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Theory. I. The General Foriualism~
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(Received 21 May 1969)

The concept of scalar hyperplane-dependent fields is defined on the basis of the author's earlier treatments
of the position operators for relativistic particles. Such fields are a special case of Gelds over homogeneous
spaces of the Ponincarb group and are related to infinite families of integer spin particles with spin-dependent
mass spectra. The intrinsic parity of the particles and degeneracy in the mass spectrum is examined. The
Lagrangian formalism, including Noether s theorem, is developed and explored. It is shown that the e'xistence
of a Lagrangian formalism yields a normalization condition that is incompatible with the existence of space-
like solutions. All is in preparation for the sequel to this paper which considers a specific model with Bose
statistics and nondegenerate mass spectrum.

I. INTRODUCTION

'HIS is the first' of a series' of papers in which a
particular version of nonlocal quantized field

theory will be studied. The version in question is moti-
vated by the author's earlier studies of the properties
of position as a dynamical variable in relativistic quan-
tum theory. ' It amounts to defining the 6elds over a
seven-dimensional continuous manifold, the points of
which are labeled by the ordered pair (x,rt), where x is a
position four-vector of Minkowski space and g is a
dimensionless tibet'ike unit vector with positive time
component. 4

The vector g is to be geometrically understood as
designating the normal direction to a three-dimensional
sPacelihe hyperplane in Minkowski space which includes
x. The introduction of such hyperplane parameters is
prompted by the realization that the results of a precise
position measurement of a particle, e.g., the resulting
state vector (which is almost a position eigenvector),
depends dramatically on the spacelike hyperplane over
which the search for the particle was made as well as
on that particular point in the hyperplane at which the
particle is found. ' 4 This means that a unique speci6ca-
tion of the results of a position measurement requires at

* Supported in part by the National Science Foundation, under
Grant No. GP-8867.' The present paper may be regarded as a revised version of an
earlier report LG. N. Fleming, Pennsylvania State University
report, 1968 (unpublished) j.

~ The s,econd paper in the series will treat a boson model with
nondegenerate linear mass spectrum LG. N. Fleming and F.
Ardalan, Pennsylvania State University report, 1969 (unpub-
lished) j.

s G. N. Fleming, Phys. Rev. 13?,B188 (1965);139, B963 (1965).
G. N. Fleming, J. Math. Phys. 7, 1959 (1966).Thus the space

of the (x,g) is a homogeneous space of the Poincare group; mathe-
matically, this field theory is just a special case of field theories
over homogeneous spaces which have received renewed attention
from C. Chi, D. van Dyck, and N. van Hieu, Ann. Phys. (N. Y.)
49, 173 (1968);H. Bacry and A. Kihlberg, Institute for Theoetical
Physics, Goteborg, Sweden, Report, 1968 (unpublished); A.
Kihlberg, Institute for Theoretical Physics, Goteborg, Sweden,
Report, 1969 (unpublished). The latter authors favor the eight-
dimensional homogeneous space for its ability to accomodate
half-integral spin without the introduction of spinor fields. The
seven-dimensional homogeneous gpace is favored here for the
independent physical interpretation that is provided by the study
of position operators.

I

least the parameters of the ordered pair (x,rt). Inasmuch
as field theory is just the study of quantities dered
over the manifold of all possible results of position mea-
surements, the study of quantized fields over the seven-
dimensional Minkowski-hyperplane space is strongly
indicated.

The position taken here is similar in spirit to those
expressed in the studies of field theories for extended
particles. ' Since extended particles have, besides a con-
ventional position, a configuration or orientation as well,
the parameters for describing that configuration become
new arguments of the associated fields. ' Such approaches
require the investigator to go out on a limb in hypothe-
sizing the character of the structural features of the ex-
tended particles. The nonlocal field theory to be pre-
sented here, however, enjoys the advantage that no
commitment to the structural features of particles is
required. The additional arguments of the field emerge,
instead, from a very general study of the nature of
position itself in relativistic quantum theory. 7

The results that emerge from the study of such
hyperp/arte dependent field' -are very similar to the prop-

