
P H YSI CAL REVlEW D VOLUME 1, NUMBER 2 15 JANUARY 1970

Formal Description of Measurements in Local Quantum Field Theory*

K.-E. HELLwIG AND K. KRAUs

Jnstitut fur Theoretische Physik der Universitat 3Earburg, Marburg, Germany

(Received 25 I'ebruary 1969; revised manuscript received 22 July 1969)

Ideal measurements in quantum mechanics can be described formally as instantaneous changes of the
state vector or, more generally, of the density matrix 5". By its lack of covariance, this formalism is not
very adequate for relativistic quantum theories such as local field theory. For the latter, we propose a
modi6ed formalism, according to which a 6eld measurement in a space-time region C changes the 6eld
state 5" in the future and side cone of C. This proposal is justified by physical considerations.

1. INTRODUCTION

S OME questions regarding the measurement of
particle positions in relativistic quantum theory

h@ve been raised recently by Sloch. ' Our paper intends
to solve similar problems for field measurements in
local quantum held theory.

Consider a quantum Inechanical system with state
space K. Its state is described by a positive Hermitian
operator 8' on X with Tr8'=1, the density operator.
In the Heisenberg picture used here, TV does not depend
on time I, as long as no measurements are performed.
The expectation value in state 8" of an observable,
corresponding to a Hermitian operator A, is Tr(AR').

Let a property of the system, corresponding to a
projection operator P, be measured at time to.' Accord-
ing to the usual formalism, ' this measurement changes
the state 8' into a new one for times later than to, and
leaves unaffected the state 8' before to. The new state is

if the systems are not selected with regard to the
outcome "yes" or "no" of the I' measurement (non-
selective measurement). It is

8'i "——EWE/Tr (PW), (2)

if the systems are selected which have given the
result "yes" (selective measureinent}. 4

This formalism works well in nonrelativistic quantum
mechanics. However, in relativistic theories it leads to

~ Work supported in part by the Deutsche Forschungsgemein-
schaft.' I. Bloch, Phys. Rev. 156, 1377 (1967).' Actually the measurement will last a certain time Dt around
to, but ht is usually assumed to be very small.' G. Luders, Ann. Phys. (Leipzig) (6) 8, 322 (1951);G. Ludwig,
in S'erner Heisenberg und die Physik unserer Zeit (F. Vieweg,
Braunschweig, 1961), p. 150.

'It should be mentioned that von Neumann, 3fathematische
Grundlagen der Quantenmechanik j Julius Springer-Verlag, Berlin,
1932 (English transl. : Princeton University Press, Princeton,
N. J., 1955)g, uses a description of ideal selective P measurements
which divers from the one adopted in Ref. 3 if PK has more than
one dimension. He defines, with some complete orthonormal
system f„in PK and the projection operators P„=(f„)(ii,( onto
P„lY~"=Q„P,P"P„/Tr(PS'). In the language used here, this
corresponds to a simultaneous measurement of all P, which is
nonselective with respect to p. This proposal is not adequate for
Beld theory, since one-dimensional projections P„arenot locally
observable. More arguments in this direction may be found
in Ref. 6.

difficulties since an instantaneous change of state is
not a I.orentz covariant description of the process of
measurement.

Such difhculties have been discussed in detail in
Ref. 1. A suitably modified formalism, which is de-
scribed in the following section, will eliminate these
difficulties at least for the particular case of local
quantum field theory.

As already indicated in the title of our paper, our
subject is the formal description of field measurements.
We will not discuss the highly controversial question
of the physics (or philosophy) behind equations like (1)
and (2).' The equations themselves are notoriously
invariant with respect to their interpretation. We
believe the same to hold true for the relativistic formal-
ism proposed here.

Section 3 describes in some detail the practical
application of our formalism, and compares our
proposal with a similar one due to Schlieder. ' Remarks
on causality and vacuum state are the content of
Sec. 4. State changes more general than those given by
(1) and (2) will be discussed briefly in the Appendix.

2. DESCRIPTION OF FIELD MEASUREMENTS

The system under consideration will be a relativistic
quantized 6eld. Its observables are, for instance,
quantized electromagnetic field strengths averaged over
finite space-time regions. 7 We shall require only some
very general assumptions. '

(i) There exist sets Xc of field observables (Her-
mitian operators A on 5(!), and in particular of field
properties (projection operators I'), for sufficiently
many finite space-time regions C.'

