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Three-Meson Problem in Dispersion Theory
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The addition of a meson to the 2V sector of the Lee model provides an opportunity to study collision
problems involving two composite particles formed by the exchange of one and two such mesons. Following
Amado, we give a dispersion treatment which avoids five-particle intermediate states, but previously ex-
cluded four-particle states now make their appearance. It is found, as in the recent three-meson example of
Bronzan, that the dynamics reduces to the solution of a Fredholm integral equation in one variable brought
about by a factorization property of the connected S matrix in the 2V sector. Similarities and differences
between the two cases are pointed out. Dispersion-theoretic investigations of the one- and two-meson
exchange interactions of two nucleons in crossing-symmetric static models, and the scattering of a meson by
these nucleons are indicated for future consideration.

I. INTRODUCTION

'X preceding papers' ' we have presented, from sev-
eral viewpoints, the complete solution of the 2V

sector of the Lee model with boson sources at zero
separation. Hereafter, we refer to this subspace as the
two-meson sector. %ith this solution at hand, it is
natural to inquire into this system after adding another
meson. Thus this paper is concerned with a three-meson
sector. Similar higher-sector work has been carried out
by Bronzan' who introduces into the Lee model a third
static source U which couples to the original V particle
together with a meson. In fact, our case simulates the
dynamical situation considered by that author without
the introduction of the third particle. However, we are
forced into mathematical details of greater complexity
which tend to thwart our desire to simplify the final re-
sults as much as possible. It is of some interest that
these studies implicate many-particle intermediate
states. For example, the two- and three-meson sectors
contain four- and five-particle intermediate states, re-
spectively. Admittedly, in each of these states there is
a considerable simplification since two of the particles
are of the S type. Nevertheless, these investigations
may provide insight into less tractable composite par-
ticle problems more closely descriptive of the physical
world.

%e wish to examine the three-meson sector within
the framework of dispersion theory. For this purpose,
we adopt the computational scheme devised by Amado'
in his calculation of the elastic scattering of a meson by
the V particle. Previously, ' we applied this approach to
the elastic scattering of a meson by the VE system and
found that it was necessary to contract the composite
particle representing the VE bound state. That problem
was solved by opera. ting with the product of a V and
an E operator in the usual asymptotic definition of a
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state. In this way, and with the help of certain knowl-
edge gained earlier in the Tamm-DancoQ formalism, '
we achieved a dispersion solution of the (VN)g elastic
scattering amplitude which circumvented intermediate
states containing four particles. In the case at hand,
which deals with the transition amplitude for (2V)8
elastic scattering, we contract the 2 V composite particle
by operating with the product of' two V operators in
the asymptotic state. This time we avoid intermediate
states carrying Ave particles, but the previously ex-
cluded four-particle states now make their appearance.
From this, one might conclude that the dynamical de-
scription of the three-meson sector is given by integral
equations in two variables. It turns out, however, that
the fundamental equation is an integral equation of the
Fredholm type in one variable. The reason for this is
found in a factorization property of the 5 matrix in the
two-meson sector. This property also emerges in the
two-meson solution of the charged-scalar theory and in
the VO sector of the Lee model. ' ' A detailed discussion
can be found in these references.

As already mentioned, it is desirable to capitalize on
the general relevance of our work to other composite
particle problems more closely approximating the real
world. In this direction it is of interest to consider static
models with crossing symmetry. In a separate paper we
plan to study the role of this principle in the charged-
scalar theory of two source particles corresponding
roughly to the neutron and the proton. Ke would first
seek the one- and two-meson solution of the associated
"deuteron" problem. In light of the present paper, we
could then go on to explore the process of elastic meson-
"deuteron" scattering.

In Sec. II we reexamine the dispersion approach to
the one- and two-meson sectors. It is shown that the
solution in the latter case reduces to a consideration of
the transition amplitude I' for the elastic scattering of
a meson by the UE system. Having already secured this
amplitude using Amado's procedure, we now choose to
follow Ref. 5, which leads us to a Low-type equation

7 J. B. Bronzan, J. Math. Phys. 7, 1351 (1966).
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for Y. The solution to this equation is obtained via the
analytic properties of an auxiliary function constructed
from Y and the amplitude for (2N)8 elastic scattering.
In Sec. III we undertake a study of the three-meson
sector, in particular, the S-matrix elements character-
istic of the (2V) 8 channel. These elements are presented
in terms of two associated amplitudes which, in turn,
are determined by the solution of the fundamental
equation in the theory. The contents of this section in-
clude a brief account of the diagonalization of the S
matrix in the 2V sector. The 6nal section contains some
remarks on the relation between the calculations per-
formed in this paper and those in Ref. 5. It concludes
with speculations on future problems involving two
static sources.

where the transition amplitude cV(or) is given by

cV(or) =X—'(or)(2N
~ jj 2N8g„ in) .

This amplitude satisies the Low equation

(2)

2(gZo)' 1 "p(or') iM(or') i'dor'+—
I 4

M —
CO
—ZE

which is readily established by contracting the remain-
ing in-state„meson. The', ,Chew-Low solution of this
equation, that is, the one without Castillejo-Da1itz-
Dyson (CDD) poles "may be written as

~(~)= —2g'/G(~), (4)

' A comparison of three such methods has been given by M. S.
Maxon, Phys. Rev. 149, 1273 (1966).

"We follow, as closely as possible, the notation of Ref. 1;p(or)
is used as an abbreviation for 0f'(co)/4'."L.Castillejo, R. Dalitz, and F. Dyson, Phys. Rev. 1(l1, 458
(1956).

II. ONE- AND TWO-MESON SECTORS

Of the various methods' applicable to solution of the
Lee model, it is particularly characteristic of dispersion
theory that one utilizes amplitudes previously derived
in lower sectors in order to discuss higher ones. For this
reason, we erst include a brief review of the dispersion
analysis of the one- and two-meson sectors before pro-
ceeding to the three-meson case under consideration in
this paper. A similar situation occurs in the dispersion
formulation of the three-meson example recently treated
by Bronzan'. Indeed, it is hardly necessary to point out
that two V particles are equivalent to his U particle
insofar as they both communicate with states involving
two mesons.