'H. Yukawa, in Proceedings of the International Conference oe
Elementary Particles, 1065, Eyoto, pp. 139—158; Y. Katayama, in
Proceedings of the 1967 International Conference on Particles and
Fields, edited by C. R. Hagen, G. Guralnik, and V. A. Mathur
(Wiley-Interscience, Inc. , New York, 1968), pp. 157—165; T
Takabayashi, Progr. Theoret. Phys. (Kyoto) 36, 187 (1966);
36, 660 (1966); 36, 662 (1966); 37, 765 (1967); 37, 767 (1967);
in Proceediegs of the 1967 International Coefereece oeParticles,
and Fields, edited by C. R. Hagen, G. Guralink, and V. A. Mathur
(Wiley-Interscience, Inc. , New York, 1968), pp. 413—425.

H. C. Corben, Classical and Quantum Theories of Spinning
Particles (Holden Day Publishing Co., New York, 1968).

~ A closely related development is indicated in F. Lurgat,
Physics 1, 95 (1964).I urgat's ideas greatly influenced the thinking
of the present author, but a recent presentation in F. Lurgat,
Phys. Rev. 173, 1461 (1968), indicates a wider divergence from the
position taken here.

8 From a formal point of view, hyperplane-dependent fields are
very similar to the frame-dependent fields of R. L. Ingraham
LNuovo Cimento 24, 1117 (1962); 26, 328 (1962); 27, 303 (1963);
32, 323 (1964); 34, 182 (1964); 39, 131 (1965); Phys. Rev. 152,
1290 (1966)g, whose articles convinced the present aui, hor of the
internal consistency of the concepts of frame- or hyperplane-
dependent Gelds. The motivation for Ingraham, however, is
primarily that of getting a convergent perturbation theory. For a
systematic exposition, see R. L. Ingraham, Reeormalizatioe Theory
of Quantum Field Theory mith a Cutoj (Gordon and Breach,
Science Publishers, Inc. , New York, 1968}.
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SCALAR HYPERPLANE —DEPENDENT FIELD THEORY . I

erties of both extended-particle fields and the more
algebraically motivated infinite-component field theo-
ries. ' The quanta of the fields comprise infinite: families
of particles lying on Regge-like trajectories. Infinite
degeneracy" in the masses is easily come by but can
be avoided in examples with realistic spectra. Consecu-
tive particles lying on the same Regge-like trajectory
have opposite parities reminiscent of the signature
property" of Regge theory. Examples can be found of
theories with well-defined and well-behaved vertex
functions which, however, are not analytic functions of
their arguments. "Finally, hyperplane-dependent spinor
fields (to be discussed in a later paper in this series)
display a version of parity doubling" in their solutions.

The most striking and novel result is the demonstra-
tion that within the context of a Lagrangian formalism'
there can be no acceptable spacelike solutions" in
scalar hyperplane-dependent field theory. Thus the
major plague of infinite mutliplet theories with non-
degenerate mass spectra is not present here.

In Secs. 2 and 3 the particle aspect of scalar hyper-
plane-dependent fields is explored in a general way. This
is followed by the development of the Lagrangian for-
malism and the determination of the form of currents
with vanishing four-divergence that emerge from
Noether's theorem" in a seven-dimensional field theory.
In Sec. 5 a brief discussion of equal-hyperplane commu-
tation relations as the analog of equal-time commutation
relations in local field theory is presented. It is to be
noted that the conventional notions of locality and
microcausality have no weight here for the fields by
virtue of the physical interpretation provided above.
Microcausality of the conserved currents is another
question that will be considered in the sequel. Finally,
the paper closes with a demonstration of the impossi-
bility of particles with spacelike momenta occurring as
acceptable solutions. It must be emphasized that this
result depends crucially on the presumed existence of a
Lagrangian formalism.

The problem of the statistics' of the particles will

also be taken up in the sequel.

'E. Majorana, Nuovo Cimento 9, 335 (1932); I. M. Gelfand
and A. M. Yaglom, Zh. Eksperim. i Teor. Fiz. 18, 703 (1948).
These papers provide the historical origins of the subject."H. D. I. Abarbanel and Y. Frishman, Phys. Rev. 171, 1442
(1968);R. F. Streater, Commun. Math. Phys. 5, 88 (196/)."K. J.Squires, Complex Angular Momentum in Particle Physics
(W. A. Benjamin, Inc. , New York, 1963)."C.Fronsdal and R. White, Phys. Rev. 163, 1835 (196/)."V. Barger, University of Wisconsin Report, 1968 (unpub-
lished).