(ii) There is a unitary representation U(a, A) of
the inhomogeneous Lorentz group in X., so that

' Some recent papers about this problem are: L. Rosenfeld,
Progr. Theoret. Phys. (Kyoto) (Extra Number) p. 222, 1965;
J. M. Jauch, E. P. Wigner, and M. M. Yanase, Nuovo Cimento
488, 144 (1966);J.Bub, ibid, 578, 503 (1968);L. Rosenfeld, Nucl.
Phys. A108, 241 (1968); A. Loinger, ibid. A108, 245 (1968)~' S. Schlieder, Commun. Math. Phys. 7, 305 (1968).

7 N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab,
Mat. -Fys. Medd. 12, No. 8 (1933); Phys. Rev. 78, 794 (1950).

The usual assumptions about quantized Belds are much more
speci6c. (Compare, e.g., Ref. 22.)

~The discussion of observables A may be reduced, by the
spectral theorem for Hermitian operators, to a discussion of the
properties P.
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FIG. 1. Xonrelativistic description of measurement.
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Fxa. 2. Proposed relativistic description of measurement.

and

in a Geld state

P' = U(a, A) PU*(a,A)

Q'= U(a, A)QU*(a, A)

W'= U(a, A) WU*(a, A)

is, for any inhomogeneous Lorentz transformation,
essentially the same experiment as the one considered
above. P' and Q' are now measured in the regions C' and
D' onto which the regions C and D, respectively, are
mapped by the Lorentz transformation (a;A). If now
C and D are spacelike with respect to each other, a
suitable Lorentz transformation will change their
temporal order. In this case, however, the formal
description of the second experiment changes drasti-
cally, and the question arises whether the expectation
values are invariant, as they have to be.

Although the invariance of the expectation values
may be proved, " it is preferable to have a manifestly

"This follows from locality by arguments very similar to the
ones used to derive Eq. (7l in Sec. 4 below. Compare also Ref. 1.

U(a,A)KcU*(a,A) is the set of observables belonging to
the Lorentz transform of the region C (Lorentz
invariance) .

(iii) Field observables AQKo, BQX~ conunute,
AS=M. , if the regions C and D are spacelike with
respect to each other (locality).

Assume the field to be originally in state 8', and
perform a measurement of a Geld property I' in some
space-time region C, i.e., PQKo. This region C accounts
for a certain duration At of the measuring process
around a time to, as well as for the spatial extension of
the measuring device.

With 8'~' and TV~" as defined above, the "non-
relativistic" formalism described in Sec. 1 will ascribe
the state 8' to the field before the time to——,'ht, and
the states 8'~' or 8'~" for nonselective or selective
measurement, respectively, after the time tc+sht. The
state in the time interval At in which the measurement
proceeds will be left undetermined (Fig. 1). The ex-

pectation value for a subsequent measurement of a
field property Q in a space-time region D later than
ts+ ,'At is Tr(QW~—') or Tr(QW~"), respectively.

This description, however, seems to violate Lorentz
invariance. With our assumption (ii) above, a successive
measurement of the field properties

covariant description of the relativistic measurement
process.

We propose, therefore, the following covariant formal-
ism: The field state remains 8' in the past cone of C,
and it changes into lV~' or W~" in the future and side
cone" of C (Fig. 2). We shall illustrate this proposal
by two examples, which are very similar to the ones
discussed in Ref. 1.

Consider the measurement, in a given field state 8',
of two properties PQXo and QQKii. Assume D to be
contained in the union of the future and side cone of C
(Fig. 2), and let the P measurement be selective. The
expectation value for Q is then, according to our
formalism

Tr(QPWP)
Tr(QWr") =

Tr (PW)

The same result follows immediately from the "non-
relativistic" formalism if D is in the future cone of C,
but its derivation in the general case requires some care. '

Now consider the more complicated example' of three
measurements of field properties P, Q, and R, where the
corresponding space-time regions are indicated sche-
matically in Fig. 3. Assume selective measurements of I'
and Q, and ask for the expectation value (conditional
probability) of E. Our formalism applies as follows.
The I' measurement produces 8'~" in the regions 3 and
4, and leaves W in the regions 1 and 2 unaffected. The
Q measurement does not affect W in region 1 and W~"
in region 3. It changes 8' into 8'@" in region 2, and
8'~" into

QWi "Q QPWPQ
(W~")o"=

Tr (QWg") Tr (QPW)

in region 4. The space-time map of field states before

Q R 4

(Wp" )~

Fro. 3. Sequence of three field measurements.

