenomena.
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