'4 A Lagrangian approach to infinite component fields has been
presented by C. Fronsdal, Phys. Rev. 181, 1881 (1968)."Y.Nambu, Phys. Rev. 160, 1171 (1967); S. J. Chang and
L. O'Raifeartaigh, ibid. 170, 1316 (1968)."E.Noether, Nachr. Kgl. Ges. Wiss. Gottingen, p. 235 (1918).

'7 E. Abers, I. F. Grodksy, and R. E. Norton, Phys. Rev. 159,
1222 (1967). For a more recent evaluation of the spin-statistics
problem, see Ref. 14.

7/jl4 Ap QV

the field is assumed to satisfy

y'(x', ~') =@(x,~) .

(2.1a)

(2.1b)

(2.2)

These relations immediately lead to the commutation
relations between the field and the generators of the
Poincare group, P„and 3f„„,

[&,P„j=i h8„$, (2.3a)

where

[y,cV„„j=ih(x„cj„—x„ci„+r/„3, —r/, 3„)y, (2.3b)

(2 4)

is the differential operator in g space that allows g to
always remain in the unit hyperboloid,

(2.5)

When manipulating this differential operator, it is
necessary to employ the relations

g"8q=—0,
~~/V gPV

8„8,—8,8„=g„8,—g„8„.

(2.6a)

(2.6b)

(2.6c)

From the appearance of the g variable and derivative
on the right-hand side of (2.3b), one naturally expects
the hyperplane dependence of the field to relate to the
spin of the associated particles. "This is borne out by
the multiple commutation relation

——,
r e„.„[[yPI-sj,Pr] = h'Q„y,

where
~~=~I~Pv"I ~ ~

(2.7)

(2 8)

for if (2.7) is applied to the vacuum state ~0), one
obtains

(2.9a)

and then by iteration

8"y(0)= h40'y~0), (2.9b)

where 8'„ is the Pauli-Lubanski operator" and the
eigenvalues of 8" are —m'c'h's(s+1).

Thus, when applied to the vacuum, the scalar hyper-
plane-dependent field yields a vector describing non-
vanishing spin, provided only that the hyperplane

'8 G. N. Fleming, Bull. Am. Phys. Soc. 13, 39 (1968).
rs G. N. Fleming, Bull. Am. Phys. Soc. 13, 1696 (1968).I J. K. Lubanski, Physica 9, 310 (1942).

2. BASIC EQUATIONS FOR SCALAR FIELD

The scalar hyperplane-dependent field operator to be
studied in this and a future paper will be denoted by
P(x, r/). Under the Poincare transformation, "
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P„(h/i) 8„, P' —O'U

are here supplemented by

(2.1Oa)

dependence of the field is sufBciently involved. In par-
ticular, the familiar correspondences

where the operator coeKcients, g &" '
'(zz k,k), may now

depend on g through the scalar g. k and are, themselves,
fully symmetric, graceless, and transverse s-rank tensor
fields with (2s+1) independent components. By trans-
verse is meant that

O'„O'0„, 8"' h, '0'.

3. PARTICLE ASPECT

Upon introducing the Fourier transform

(2.1Ol ) k. p z ""(zz kk)=0 (1&r&s). (3.9)

At this point, one expects the s term in the expansion
(3.8) to be associated with particles of definite spin as
well as definite momentuIn. To confirm this, note that

y(k, zz) = (2zr)
—' d4x e'"y(x rl) (3 1) 8„(h», h», ) = —sg„(h», h», )

one obtains the results

where

(3.2)

(3.3)
from which it follows that

(k 8)(h , h ,)= —s(g. k)(h , h ,), (3.11)

zv~(k): pp»zIy g8 k~'. (3.4)

Consequently, Q(k, g) acts as a creation operator for
momentum —Ak„and as an annihilation operator for
momentum Ak„ in the familiar way, and the spin con-
tent of the Fourier transform is determined by its rela-
tion to the differential operator co„(k).