"The side cone of C is the set of all points which are spacelike
with respect to C.
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the R measurement is indicated in Fig. 3. Since R is
measured in region 4, its expectation value is

Tr (RQPWPQ)
Tr(R(W~") q")=

Tr(QPW)

Note that, in the case considered here, locality implies
QP=PQ, and thus

QPWPQ PQWQP
(W~")o"= =(W.-).- (3)

Tr (QPW) Tr (PQW)

Therefore, it does not matter whether the Q or the P
measurement is considered to be the erst one." The
ambiguity of temporal order of spacelike separated
measurements thus does not produce any ambiguities'
of the field state.

We assumed 8' to remain unchanged in the past cone
of C.' This assumption has no physical implications at
all, and is therefore a pure convention. "If we imagine
the field state in the past cone to be tested by measure-
ments, these measurements wouM already have changed
the field state in C, and these state changes have to
be taken into account before considering the I' measure-
ment in C. In other words, sequences of field measure-
ments have always to be considered in the proper
causal order.

This taken into account, joint probabilities'4 for
highly arbitrary sets of field properties may be cal-
culated, provided only that the regions of measurements
do not intersect with the light cones across which the
Geld state changes. We hope our last example has
already shown the formal simplicity of such calcula-
tions, as compared to similar ones' using the "non-
relativistic" formalism. Although the particle positions
discussed in Ref. 1 are not directly related to the field
observables discussed here, an appropriate modi6ca-
tion of our arguments should also apply to particle
observables.

3. PRACTICAL USE OF FORMALISM

In this section, we want to discuss how the formalism
described above may be applied to actual experiments. '

"Since (g~")@"——5'~g", one may also speak of a selective
measurement of the field property "P and Q"=PQ in the union
of the regions belonging to P and Q.

"This remark applies also to the unchanged state 8' before
the time tp of measurement in the nonrelativistic formalism,
and to the states in the regions 1 to 3 of Fig. 3. For similar reasons,
the state between to—-', At and tp+-', At in the nonrelativistic
formalism (Fig. 1) cannot be tested experimentally. One may also
assume, without observable consequences, the existence of similar
"transition regions" bounded by suitable light cones in the
relativistic formalism. To simplify discussions, we have adopted
as an idealization that the state jumps on the upper boundary of
the transition region (Fig. 2)."Y. Aharonov, P. G. Sergmann, and J. L. Lebowitz, Phys.
Rev. 134, 31410 (1964}.

""Actual experiments" if invented by theoreticians are in
most cases "Gedunken experiments" which are never performed
by experimentalists. This is especially true for all experiments
discussed here. Nevertheless, they may help to clarify the opera-
tional meaning of theoretical concepts.

In view of this practical application, our formalism
shall then be compared with a similar one proposed by
Schlieder '

Consider again, as an instructive example, the experi-
ment corresponding to Fig. 3. Assume some experi-
mentalists plan to perform such an experiment in a
given field state W. (A few remarks about the original
field state W will follow in Sec. 4.)

According to our formalism, a unique space-time map
of field states (Fig. 3) may be drawn. This field map
may be assumed to be known to all observers before
the experiment begins. The field map predicts the
following quantities:

(i) The expectation value Tr (PW) of P in the original
state 8'. This coincides with the transition probability
p(W —& W~") from the state W to the state W~".

(ii) The expectation value of Q in state Wr" Lwhich
is equal to the transition probability from 8'p" to
(Wi ")o")

Tr(QPW)
T (QW.-) =p(W--- (W--).-)=

Tr (PW)

(iii) The expectation value of R in state (Wi")o"
(W ii)

Tr (RQP WPQ)
Tr(R(W~"),")=

Tr (QPW)
see Eq. (4).

Since the succession of P and Q is ambiguous, the
same Beld map also predicts the quantities":

(iv) The expectation value (transition probability)

Tr(QW) =p(W Wo").

(v) The expectation value (transition probability)

Tr (QPW)
Tr (PWo") =p(Wo" ~ (Wo")p")=

Tr(QW)

The actual experiment may be performed as follows.
The observers go to the preassigned space-time regions,
measure P, Q, and R, and write down the experimental
results, i.e., numbers p, q, and r which are either 0 or 1.