We begin with the S-matrix element describing the
collision between one meson and two Ã particles. By
deinition, and with one contraction, we obtain'

(2N8s tS~2N8s)=(2N8s, out~2N8s, in)
= Br), +2rrib(or —or')Xs(or)iV(or), (1)

where the denominator function G(or) is defined by

G(or) = 2orL1 —P(or) j+Zbmv —Zor.

The function P(or) has the integral representation

gsor p(or') dor'

or (or or se)

while the V-particle self-energy and held operator
renormalization constants are known to be

where
g2

n(or) =Zp s+ — —(or —orp)

p(or )dor

Q) —Q) p CO
—Q) —Z6

In this way the root of G(or) is factored out and we en-
counter the function cr(or) which has a cut for ra(or( ~
and no zeros or poles in the cut plane. It can be shown

by contour integrations that

while

1 "Imn(or') dor'

n(or) =Z+-
7l p CO GO Z6

(10)

Zp
G '(or)= — +— Im(G '(or') $

CO
—M —Z6

The amplitude 31 is related to the corresponding phase
shift y for this scattering by

e"p&"1= 1+2ip(or)M(or) . (12)

Next, we turn to the two-meson sector. In analogy
with VO, this case embraces two elastic scattering ampli-
tudes, a production amplitude, and a bound-state
problem, all of which have now been studied by the
Lehmann-Symanzik-Zimmermann (LSZ) formalism, '
the Tamm-Dancoff approximation, ' and the methods
of dispersion theory. It remains for future investiga-
tions to apply such approaches as the 5-quantum ap-
proximation" and the algebraic technique of Bolsterli"
to the dynamics of the two-meson sector. In all of these
applications one must incorporate the necessary modi6-
cations required by the introduction of two nontrivial
source particles.

The S-matrix in the two-meson sector can be deter-
mined in terms of the transition amplitude I . Ke recall

rsA. Pagnamenta, Ann. Phys. (N. Y.) 39, 453 (1966);
Halprin, Phys. Rev. 172, 1495 (1968)."M. Bolsterli, Phys. Rev. 166, 1760 (1968).

g' "
p(or)dor g' "

p(or)dor
QSQ —

) Z= f (1)
7l'Z p 6) 7P p 0) '

The VE bound-state parameters u& and Zp are de-
termined by the conditions G(orp) =0 and G'(orp) =Zp ',
respectively; the prime denotes differentiation. Upon
subtracting G(orp) from Eq. (5), we can give G(or) the
useful form

G(~) = (~—~p)n(or),
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&P(M3)M1) = e"3 " 2V(M3iM1) . (21)

(B383'
l
5

l Bp83)= (B383' out
l
Bp83 in)

= 831 +21rib(M —Cd')X'(Cd) F(M), (13)
where

F'(M)=X '(M)(Bpl jlBp83 in). (14)

The bound state of the VX system will be treated as
a stable particle, called B3, with energy 2m+M3. To fill

out the scattering matrix we must also have the ele-
ments describing the remaining elastic collision and the
production process. These are readily found to be

(2E83483, l
s

l 2»r83381,1)
= (2iV 81,48k„out l 2»'83383„ in)
= —', (21V83„out l 21V83„ in)(2%83„out l 2883„ in)'

+-', (2» 83„out l 21V83„ in)(21VHc„out l
2» 83„ in)

+ (21ri/K2) 8(cd4+cd3 cd3 —cdl)—X(M4)X(cd3)X(cd3)

&(X(M,)e"3&"3~6'O(M3,M3, M1) (15)
and

(2XH„H„lS l B.H.,)
= (BA I ~I 2&83 83 )
= (2%83383„out l B383„ in)

(43r3/v2) Qb (M1+MO cd 2 cd 3)X(cd3)X(cd3)X(M1)

Xe3'"&"'i» o(M3, M1) . (16)

A comparison between the above Eq. (15) and Eq. (102)
of Ref. 1 shows that

Sp(M3iM3iM1) = 8(M3iM3icdl) (1/v2)X (M3)3f(M1)83333
—(1/V2)X 3(M1)M(M3) 83,3„(17)

where the amplitude g differs from an ordinary transi-
tion amplitude by having in-states on both sides, that is,

6(M3iM2qM1) X (M3)X (M2)X (Ml)

&&(2&8~ inl jl2&83*8", ln), (18)

while the "associated" amplitude 60 is obtained from Q,

by removing the disconnected parts as in Eq. (17). In
Eq. (98) of Ref. 1, the production amplitude &P(cd3,cdl),
dered as

&P(M3, M1) = LX '(Cd3)X '(Cdl)/20j

&((22783„out l jl B383„ in), (19)

is related to the amplitude 1V(M3,M1) which has in-states
on both sides,

CV(M3iM1) = LX (M3)X (Ml)/20)
x (2»r83„ in

l jl B383„ in), (20)
according to

»rp(M3, M1)

1 1
ZoLI'(M) —~(M)1 — +

20 M3 —MP Cdl —M3+33ii
1

+ — e'«") sing(M) cvp(M, M 1)

and

XI + l~ (23)
iM+M3 —Ml —MP —33 Cd

—M3+Zt'I

~o(»~M»M1)

= —2gZPQiVP (Mli Ml+M3 —MP —ZE')

I
X +

MP —M3 M3+MP —Cd3 —Ml 'LC1—
00

+ — e'&&"l sing(M) e,3(M,M3,M1)

1 1
+ i&EM. (24)

EM —M3+36 M+Cd3 M2 Cdl 33)

In arriving at Eq. (24) we have employed the fact that
the function R(cd3,M1), defined in Ref. 1 by

E(M3,&dl)=X—
'(Cd2)X (Ml)(Bol jl2EH&, 8&„in), (25)

can be replaced in the theory by

F20&o*(M1, Ml+M3 —Mo —i3) ~

This relationship is analogous to that appearing in Eq.
(11) of Ref. 5.