To explore this spin content, it is convenient to ex-
pand p as a power series in the components of
Specifically, the expansion

(k$)'(h h, ) = {s'(r/ k)' —SL'k' —(i1 k)']}
&((h, h,), (3.12)

(8 )(h, h, ) = —s(s+2)(h, h,)

+2 E h»1 h»r 1h»r+1 h»t—lh»l+l — h»s
r(t

@(k,zz) = Q h, h. ,X"""(k)
e=o

where the first term is X(k) and

Hence, employing
3.5

oP(k) = [(g k)' —k']8'+(k b)' —(g k)(k. 8), (3.14)

which follows from the definition (3.4), one obtains

will be employed. The use of h rather than p itself as
the expansion variable is dictated by the convenience
of a linear constraint among the expansion variables,

k h=o, (3.7)

@(k,q)=P h, h..g z" "(q k,k),
s=0

(3.8)

as opposed to the quadratic constraint (2.5). If one so
chooses, (3.5) could be written as a power series in inde-
pendent components of h, but a power series in g could
not be similarly written. Also, the components of h can
vanish while rzp) 1, so that (3.5) is truly an expansion
about the origin in h space.

One serious limitation on the expansion, however, is
that it cannot be employed for null k. The definition
(3.6) breaks down for k'=0, and so a study based on
(3.5) can only apply to the case of massive particles.
The massless case will be treated separately. '

Ignoring questions of convergence, one can rearrange
the terms in (3.5) to obtain the expansion

Lppz(k)h h ]p»" '»'(zl k k)

=s(s+1)k'(h h )g»i" "(rz k, k). (3.15)

Finally, since

zp (k)(h h y i" )
= (p~„(k)h., h. )g i" " (3.16a)

and

(u'(k)(h, h j '" )
= [cv'(k)h . h ]p" " (3.16b)

it follows that

zp'(k)P=P s(s+1)k'h h P»'"»~, (3.17)

thereby confirming the suspected spin content of the
terms in the expansion. The scalar field describes par-
ticles of integral spin.

It is still not possible to identify the @
'" ~ with the

conventional creation and annihilation operators of
spin and momentum eigenstates for single particles
because of the residual hyperplane dependence. In
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general, an expansion of the form

g ' " *(g k,k) =Q p.„(g k)$„ ' "« (k) (3.18)

is possible, with the functions p,„chosen as appro-
priately normalized functions forming a complete set
which may or may not have to satisfy a differential equa-
ion derived from the original Geld equation for P. The

will then have the form /see (3.21) as an

example)

'"«'(k)=8(k —z )(8(ko)a "' e(k)

+e(—k,)b:" - t( —k)i, (3.19)

and the e's and b's are the particle-antiparticle annihi-
lation operators.

If the free-Geld masses ~,„are degenerate with respect
to e, i.e., ~,„=a„then there is no physical basis, in the
absence of interactions, for distinguishing between P„
for given s, and the expansion functions p,„are entirely
conventional. The equation of motion does not deter-
mine them. If the equation of motion does determine
them, then ~,„is nondegenerate for given s. Both kinds
of field theories can be found.

Thus any field equation of the form

f(a, Q')y= 0
yields

(3.20b)

aIld
6y(k', ~')O '=Ay(k, ~) (3.28b)

k ' ' 'k pe (~ 'k )(pPee"i"' e(k )(p

=Ah, k«p, „(g k)P„«&" «(k). (3.28c)
But since

k, ' k, '= (—1)'k, . k„„(m„=1,2, 3) (3.29)

and

one finds
p-(~' k')= p. (n k), (3.3o)

pp eeet ~ .eee(ke)6e —1—y( 1)ef e«e. ..eeee(k) (3 31)

and the intrinsic parity of the sn particle or antiparticle
ls

X(—1) (3.32)

The intrinsic parity alternates with integer changes in
spin.