Since the predictions of quantum theory are statistical
ones, they can be tested only by very many repetitions
of the same experiment. Imagine, in our case, the same
experiment to be repeated E times, always starting
from the same field state W. (The meaning of the phrase
"the same" is explained in more detail in Sec. 4.) This
yields E recordings, each consisting of three digits

p;, q;, darn;

The predictions (i)—(v) of the theory then have to be
compared with the following numbers )summations

"For a similar experiment, in which a Q measurement is
performed in the future cone of a P measurement, the "predic-
tions" (iv) and (vl are meaningless. In this case the Geld can Not

be assumed to be in state W during the Q measurement, or in
state 8'g" during the P measurement.
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over (i) always from 1 to Sj:
Q p;/X,

(iv)

(v)

Expressions (i) and (iv) are obvious. In (ii) we have
selected, according to the definition of a selective P
measurement, '~ the subset of recordings with p;=1,
and have calculated the mean value of q; in this subset.
An analogous calculation with Q and P interchanged
yields (v). Finally, (iii) is the mean value of r, for those
recordings, for which both p;= 1 and q;= 1. This
corresponds to a measurement of R after selective
measurements of both P and Q. The predictions of the
theory are expected to agree with the experimental
results for sufFiciently large Ã.

We hope that the practical application of our
formalism to an arbitrary set of field measurements
has become obvious.

The formalism proposed by Schlieder' is somewhat
more complicated. First of all, Schlieder considers also
experiments for which the measurement program
(i.e., the space-time regions for measurement C and
field properties Pg Xc to be measured) is not fixed from
the beginning. We think this to be an unnecessary
complication. Any theoretical prediction that can be
verified is a prediction about the result of actual ex-
periments. In quantum theory, such a veri6cation
even requires a large number of repetitions of the same
experiment. Therefore, we may always assume a fixed
measurement program which then has to be known to
all observers participating in the experiment.

The second complication in Ref. 6 arises from a
problem which may again be illustrated by the experi-
ment of Fig. 3. The P measurement was assumed to be
selective, thereby producing a field state t/t/'&". During
the subsequent Q measurement, however, the cor-
responding observer does not yet know the result p
(1 or 0) of the P measurement, since this information
can travel at most with the velocity of light. Therefore,
while measuring Q the observer does not know whether
or not the field is actually in the state Wi" (which
requires p=1). The question of whether or not the
result for Q has been obtained in the required state W~"

"An apparatus for selective measurements of a Particle prop-
erty P may be visualized as a Alter which absorbs particles with
P=O and leaves unaffected particles with P= j.. Similar 61ters
corresponding to local geld properties P obviously do not exist.
Accordingly, the selection procedure adopted here does not
absorb the 6elds with P=O, but merely neglects all experiments
with p;=0.

can, however, be decided afterwards by looking at the
result p of the P measurement. This kind of temporary
ignorance of some observers thus has no inhuence on
the numerical evaluation of the experiment.

Therefore, in our opinion, the above-described infor-
mation problem may be considered as unessential for
the construction of a state map. "In fact, the desire for
a formalism. which yields unique, observer-independent
field states was our principal motivation in writing this
paper. The formalism described here is especially
simple, since Schlieder's "Ã-map"' which describes
the knowledge of observers becomes superAuous. Then,
the remaining ingredient of Schlieder's formalism, the
so called "M-covering, " coincides with the state map
proposed here. We leave it to the interested reader to
check the details concerning the physical equivalence of
Schlieder's formalism with ours.

Tr(QWi') =Tr(QPWP)+TrLQ(1 —P)W(1—P)j
=Tr(PQWP)+TrL(1 —P)QW(1 —P)j
= Tr(PQW)+TrL(1 —P)QWj
=Tr(QW). (6)

Equation (6) is indeed a necessary consequence of
causality, since a nonselective measurement of P can

' Note that the whole experiment may even be performed by a
single observer with the help of automatic measuring and re-
cording devices.

'i' Generally speaking, expectation values for 6eld observables
belonging to a proper subset of space-time do not 6x a unique
density operator, but an equivalence class of density operators.
In this sense, W and W~' are equivalent in the side cone of C. We
have chosen Wz' for reasons of simplicity.

4. REMARKS ON CAUSALITY AND
VACUUM STATE

An ideal measurement of a property P at some
quantum system is achieved physically by a suitable
interaction with a measuring apparatus. For properties
PQOTo of a field, the interaction is assumed to take
place in the corresponding space-time region C. This
interaction produces correlations between the properties
of the 6e1d and a macroscopic property of an apparatus
(e.g. , a pointer position). The replacement of the field
state W by t/t/&' is a forrnal description of these correla-
tions. The further reduction of 1/1/I

' to 1/1/'~" for selective
measurements accounts for the decision of the observer
to count only experiments in which the property P
has been found.