Using the results found in Ref. 1 for 1V(M3,M1) and
8(M3,M3,M1), or else solving Eqs. (23) and (24), we can
write expressions for &1',3(M3,M3, M1) and»rp(M3cdl) which
exhibit their dependence on F(M). These are

When the disconnected part of »r(M3, M1) is separated
out, we arrive at the "associated" amplitude

lVo(M3, M1) =» (M3iM1)+(P/2Zo/20)X (Ml)83&33, (22)

appearing in Eq. (16). On substituting»'3(M3, M1) for
»r(M3, M1) in Eq. (16), one must note that the second
term on the right-hand side of Eq. (22) makes no con-
tribution because of energy conservation. It is straight-
forward to show that the associated amplitudes
&o(M3,M1) and Co(M3, M3,M1) satisfy the coupled Omnes-

type integral equations

and

gV2G(M1) I F(M1) —M(Cdl)$
@O(M3P&1) =

20ZpG*(M3) G(cdl+CdP —Cd3)

gv2G(»+M3 —M3)~(M3 Ml) a'v2G'(Ml+M3 —»)l I'(Ml+» —Mo) —~(M1+M3 —M3)j
83(M3,M3,M1) =

ZpG (M3)G(M1+M3 Cd3) Zp'G*(M3) G(&d3)G(M1)G(Cdl+M3 —
Cd 3)

(26)

(27)
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This shows that the complete solution of the two-meson scattering matrix reduces to the solution for F(M). Let us
recall that in using Amado s procedure for obtaining this amplitude we encountered the scalar product {2i I

Bp8o, in),
where the bra vector denotes the normalized bare state of two V particles. Since we had previously solved for the
bare-state expansion of

I
Boo&, in) by the Tamm-Dancoff method, we were able to evaluate this product at once

without studying it any further via the contraction technique which would have only complicated the situation
by implicating intermediate states that we were trying to avoid. Instead of following Amado and contracting Bo
from the left in Eq. (14), we could have chosen to contract the in-state meson. This procedure leads to the Low
integral equation

2R Zo Ip 1 p(M )II (M)I ™+—
GO (d P 0) 6 X'

p CO GD Z6

p(M )p(M") I
G(M'+M" Mo)

I
'I I'(M'+M" —Mo) —~(M'+M" —Mo) I

'dM'dM"

, (28)
I +Zo) IG(-') I'IG( ")

I
(-'+ "- —.-'.)

1 " ( 1 dM'

A(M) = — ImI
m „kG( '))G(~+,—'1

(31)

As in the case of G(M), it may be convenient to factor out
the root in D(M+Mp) by subtracting D(Mii).

To solve Eq. (28), let us introduce the function

F(M) =g '(M —Mp)LI' '(M) —~ '(M)j ' (32)

the analytic properties of which follow from Eqs. (3)
and (28). It is found that F(M) has the discontinuity

F(M+io) —F(M —io) =8ig'(M —Mp)E(M) (33)

across the cut beginning at 2p-o)p and that there is no

which can be solved by the analytic method introduced
by Bronzan in the two-meson solution of the charged-
scalar theory. In developing Eq. (28), we have sub-
stituted into the integrand of the double integral an
expression for the square of the magnitude of R(M', M")
which may be read off from Eq. (27).

The vertex I'p= {BpIj IB) was found in Ref. 1 to be

I'o ———(gV2Z&/Zo)L1 —Zo 'G(LL)A(6)j ', (29)

where Z& is the normalization constant of the physical
2V bound state

I B).We let 6=Mii —Mp where Mii is the
energy of interaction associated with this state. It is
also useful to recall the eigenvalue condition

D(Mii) —=Z'(Ms —28mi )L1—Zp
—'G(h) A (6)g

+Zp 'G(h) =0. (30)

The integral function A(M) is given by

cut beginning at p. The integral E(M) has the form

g2

E(M) =
+ ~" P(M )P(M+Mp M )dM

IG(M ) I IG(M+Mp —M ) I

(34)

where C(M) is defined to be

4g' " E(M')dM'
C(M) =

I ~'r 2p ~p CO 0) ZC

(37)

It is immediately obvious that this expression for F(M)
yields F(Mp) =Zoo and Eq. (33), while F(d,) can also be
veri6ed at sight with the help of the connection between
the known functions A {M) and C(M). From Eqs. {11)and
(31), we find

1+Zo 'G(M)A(M) =Zp'G(M)/(M —Mp)+G(M)C(M) (38)

Using this relation and the definition of D(M+Mp), we
see that

The right-hand side of Eq. (33) vanishes at the high-
energy limit. At the values coo and d, we have

F(M) =Zp', CO= COO

=2(A-Mp)G-'(6), M=A. (35)

Under these conditions, together with the assumption
that F(M) approaches a constant at the high-energy
limit, we obtain the representation

(M —M o) (ZZp)-'
F(M) =Zp'— +(M —Mp)C(M), (36)

M+Mo —28mv

ZooD(M+Mo) —2Zo (M —Mo)+(M —Mo)C(M)D(M+Mo)
F(M) =-

D(M+M p) Zo G(M)

Thus F(D), as given by Eq. (35), follows at once from this form of F(M). It remains only to unite Eqs. (32) and (39)
to secure the amplitude

g M{M))Zp D(M+Mp) —2Zp (M Mp)+(M Mo)C(M)D(M+Mp)g
I'(M) = (40)

(M —Mp)M(M)LD(M+Mp) —Zp 'G(M) j+g'I Zp'D(M+Mp) —2Zp '(M —Mp)+(M —Mp)C(M)D(M+Mp) 1
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We can eliminate C(M) from Eq. (40) by means of Eq.
(38) to obtain the more convenient expression