4. LAGRANGIAN FORMALISM

Consider the parity transformation

x—= (xp, x) ~ (xo, —x)—=x',

~=bio 9) ~ &Io, —9)—=9'

If one assumes

6 y(x', ~')6 -'= Z@(x,~) (X=a 1), (3.28a)
then

alld
To account for the most general Geld equation of

00 fourth order, it is necessary to consider Lagrangian
g k, k,f( k', —k's(s+—1))@ '" '=0 ~ (3.20c) densities of the form
s=p

From this,

where

y«i «~ g("f'(—k' —k's(s+ 1)))
~ b(k' —~ ')

f( ~,', —x,'s(s+1))—=0—,

(3.21)

(3.22)

L(x,g) =L($,8„ele,8„$,8„8+,8„8+,b„8+;
&' ~A"»A' ~~~&' ~~~A' 4&4', n~), (4 1)

where the last entry indicates a possible explicit de-
pendence of L on the hyperplane vector g. Such a
dependence is possible since g is not subject to transla-
tions under the Poincare group.

The variational principle is
and so the mass spectrum is inGnitely degenerate.

The general fourth-order differential equation of the
type' d4g 6 q' —I 8 gp d4g I. g, g =0, (4.2)

(Q'+XCI+lg'Cl'+ly ')&=0

yields the mass spectrum

—z 's(s+ 1)—ZK '+l, '~e4+1 = 0
Ol

(3.23)

and in deriving the Euler-Lagrange equation that
follows from such a principle it is necessary to note that,
for any function of p, f(g) satisfying

re= P,+s(s+1)j/210 &(1/2lz')
X{P+s(s+1)j—4(lo/ly) } i (3.24)

(4.3)

for /pQO and l~Q ~. If lp= 0, then

~ '=1/ling. +s(s+1)j,
and if lg ——~, then

z, '= LA+ s(s+ 1)j/lo'.

it follows that

(3.25)
d'g 8„(g'—1)b„f(g)=3 d'g g („'—1)g„f(„). (4 4)

(3.26) Consequently, when doing integration by parts in (4.2)
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on the derivatfve b„, one cannot convert the y integral
completely into vanishing surface integrals.

The resulting Euler-Lagrange equation is then

For the special case of gauge transformations

y'=ye' =y(1+iX), (4.10)

—a„+a„a„+a„(a„—3g„)
ay a(a„@) a(a„a,y) a(a„a„y)

(4—3n—.) +(a.—3~.)(4—3~.)
a(a.~) a(a.a.~)

(4 5)

In the next paper in this series, the Lagrangian density

L= a"a"qua h p a"8—"@ a 8 p+xa qua p
+lp'aI'a"qV a a& (4.6)

the guage invariance of L yields

BI.=0
and thus

a.j"(*)=o
where

( aL aI.
d'v a (n' —1)I 4+ — aA

ka(a~y) a(a a.@)

aI

a(a„a„y)

(4.11)

(4.12)

will be studied. The corresponding Euler-Lagrange
equation is

2»' —(a ~)'+3(v. a)(a a) —~ +lp'&'j&=0 (47)

Noether's" theorem applies in a form appropriate to the
seven-dimensional space of the (x,y) and must be manip-
ulated slightly to yield- conserved "currents" in
Minkowski space. First note that the variation in the

form of L due to a variation in the form of g is

g=P d eg~i, „(1)—g,„(k))=
s, n

(4.14)

holds will be determined. Bose statistics will be required.
In the case of infinitesimal translations, we have

In the succeeding paper, Eq. (4.13) will be used as the
electromagnetic current and the circumstances under
which

()I BI.
8p+ aa„g+ -aa„a.p

a(aA) a(a.aA)

Bl. 01.
+— Q„@+— aa„a„p+

a(a„y) a(a„a„p) a(8„5,$)

&(88„8„$+H.c.

so that

and

L'(x', g) =L(x,y)

0'(*',v) =@(*,v),

8@=—a„pea".