These replacements are certainly justified in the
future cone of C. At first sight, however, our proposal
of replacing H/' also in the side cone of C seems to con-
tradict causality. Perhaps one would prefer a different
formalism, with t/I/' unchanged also in the side cone of C.

Actually, such formalism is equivalent to the one
proposed here. Consider a P measurement in C, and a
subsequent Q measurement in D, spacelike with respect
to C. For a nonselective P measurement, the expectation
values of Q in both formalisms are the same, since
locality implies PQ= QP, and therefore, "
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Correlations of this type are responsible for the famous
Einstein-Podolsk-Rosen paradox (compare also Ref. 6).

In a formalism with 8"unchanged in the side cone of
C, the selective I' measurement in C and the subsequent
measurement of Q in D may be described as a simul-
taneous measurement of P and Q in state W. We ask
for the expectation value of Q in such experiments for
which the I' measurement gives "yes." Since the Geld

property "P and Q,
" for commuting P and Q, corre-

sponds to the projection operator QP, the required
expectation value of Q is

Tr (QPW) Tr (QPWP)

Tr (PW) Tr (PW)
=Tr (QWp") . (7)

never change the result of a Q measurement at a
spacelike distance. This reasoning, however, does not
apply to selective I' measurements, since the Geld
properties P and Q may be correlated in some held
states 5".Thus, in general,

Tr(QW~") ~Tr(QW).

original vacuum state E„then occurs since ~ is the
ground state of the 6eld and excitations of co caused by
local measurements will die away after a sufficiently
long time.

With this assumption about the original Geld state,
our state map becomes completely fixed by the mea-
surement program.

mrzmorX

Instead of the highly idealized measurements con-
sidered above, we will now briefly describe a more
general class of state changes, called operations. (A
more detailed discussion is presented elsewhere. 23)

Assume, in addition to the postulates (i) to (iii) of
Sec. 2, that the set Xq of field observables in C is the
set of Hermitian operators of a von Neumann algebra
Rg. With this assumption, the 6eld becomes a so-called
Haag field. '4 A local operation is then described by a
set of operators Aq, g(Ro, k, r', =1. I (including the
possibility e= ~ ), with

2 A4 Akj=Sij1 y 2 AkÃii =~kll) (A1)
Equations (6) and (7) indicate the consistency of our

formal description of the state changes due to measure-
ments. Moreover, our description seems to be the
simplest one, since the states produced in the future
and side cone of the region of measurement C have the
same form.

We conclude with some remarks about the field
state W prior to any experiment. " A comparison of
quantum theory and experiment is only possible if the
same experiment is repeated many times. This may be
achieved here by exploiting Lorentz (or translation)
invariance (Sec. 3). Using the same experimental
equipment in space-time regions which are mapped onto
each other by suitable inhomogeneous Lorentz trans-
formations (a,A), these experiments may be considered
as identical, since U(a, A.) maps the corresponding
local 6eld properties onto each other.

Two conditions have to be fu161led. First, the dif-
ferent experiments should not disturb each other.
Second, the original field state 5" should be invariant
with respect to the mappings U(a,A). Since the (a,A)
are highly arbitrary (although somewhat restricted by
the first condition, e.g. , to large a), W should be invar-
iant with respect to U(a, A) for all a and h..2i The only
i11variant state 8" which is normalizable to Tr8'= 1 is,
in the usual framework of 6eld theory, " the projection
W=P„=~~)(~

~

onto the unique vacuum vector M.

This choice also fulfills the first condition. The
easiest way to achieve this is to choose (u, A) with a
spacelike and sufficiently large. However, actual experi-
ments are usually repeated in time. Regeneration of the

~ Compare A. L. Licht, J. Math. Phys. 9, 1468 (1968).' One may con6rm this by using the group property of U(c,h)."R.F. Streater and A. S. Wightman, PCT, Sp&s end Statistics,
and A/l That (W. A. Benjamin, Inc., New York, 1964).

a sequence of numbers

c ~&0 with g c;=1,
i=a

and a subset E of the index set (1 n).
The field state 5' then changes into

W=Q Q c;Ai, ;WAi;*
k=1 i=1

(A2)

if the operation is nonselective, and into

W"=W/TrW,
n

Q c;A i„WAi„* (A3)
k+K i=1

F= Q Q c;Ai, ;*Ai,;
k+K i=l

with 0~&F R&1, FptRc. Secondly, even if F is a projec-

~ K.-E. Hellwig and K. Kraus, Commun. Math. Phys. 11,
214 (1968); ibid. (to be published)."B.Misra, Helv. Phys. Acta BS, 189 (1965l.

in case of a selective operation. This state change is
again assumed to occur in the future and side cone of the
region of operation C.