Since our calculations proceed along the lines pre-
scribed by Amado, it follows that we must contract the
8 particle in order to make progress beyond the initial
meson contraction in the elastic scattering matrix ele-
ment. For this purpose we introduce the product
operator" ltii=lt pit v/Z1142 and its corresponding cur-
rent erator

2Zp 2G(M)
F'(M) =CV(M)

D(M+Mp)(1 —Zp 2G(M)A(M)]

1+Zp 2G(M)A(M)

1—Zp 2G(M)A(M)
(41)

fn(t) =LHppe(t)$+(2m+Ms)ice(t) =(Me —28223v)pn(t)

This quantity is derived from the erst term on the right-
hand side of Eq. (41) by factoring out the root in

D( M+ M)p. ln Ref. 2, Eq. (54), we have shown that the
inverse factor in Eq. (42) is equal to the inverse of
2' '$1 —Zp 'G(h)A (6)j' and thus, in accordance
with Eq. (29), it follows that the residue of F(M) at
M =6 is equal to —FQ2, in agreement with Eq. (28).

Having completed the two-meson scattering matrix,
we now go on to study the three-meson sector—in
particular, the S-matrix elements involving the (2V)8
channel.

III. THREE-MESON SECTOR

In this section we concentrate on a dispersion formu-
lation of three collision processes, namely, the elastic
scattering of a meson by two V-particles in static inter-
action at zero separation, and the production of one and
two mesons by these particles. The two V sources will

be treated as a stable particle, called 8, with energy
Ee= 2223+Mii. Owing to unwieldy inathematics, we shall
restrict ourselves to a somewhat formal consideration
and shall not attempt to express the final results in their
most simplified forms.

I'QV1(M) 1
$(M)= - +

M 6 pr&2 p.

"p(M')E(M') V2(M')M)dM'

M+M 6—Mp

1 "p(M') Vi(M') $1(M',M) dM'

Here we have introduced the definitions

which agrees with that found by other methods of solu-
tion. On multiplying both sides of Eq. (41) by the factor
(M —Mp) and taking the limit as M —+ Mp, we arrive at the
residue 2g2ZQ2 as expected from Eq. (28). Similarly, the
residue at the pole co= 6 is calculated to be

2g 2

lim V(M) = ——{Zpsfi —Zp G(6)A(h)$
Z 0

+Zp—2G'(g)+Zp 4G2(d, )A'(6) ) '. (42)

—(gv2/ZZ )0' (t)lt' (t)E X( ) (t) (43)

where ppi(M) is the expansion coefficient in ~B) associ-
ated with the bare states containing all three particles
V, E, and 0. The vanishing of this expression is predicted
in the Tamm-Dancoff treatment by Eq. (43a) of Ref. 2.

Let us now consider the S-matrix element

(B82 ~S~B83)= (BHI, , out~B83, in)
= 82(. +22r38(M —M')X2(M) $(M), (45)

where the transition amplitude $(M) is defined by

$(M)=X '(M)(B~ j~BH&, in). (46)

Using the usual asymptotic definition of a state, we con-
tract the 8 particle on the left to get

$(M)=2X '(M) e'e '(On~t f&(t),j]8(t) ~BHk, in)dt. (4/)

The equal-time commutator t lt&,jj resulting from the
differentiation of the step function vanishes. In the
usual way, we introduce intermediate states and make
time translations to obtain

p(M1)p(M2) V2(M1, M2) $2(MlqM2~M)dM1~M2
(48)

Mt+Ms —6—Mp

The definition of Pe is such that the matrix elements

(0(its (
B)=1 and (0~ fii

~
B)=0. The former property is

seen at once in Eq. (64) of Ref. 1, whereas the latter
follows from Eq. (43) and the bare-state expression for

~ B) given in Eq. (42) of Ref. 2. We find

«lf. lB)

=Z 'LZ(Mii —28223v) —g&2 p X(M) 321(M)], (44)

Vi(M) =x '(M)(0lfs IBQH„ in&, (49a)

V2(M1 M2) V2(M2 Mi) X (Mi)X (M2) (0) fbi ( 2cV83,82„ in), (49b)

$](M1,M2) =x—'(Mi)x '(M2)p(BQH/„, in( j~BH/„, lil) rp83, 3,j, — (49c)

$2(M1 M2 M3) $2(M2, M1,M3) =X-'(Mi)x '(M2)x (M3)((21V83,82„ in j j~ BH&„ in)
—(83,33/v2)(21VH&„ in t j(B) (82»3/V2)(2JVH&» in

~ j) B)7.—(49d)

14 The factor of 1/&2 in the definition of its was inadvertently omitted in the concluding section of Ref. 1.



ONSON PROBLEM I N D ISPETH REE —M ESON

hat I' (M) satisfies an in-

I
f. 1 as X(M M .8 in ) i e . )P(M). There it was found t

), ...;.„....l.,lutionh h k lte ral equation, wit e

(50)

g

Vl(M) =2 g=2%2 (6—M)/ZpZilD(M+Mp), (51)
and

homogeneous in g

KG(h)/ZoG*(M)G(A+M o )P(M)=gI'o 2

ed arts to be rem ovedini s et d hnition, whereas t e corr

foI'

d has disconnecte p

a
'

re-state expansions

hus the amplituue 2
'

e

a ealing to the are-sV() dV( )c b u
8 in), w ic ar~Bp82, in) and ~21V82, 2„'

V2(Ml, M2) =
2V2g (6 Ml M2+Mp)G(Mi+M2 —Mp

Z ZilG(Mi)D(M1+M2)G(M2)

e

I ~o I
gZp V2 1 "p(M')Ll'*(M ) —M M

ZZQ

h 1 ds to the problemrsion- eo
' '

n of these func
'tionsast is ea srsion-theoretic derivation

act we shall need this mmatrix later
~er a r isp

e contraction tec-h o id ch c o pon. At the same time, this approac ec
V and V2yiel s enlquee to m soIls in