(4.15a)

(4.15b)

(4.16a)

(4.Mb)

aI ~ aL
=a„i ay+ a,a4+-

ka(a„y) a(a„a,y) a(a„a,e)

t' aI. a
Xa„ag+H.c. i+(ar —3r)r )Ij (a(a„p) a(a„a„p)

aL aL
yap —(a„—3~„) ay+ a„ay+H. c. i,

a(a, a„@) a(a„a,y) )
(4.8)

where (4.5) and the interchangability of differential co-
e%cients and 8 have been used. Integration of the hyper-
plane-dependent variation over all hyperplanes passing
through the point x yields, from (4.4),

d4g 5+(g' —1)8L(x,g)

Upon substitution of (4.16) into (4.9), one obtains

where
a~s„.(x)=0, (4.17)

a, n

d'x v'p„(x, xp) (4.19)

BJ BI.
&"(*)= d'n a+(n' —1) aA+

a(any) a(agave)

aI.
+ —Pa„y+H.c.—g„„L i. (4.18)

a(al'py)

Again, the relation

aL aI.
=a„d4& a+(&' —1)i ay+

ka(a„y) a(a„a,y)

BL,
+— 5 Ey+H c .) (4..9)..

a(a„a„g) aL = (x„a, g,a„+g„a, g.a„)Lap—p"" (4.20a)—

for the model Lagrangian (4.6) will be examined in the
sequel to this paper,

Finally, for the infinitesimal homogeneous transfor-
mation, we have
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bp= (x„8, x—„8„+r)„B, rt—.b„)popo"",

so that substitution into (4.9) yields

8~31„„~——0,

lower indices and is also a projection operator, i.e.,
(4.20b)

Gv " r." "(k)Gp p -"(k)= Gp p.-"""(k) (5 4)

Examples of lower rank are

where Gp =gp~ k "k—p/k' (5.5a)
and81.

d r) &+(r) 1) (x~8x xx8~ Upb& U&b~)4' G ~1~2= r&G ~&G ~2+G &1G
8(8"Q) PIP2 2 l Pl P2 P2 Pl

—sG"'"Gp; p ) (5 5b)
l9L

+— &'(x,&~—x),&.+r).b), —rtxb. )4
8(8"b~ib)

Note that

Gp p."-"("k)=—Gp p."""(k) (5.6)

+— b'(x„8g —xg8, +r),bg —rtgb, )$+H.c.
8(8'barb)

—(x„g„,—x,g„„)L, ~. (4.22)

From (5.2) the commutation relation (5.1a) is trivial
since it is a combination of vanishing commutators.
For (5.1b) one must employ (3.1), (3.8), and (3.18) to
obtain

In a consistent model the generator of homogeneous
Lorentz transformations 3f„„must, of course, be given
by =(2) ' d4k~d4k e ik'x' ikz—

8(~ x-~ x')L4(x', v)A'(x, n) j

s'n' s, n

M„„=— d'x 3fp„,(x,xp) . (4.23) Xp. (r) k')g ~ '. " ''(k'), P P'"P t(k))

Xpa~*(rt k)hp, hp, b(rtx —gx') . (5.7)

S. EQUAL-HYPERPLANE COMMUTATION
RELATIONS

But (3.19) yields

LV-
"""'(k'),&-"""(k)3

= B(k"—K, „')b(k' —ii,„')L8(kp') a„"~" '(k')

+8(—k, ')b„.- "'*'t(—k') 8(k,)a p ".p t(l)
+8(—kp)b„P~" P (—k)j

= B(k K )b(k' —ir.„')8 ~ B.'.(8(kp')8(kp)2 ~kp~

Xb'(k —k') —8( ko )8( ko)2
I
ho

~

8'(k —k )j
G&@ ~ei ps pa(k)

= 8 ~ 8, .6'(k —k') 8(k' —ii,„')
XG"""P " P (k).(k,) (5 8)

8(q x—q x')Ly(x', q),y(x, ~)j=o,
b(& x &x') [y(x', ~)-,y'(x, ~)j=0.

whe. e

(5.1b) e(kp) = 8(kp) —8(—ko) . (5.9)

The nonlocal character of the hyperplane-dependent
field removes the preferred status of equal-time and
generally spacelike commutators enjoyed in local field
theory. On the other hand, a similar but not equivalent
role is placed by equal-hyperplane commutation rela-
tions. Specificially, it will be shown here that under
standard assumptions for the commutation relations
between the momentum-space creation and annihila-
tion operators, one obtains

The standard assumptions are"