Ideal measurements of a field property PQ(Rc are
particular cases. LEqs. (A2) and (A3) reduce to (1)
and (2), e.g. , for I= 2, A it =A ~2

——P, A i2 ——A 2i = 1 P, —
et= 1, c2=0, E= (1).j Local operations are more
general than ideal measurements in two respects.
First, the field property PQScis replaced by a "local.
eGect, " i.e., a Hermitian operator
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tion operator I', the state change need not be described
by Eqs. (1) and (2). (In other words, such I' measure-
ments are not ideal, as defined in Ref. 3. A trivial
example is the case rt= 1, with a unitary A]i—U+6to,
and E= (1).The property measured is I'= 1, whereas
the new state is US'U*N TV. This type of state change
may be due to external fields in C.)

A local effect describes the occurrence of "clicks"
in a suitable "counter" which interacts with the Geld
in the space-time region C."The rate of occurrence of
the efFect J" in the field state W is Tr(FW).ss

"The state W" LEq. (A3)g describes the Geld if it has produced
the effect R, whereas the state W' LEq. (A2)] is generated in
experiments in which no selection is made with regard to the

With this interpretation, our generalized formalism
allows the calculation of joint probabilities for such
clicks F in the same way as does the formalism for
ideal measurements. As is evident from Eq. (A4), a
local effect F corresponds to many different local
operations. Therefore, joint probabilities for local

effects depend not only on the effects themselves but
also, via (A2) and (A3), on the particular local opera-

tions performed.

occurrence or nonoccurrence of Ii. For the particular case F=1,
8"' and 5"' are identical since every Geld produces the effect
corresponding to Ii = j, and a nontrivial selection becomes im-
possible. Therefore, selective operations with Il = 1 are equivalent
to nonselective ones.
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The quantum theory of the infinite-component Majorana Geld is formulated. The present paper dis-
cusses the three classes (slower than light, Iightlike, and faster than light) of solutions to this equation and
their Wigner classification. Particular attention is paid to the question of the normalization of the faster-
than-light solutions. The current operator is shown to be timelike even for the spacelike solutions, and
it is shown to lead to a finite process of emission of light by charged Majorana particles. The quantum
theory of the Majorana Geld is formulated in accordance with the substitution law, and the usual con-
nection between spin and statistics is recovered.

I. INTRODUCTION

HE usefulness of the local covariant field descrip-
tion of particle phenomena has been amply

demonstrated in the successes of quantum electro-
dynamics and of the chiral V—A weak interactions. It
has been conventional in such treatments to use local
fields, each of which describes only one kind of particle,
with a definite mass and a deGnite spin. Many years
ago the late H. J. Bhabha systematically investigated
the possibility of describing a family of particles with
varying masses and spins by a single irreducible equa-
tion. ' As a special class of such equations, Bhabha
studied relativistic wave equations of the form

(iFo8/Bsce a)f = 0, —
where the matrices F& together with the spin matrices
S&" satisfied the commutation relations of the de Sitter

+ Supported in part by the V. S. Atomic Energy Commission.' H. J. Bhabha, Rev. Mod. Phys. 17, 200 (1945).

group. Of course, the S&" themselves satisfy the com-
mutation relations of the homogeneous Lorentz group,
and the matrices F~ constitute a four-vector operator
with respect to this group. Bhabha's additional assump-
tion was that the matrices I'& among themselves
satisfied the commutation relations of the form

[Fe,F"j= iXS~".

From this de Sitter structure, Bhabha was able to obtain
a mass-spin spectrum in which the mass decreased as
the spin increased. These equations include the spin-~
Dirac equation and the spin-0 and -1 DufIin-Kemmer-
Petiau equations. But except. for these special cases,
the Bhabha equations lead to the necessity of introduc-
ing an indeGnite metric of an unsatisfactory kind. This
diKculty can be traced to the unfortunate restriction
to finite-component fields, which necessarily correspond
to nonunitary representations of the homogeneous
Lorentz group. We should therefore relax this restriction