)+ (M l&M2) V2(Mi, M2)dMidM2P(Ml P M2

Ml+M2 M —Mo —2op

I d I"e—'«"' sing(M') V, M dM

CO
—6)—Z6

(53)

V2(M 1+&2)
M(M1) gZpVi(Mi)

ZZiiV2 M2 —Mp

Q&2 "p(M )1Vo (Mi, Mp M Vl M)lfM

) ( g y ) M M )dM dMt, ') (
" 0', *(Mi,M', M") V2 M', MpMp07p)) I1 d o sln17(M )V2(Mi M AM

OJ G02 —Z6

on

p(M')Ll'*(M') —M*(M'))Vi(M u M dM'gZo&2 1

Zsu(M) ore(M)
Vi(M) =—

0) —0)—Z6

M M Mi M2 2O—

f t e as ri ht-hand

orpv2

a '
n

'
n of the last term on the right-

' edb thea i ion
db '

h
'

e of the seco d equat oth ihth d id
Inaining terms in eac e

X'O.' CO p, p

and

M 1 M 1 Q&2

V2 ZoG(M2) ore(M2)ZilQ(M2

II
M M, M M Mp)dM dM

"P(M')P(M'p
' " R*(ol'M")V2(M')M )n (M�+"—

MM� M Mp

I')V(') *('+ o—

M +Mp Ml M2 —26

(55)

or242n(M2)

I/ 2 I II II
GO 0) Q 0)po) p(d p8 (Mi)M qM ) V2(

M +M Ml M2 2O

(56)

rm on thes
' ' . 55) into the second term

l d to th i~t'o- an
' . 56, weare erig - an

'
ht-hand side of Eq. ( ),

gG(Ml+M2 —Mo) Vl(Ml+M2 —Mo

V2(Mi, M2) =
V(M) =~(M) Vl(M), (58)

and V2 are not indepen eent func-W 1C

this result is area y
bl fi

i bl . W I h f c-
reduces t e pro

un nown unfunction of a single varia e.
tion be
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and rewrite Eq. (55) as

V(M) =—gZo~2 1 " ( ')!:V*( ') —~*( ')7 ""'"'V( ')d '
+

(a) —M Z6

dM YG*(M') 3'!:V*(M') —~*(M')Ã(M') V(M')
(59)

GO
—

GO
—SE'

It will now be shown that Eq. (59) is actually an
Omnes-type singular integral equation. To achieve this,
we must diagonalize the connected S matrix Sg of the
two-. meson sector. This matrix has the factorized form
S&=SDSSD, where SD is the diagonalized, unitary, dis-
connected 5 matrix, de6ned in terms of its matrix
elements

manipulations, that

( V(M) V*(M)
detSe ——l(i)(2 ——

I

—1 ——1 !
(M(M) M*(M)

D*(M+M p)

D(M+M p)

(65)

(Bp(d
I
SD I BOM) = 8(M —M'), (zvM1M2 I 5D I BOM&= 0

(»M1M2I 5'D
I
»MOM4&=-:e '"'"' '"'""

)(!8(M) M3)b(M2 M4)+ B(M1 M4) 8(C!72 M3)j )

where the states
I
BoM) and

I
2EM1M2) have the represen-

tation

)2~2 ')2

2 8(M —M') IBo8'&,
&kMD

these states are normalized to 8 functions of energy. The
problem of 6nding the eigenvalues of Sz requires its
matrix elements with respect to the states in Eq. (61).
When written out, these elements express a factoriza-
tion property which enables us to show that the eigen-
value equation

So!M,X)=X!M,X&,

with energy M, and with IM, X& given by the form

!M, l1&=C,(M, l~) !By &

(62)

c2(M )Mi)i) I
2%M ) M+Mp —

Cp &dM ) (63)

p 2~2 2)r2 ~')2

!I 2+M1M2&
kkiM10 k2M20)

&&+ Q 8(M1—M) h(M2 —M') ~ 2$8283.); (61)

It is convenient to define X;= e243' so that

(Xihpe 2*'3—1)/2i = e'(3)+3~3) sin(81+ 82 —)))
= LV( ) —~( )Xp( ) ""+G'( )&( )j (66)

This result proves that V(M) satisfied the Omnes
equation

gZpv2 1
V'(M) = + e C(p)(~')—+()2(~') p(~')]—

Zg

csin! 8,(M') y82(M') —g(M') )
&& V(M')dM'/(M' —M —ip) . (67)

gZO&2
V(-) =-

Zg

"!81(M')+82(M') jdM'

(exp—
p CO

—07 —Z6

1 " ))(M')dM'
(68)

X'
p Go co 16

In view of Eq. (65), and the relation in')X2 =2i(81+82),
we can replace 81+82 in Eq. (68) by the quantity

p( '+ ) p"( '+
))—ln

2s co' —6 a)' —6

Since the integral in Eq. (67) .vanishes at the high-
energy limit, it is routine to obtain the solution

has precisely two eigenvalues, say, A, & and A, &, distinct
from unity, these being the roots of

2l({1+i)p( )V( )+iG ( )LV( ) ~( )jE( )j
+2iG'( )P'( )—~( )j
&&e243(")E(M)+2zp(M) F(M)+1=0. (64)

Noting that the product of these roots is equal to the
X-independent terms in Eq. (64), while also equaling
the determinant of St., we conclude, after some minor

We then write the resulting integral in the complex ar'

plane over a contour which runs from ~ to p infinitesi-
mally below the real axis, encircling the point p, and
then back to ~ infinitesimally above the real axis. When
M ~po, we find that D(M+M 3)/(M )4)) approaches-
2ZZp 2. The function G(M)/(M —Mp) plays a similar role
in the second integral in Eq. (68) and has the asymptotic
value Z. Thus by the residue theorem, we find

V(M) = 2%2g(6 —M)G(M)/ZOZe(M —Mp)D(M+Mp), (69)
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ine E s. (58) and (69) to obtain Vg(a))

as in Eq. (51). Finally, by Eq. (57) we con rm e
for Vp in Eq. (52).

e now proceed to discuss the associate am

nam' e third sector. The coupled integralnamical content of the third sector.