La ""'~' (k') a„P~" P'(k))= 8„„$, ,2kp'"$'(k —k')
XG~~ ' '~'»" 'P'(k) (5.2a)

fb„"~ "'(k') b.» "P'(k))= b. „8..,2kp-b'(k —k')
XG.i" "»" P (k), (5.2b)

where all other commutators vanish and

"(k)=gp 7 gp—...G" '" "(k)'(5 3)

Substituting (5.8) into (5.7) and performing the k'
integration and the s'n' sum yields

b(rtx —r)x')t P(x', rt), it t(x,rt)j=(2rr) 4 d k e'"&* "&

XQ h h Gp p '""'(k)hP' hP
a, n

Xb(k' —ii, ') ~p. (r) k)
~

e(kp)b(r)'x —r)'x). (5.10)

is the unique 2s-rank tensor function of k which is sym-
metric, traceless, and transverse in both its upper and

Now
h . . .h Gp p

~s ~s(k)hpi. . .hps f(5 11)=

"It is customary to state these commutation relations for, say,
helicity eigenvector creation and annihilation operators. Clearly,
a linear transformation of t he form a„q(ir) = Cq ' "«'(ti) o,;,... ,(1r)
exists, and if properly normalized will yield the standard commuta-
tion relations for the helicity operators.

is a scalar function of k and p and thus can depend only
on r) k and k'. In fact, from (3.11) we have

—2s(~ k)f.= (»)f.= I
k' —(~ k)'j(8/&v k)f. (5.»)
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or

In fact,
f."t (v k)' —k')'. (5.13)

(5.14)

The converse implication is obscured by the nondefinite
character of the Minkowski metric but can in fact be
derived. Thus the convergence of (6.3) will be taken as
the normalization condition on the p functions.

For timelike k the integral (6.3) is reduced to

Coupling this with

yields
e(ko)=e(rt k)

(—1)' —
(y —1)'+'lp-((yk')"') I', (64)

drt k Q(h')'~p«(q k)~'8(k' —», ')e(rt k) =0, (5.16) y= (~ —k)'ik. ' (6.5)
s, n

and Eq. (5.1b) follows.
Clearly, the result is dependent upon the equal

weighting of particles and antiparticles in the decom-
position of the hyperplane Geld. "

Convergence at the upper limit is assured if p,„vanishes
faster than

(6.6a)

Convergence at the lower limit requires

6. NORMALIZATION AND SPACELIKE
SOLUTIONS

p.. ( e((y —1)—'"—*+), e&0.
y~l+

(6.6b)

h.," h..p.„(&.k), (6.1)

The Lagrangian density (4.1) must be bilinear in p
and @t if the action principle is to yield a linear field
equation. The 6elds, at the same time, are linear super-
positions of the quantities,

These are the boundary conditions to be imposed on the
p functions that will be studied in specific models.

fn obtaining the form (6.4) for the invariant integral
(6.3), a transformation to the rest frame of the timelike
vector k was employed. For spacelike k, a transforma-
tion to the frame in which

as far as their p dependence is concerned. Consequently,
the action integral in (4.2) and the currents (4.13),
(4.18), and (4.22) are linear superpositions of the bilinear
integrals

d4g 8(g' —1)h,' h „'p; e(rt k')

yields the form

ko= 0, k= coho

(1—y)'
dy

2Ly(y —r/is —itssy 1))ifs

(6.7)

&(p..(q k)hp, .htI„(6.2) X
~ p, „((yk')'t')

~

' (6.g)

where a prime on an h indicates dependence on k'

rather than k. If these integrals do not converge, then
the existence of the action integral and the currents,
even at the free-Geld level, is very doubtful and is
bound up with integrals and in6nite series. The con-
vergence of (6.2) does not guarantee the existence of the
action integral and the currents but it does remove an
obvious obstacle to their existence.

Now, the convergence of (6.2) for all k, k', s, s', n,
and m' implies the convergence of the quadratic integral

(6.3)

oo S. Weinberg, phys. Rev. 133, B1318 (1964).

for (6.3). This integral is always at least linearly diver
gent in the integration over (iti, gs). Hence scalar hyper
plane dependent jield theory c-an hase no spacelihe soluti ons
with norrnalisable p functions.
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