'
fied b these amplitudes contain terms,q to y

due to the known function'nI' forw ic er
he corres onding equations o e .

actin the meson with energy ~& in &, a
(2Xe„e„, I lee„, n), wemeson with energy co2 in

obtain

1
+ !d(t)) (~)~(~)~(~)»)l(

+ ld(0

1
t( )()'( ) —)t'( )3&( ~)(

and

1 1
(8 (pg (pp») = —E(o)g)PM(&ep) —(B((pp)j

G03 M2 Z6 Mg

t(t) p)p + ld(t)

1
p(p))P(&p) (xp(p)g, p),p)p)

7f p

j.
tt + +)Z S (ttl )(+Q&21N()(', ,tt, ,

1 1

!dc@)p( })tt( t, )(at(, )(

!dcudp)'p(p)))() (& ) ~p((p»44(p )+p((p~ p)
~ ppp)

l~x'V2

p

ide of E . (70). This term and the lasta ded and subtracted the last term
ht eat the remaining terms as in t e case og

e h 1 ft as indicated above, an not rom
e articles. It follows straightforwar y

esons from t e e a
'

thatmediate states containing Gve partic es. o

Sy My, Q)2 = 0! G0g Q M2 —COy

I"pn(h)n(»)L V(») —$(ppp) )(»—6)

(cog —5) ((tt)p —(tpg+pp)
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(Ml+Ms —2Mp)
$2(M1,M2, M3) —(g/~0)[n (Ml)n(M3+MB M—l Ms)n (Ms)) f(Ma+Ms M—o 3&—, Ms)

GO] 600 G02 —400

(Ms+~ —MS —
MO) (Ms+6 Ml Mp)

f(MS+~ Ms+&&, Ms)+ lP(Ms+6 —Ms+30, Gds)

(Gdl Mp) (Ms+5 —Ml —GOS+ZG) (Ms Mo) (Ms+6 Ml MS+36)

(
[11'(M3) $(M3)1(~—Mo) (»+Ms —MB) I Y(M3) -~(Ms))(M3-Mo)(Ms+Ms-M, -~)

+3I'~(~)n(M3) +
(Ml Mo)(6 Ml)(M3 —Ms+so)(Goi+Gos —GoB) (Ml —Gop)(Gos —5)(M3—Ms+36)(Goo+Goo —Ml —Ms+30)

l[Y(M3)—$(M3))(M3 —~) (Ms+~ —Ml —MO)

+(1~~2)
I

. (73)
(Ms M 0) (Ml 6)(Ms Ms+30) (Ms+6 Ml Ms+36) )

The Bose symmetry of $3(M1,Ms, M3) under interchange of Ml and Gos accounts for the factor of —,
' and the presence of

the terms denoted by (1~~2) in Eq. (73). The P function appearing in these expressions is defined by

1 "p(M)[Y(M) —M(M))$1(M)Ms)n(M)n(M3 —M+A)dM
G) y&Q) 2

gv2

srZGG(Ms) 0+~3—top

p(M+M 0
—

Gds) [Y'(GO) —M(M))P (M+Mp —Gds)G(GO)n(GO)n(ids M+6)d—GO

(M Ml)G(M+M p Ms)

~ ~0 2p—coo
2r

[Y(M) —M(M))G(M)n(M)n(Ms —M+6) " "+"'dio'p(Go')p(Go —M'+Mp)$3(M —M'+Mp, M') Ms)
de (74)

G(GO') G(GO —M'+Mp)

Here we observe that Eqs. (70)—(74) come into formal alignment with the corresponding set in Ref. 5 when we

arbitrarily set 6= co0. Under this condition, I' satisfies the same integral equation as before, but with no inhomogene-

ous term and, consequently, no homogeneous solutions. Indeed, Eq. (50) shows that P would vanish since G(M0) = 0.
Of course, this situation is not obtained here, but an analogous one does arise for the equation satisfied by the dis-

connected parts of 324' in Ref. 5.
Clearly, at this point the same procedure as in Ref. 5 yields a singular integral equation for p(M1, M3) in its first

variable. Inspection of this equation then shows that it may be reformulated as

4'(M»M3) =
~~PG(Ms) 0+~2 ~0

p(M+Gdp —Ms)[Y(M) —M(M))P(M+Mp —Ms)G (M)
n(Ms+6 M)C'(M»M&Ms)dM

(M Gdp)G(GO+Gdp Ms)

r "p(M)LY(M) —~(M))B """C(»,M, Ms)dM
+1~(~)-(.)l LY( )-$(.))( -~)-

l X p (M 6)(Ms M+36)

1 " [Y(Go) —M(M))G'(M)I1(M, M3)C (M»M, M3)dGO

+[Y(Goo)—$(Ms))(Ms —6)—
(M —Mp) (MS+6 —M —Mp+30)

(~ Mo)
" [Y(M) ~(M))G'(M)I3(M~Ms)@'(M»M&Ms)dM

+pr(M, ) —$(Ms))
7r (M —MO)(M —~)

(GO Mp) (Ms —M+30)2Jtl—COQ

(Ms —Mp)
" [Y(M) —M(M))G'(Go)Is(Go, cos) 4 (M 1,M, M3) dho

+LY(Ms) —~(Ms)), (75)
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where the integrals I„(p~„&oz) are de6ned by

Ii(cu) poz) =

Iz(o»~z) =

XZO

P(oo )P(co—
Po +cop) (odz+M +6—M —2Mp) ((d M—)doo

I G(pd ) I
'I G(cd —co +p~o)

I
'(o~z+pi' —o~ —p~o+zo)((o+o~o —p~' —a —zo)

p((d') p(p) —oi'+ pip) (oi'+ooz —o~ii) (od —po') d~d'

I G(~ ) I
'I G(~ —~'+~o)

I
'(~z+~' —~—~o+zo)(~ —o~')

(76)

g P(oo )P(& & +Pip)(&2+&o & ~)(od —
Pd )d~

Io((v)pip) =
zrZo' „ I

G(co')
I

'
I
G(oo oi'+—pip) I

'(p&z pi'+—io) (pd+ppo id' —a —io)—

and the function C (~i,&u, &d&) satisfies the integral equation

C'(oui)pd)Mz) =
C'(M —

zo& id~ pdz)dc@e'~"'"'+"i" & «" '~ sinl 0 (oi')+0 (p~') —g(p~') $ I
M Mj

.( ')L&( ') -~( ')] —C( .+~- '+ .. . ,)d '
CO

—40].

- ~-'I ~(-)-~(-)iG(-) --"- d--.(--).(----+-.)
+21

EzrZO~ zp—o (M 601)((d pop) ls I
G(oi")

I

'
I
G(oi' —oi"+pip) I

'

1
&&('- ")("-.)I, „.+ lc (o~z+3,—oo"+zo, o~, idz) . (77)

(pi —
po —zo 0)z+6—pi —Mo+zoi

Again, if we arbitrarily set 6= &up, the integrals Ii(cd, pdz)

and Ip(cd, o&z) reduce to E(o~), while the terms in Eq. (75)
proportional to d —coo, or containing I', vanish. As
before, this reduction recreates the mathematical situa-
tion found in Ref. 5.

If the singular integral operator in Eq. (77) is elimi-
nated by a now familiar procedure, the ensuing result
shows that the dynamics in the channel under consider-
ation reduces to the solution of a Fredholm integral
equation for C in its first variable. When 4 is known, it
then follows from Eqs. ('72), (73), and (75) that $(pd) is
determined algebraically by Eq. (48). As can readily be
seen, the expression thus obtained for this amplitude is
indeed a very complicated one and no attempt is made
here at manipulating it into a 6nal simpli6ed form. If at
this point the considerations of Ref. 5 continue to serve
as a guide, it may be possible to express $(pd) in terms
of integrals over the solution of the fundamental equa-
tion. However, this may not be practical in the present
case because of the mathematical incumberances.

In the remainder of this section we display the

S-matrix elements with 80 on one side. These quantities
are formulated in terms of the associated amplitudes
S~ and $2 which, as we have shown, are determined by
the fundamental function C. The method of approach
follows that used in Ref. 1 ip analyzing the production
element described by Eq. (16). Ke begin with

Si=—(Bpep, ei„out
I
B8i,» in), (78)

where the factor of 1/W2 comes from the identity of the
mesons, while the amplitude (P~ is de6ned by

6 i(~z,~i) =X '(~p)X '(~i)(Bp~", outl jlB~ki in) ~ (80)

Introducing a complete set of intermediate in-states
into Eq. (80), and noting that the scalar product
(Bp0p out

l B) vanishes, we find

and contract a meson from the left. This yields the
expression

Si——(2zri/V2) 8(opp+ odz —cd i —6)X(~d p)

)&X(cdz)X(coi)(Pi(pop, pdi), (79)

+z(pip, ~i) =X '(odz)X '(pdi)Q (Bo~p„outlBo0i, in)(Bo8p, in(j IBH&„ in)

+X '(odz)X '(~di)p p (Bo9i„outl2N&z4, in)(2Ã&A, inlj IBA» in). (81)

The first and second matrix elements in the single sum, and the second matrix element in the double sum of Eq.
(81), are defined by Eqs. (13), (49c), and (49d), respectively. In addition, a simple calculation involving the con-
traction of the out-state meson in the remaining matrix element of Eq. (81) shows that it can be replaced by
2zriB(pop+pop co po')X(pd)X(oi')—E(p—d,co'). Thus, on substituting these expressions into Eq. (81) and making use of
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Kronecker and Dirac b's to evaluate some sums and integrals, we obtain

(Pl(M8 M1) I 0X (M2)X (Ml)(B088, out j B088„ in)+expL2iO "(Ms)j$1(M8,M1)+28%2p(Ms+Ms —Mi)P(Ms+Ms —Mi)~

2i
X(Ms+Ms Mip M])+ dM p(M)p(Ms+Ms M)+(Mp Ms+Mo Ml)$8(Me Ms+Ms Mit Ml) (g2)

X gg

The phase shift Oeos(M) for B08 elastic scattering is defined by

eXpI Z'Pos(M) 5 Sinless(M) =p(M) F(M) . (83)

Finally, on combining Eqs. (79) and (82), and keeping in mind the energy conservation imposed by Si, we have

Se=(2ee/&2)e(ee+ee —ee —4)X( )X( )X(tee)(exp(2 ee' ( )]eee(eeee)+2eV2e(ee e)P(te —)8(tee —ee, e)—
2i

+ — & e()e( + —)8(, + —)ee(, + — )). (84)
p

The form of the first terin on the right-hand side of Eq, (84) is reminiscent of the production amplitudes found in
the second sector )see Eq. (21)) and in the VO sector Lsee Eq. (58) of Ref. 6j. In these instances there is a contribu-
tion to the amplitude coming from intermediate scattering states involving one meson. As shown in Eq. (81), the
present example must also account for intermediate scattering states with two mesons leading to the new terms in

Eq. (84).
The production of two mesons in the 88 channel is indicated by the S-matrix element

Ss= (21V88488888„out
~
B88„ in) .

The contraction of an out-state meson, say, 8&„ leads to the analog of Eq. (79), namely,

Ss= (2zrz/v3)~(M4+Ms+Ms —Mi —Me)X(M4)X(Ms)X(M8)X(Mi)(P8(Ms, M8, Mi),

where the production amplitude (P2 is defined by

(Ps(MseMseMi) =X '(Ms)X '(Ms)X '( M)i(21V88888&8out~g~B88„ in).

If a complete set of intermediate states is inserted in Eq. (87), we obtain the expansion

(85)

(g6)

(87)

(Ps(M, ,M8, M1) =X—'(Ms)X-'(Ms)X-'(Mi)p (21V88,88„out
~
B088, in)(B088, in I j~ B88„ in)

+X '(Ms)X '(Ms)X '(Mi)p g (21V88,8&„out~21V8888, in)(21V8888, in~ j~BO&„ in). (88)

Clearly, the matrix elements with BO on one side are common to both Eqs. (88) and (81). The single and double
sums in Eq. (88) also contain the two-meson sector S-matrix elements for production and four-particle elastic scat-
tering, respectively. Expressions for all of these matrix elements are provided by Eqs. (15), (16), (49c), and (49d).
After introducing these into Eq. (88) and simplifying, we find that (Ps becomes

(Ps(M3, M8, M1) =2'(12zrzQI'08(Ms+Ms —Ms —Ms) (P(M8, M1)

+2~»p(Ms+Ms —Mo)(P(M8, Ms+Ms —Mo)%(Ms+Ms —Mo, Mi)+e"'" "'+""' '+8(M3 Ms Mi)

+((21V888, out~21V88„ in)/V2)X '((di)X '(Ms)P(M8)e '«"'&

+((21VOs„out(21V88„ in) V/2)X '(Mi)X '(Ms)P(M3)e"'("')+2ip(Ms+Ms —Mi)P(Ms+Ms —Mi)e"«"»0', 0

iv2
X(Ms) Mlp Ms+Ms —Ml)+ e"&("» p(M)p(Ms+Ms —M)60(M8) My Ms+Ms M)$2(My Ms+Ms Mp Mi)dM. (89)

It remains to combine this result with Eq. (86). In so doing we note that energy conservation rules out the first,
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fourth, and 6fth terms on the right-hand side of Kq. (89). Finally, we obtain

3 =(2 t/ts)e( +,+,—,— )X(,)X(,)X(,)X( t)(e"«""e &""5& (&e,,te.. .)
+2%2zp((03+(03 —(00)(P((03p (02+(03 (00) (81(M2+(d3 (00e (01)

+2zp ((e)3+(e)2 (e)1)+(003+(e)3 (e)1)~ +0((t)3 (e) 1 (e)3+(e)2 (e)1)

tII21'g (cop) p( )p(&et+&e ee)e (, te, + te)5& (, te +&e l)(te) (90)

To give a complete discussion of amplitudes in the
three-meson sector, one should also study the collisions
involving two mesons incident on the VE system, and
the scattering of three mesons by two Ã particles. The
analog of each of these processes can also be found in
Bronzan's example, and it is expected, as in his case,
that the corresponding amplitudes can be determined in
terms of the C function.

IV. CONCLUDING REMARKS

It is interesting to compare our three-meson sector
with the one recently proposed by Bronzan. In both in-
stances there is a factorization of the 5 matrix in the
two-meson sector permitting the dynamical equations
of the third sector to reduce to the solution of a Fred-
holm integral equation in one variable. This factoriza-
tion property is characteristic of the transition ampli-
tudes for the mesodisintegration of the V or VE
particles and for the connected amplitudes describing
the scattering of two mesons by one or two Ã particles.
Mathematically speaking, the dynamical equations are
more complicated, and thus less manipulatable, in our
case than in Ref. 5. For this reason we do not attempt
to express $((0) in terms of integrals over the solution of
the fundamental equation. However, on pretending
that 6= cop, we have found that our dynamical equations
resemble those in Ref. 5. This equality is equivalent to
saying that the energy of interaction between two V
particles is twice the energy of interaction between an
X and a V particle. An inspection of Eq. (31) in Ref. 1
shows that its inhomogeneous term vanishes when
co~ = 2(a) p. As a consequence, the disconnected parts of
I~ also vanish. This behavior describes a valid situation
for the associated amplitude 324' of Ref. 5, and explains
why our equations simplify under this condition.

In Sec. II we have derived the Low equation for the
elastic scattering amplitude I by following a conven-
tional contraction procedure. Guided by the solution for
I' found previously, we have solved this equation
through the introduction of an auxiliary function having

no elastic cut and a known inelastic cut. In a similar
way, we can obtain the Low equation for $((0) and try
to solve it directly from a knowledge of the amplitudes
gained in Sec. III via Amado's novel form of contraction.
The usefulness of this procedure, as expounded in Ref.
5, is that it may suggest how to obtain solutions to
crossing symmetric Low equations.

In this paper, we have used dispersion methods in a
discussion of reactions involving two composite par-
ticles formed by the exchange of mesons between two
static sources at zero separation. The lack of various
properties such as spin, recoil, and crossing symmetry in
these reactions makes it virtually impossible to corn-
pare results with physical reality. However, we feel that
these calculations are of interest in their own right and
may provide insights into more suggestive theories,
particularly static models with crossing symmetry.
Some exploratory work on the charged-scalar theory
of two static nucleons has already been carried out; dis-
persion methods yield, at least in the one-meson ap-
proximation, a system of simultaneous equations for
vertex functions and scattering amplitudes reminiscent
of the analogous Lee-model problem. '5 As we have
stated in Sec. I, the idea is to continue this work into
the two- and three-meson dynamical equations. Finally,
to refine all of these considerations, we can also think of
applying the methods of dispersion theory to the Chew-
Low" model with two sources. Although this model is
also an obvious simplification of strong interactions, it
does reproduce the essential features of low-energy
mesonic phenomena.
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