
P H YS I CAL R EVI EW D VOLUME 1, NUMBER 2 15 JANUAR Y 19 VO

High-Energy Limit of Production Amplitudes*

G. FELnMANt aNn P. T. MATrnzws

Physics Department, Imperial College, London SW7, England

(Received 14 July 1969)

A simpli6ed version of the Bali-Chew-Pignotti amplitude for multi-Regge-pole particle production is
given using the recently developed projection-operator technique to construct many-particle states. This
amplitude is generalized to a multi-Toiler-pole expansion to avoid singularities which otherwise occur when
any momentum-transfer variable goes to zero. It is shown how to determine the M value of a Toiler pole
by measuring the distribution as a function of a Treiman-Yang angle.

l. INTRODUCTION

HK formal theory of the multi-Regge model of
particle production has been given by Bali,

Chew, and Pignotti' as a development of earlier work
by Toiler. ' In Sec. 2' we give a somewhat simplified
rederivation of their result, using the projection-
operator technique for constructing many-particle
states that has recently been developed by the authors. 4

A formal defect of the multi-Regge expansion is that
it is intended for use as an approximation to the
particle-production amplitude in the limit of high
subenergies and small momentum transfer. However,
in the usual physical situation, the limit of the ampli-
tude when the momentum transfer in any part of the
multi-Regge diagram tends to zero is nonuniform, just
as in the two-particle scattering case (see Freedman
and Wang' ). This difhculty is removed in Sec. 4, by the
techniques previously applied to two-body scattering
(see Ref. 4 for further references), in which we go over
to the multi-Toiler expansion. The expression is given
in terms of O(3, 1) functions with arguments which are
angles between four vectors, The required limit is then
well defined.

We discover that if a subprocess is dominated by a
Toiler pole with quantum numbers M and o, the value
of M can be determined by measuring the distribution
in an azimuth angle g in a suitably chosen kinematic
region of the multiparticle process. This angle is the
Treiman-Yang angle, or is related to it by crossing.

For simplicity the argument is given in the first place
for zero-spin particles, but the generalization to arbi-
trary spin is straightforward and is outlined in the
final section. Ke also make there the trivial extension
from the production of particles to the production of
particle clusters.
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2. MULTIPARTICLE STATES

A relativistic single-particle state is conventionally
given as

IP,~,~),
in which the labels specify the four-momentum (with
P'=m'), spin, and helicity, respectively. The spin label
j is defined so that

where
~'(P) I Pi )t) = ~'i U+—1) IP,i,»~

~ (P) =--" J""P'

(2.2)

(2.3)

and 'A is the eigenvalue of some component of W„(P).
Under a general I.orentz transformation parametrized
by r), which transforms P into P', the spin is trans-
formed by a (Wigner) rotation. Thus

pL-!'~"~..llP, ~,) )=- U(~) IP,~,~)

=2 IP', ~,) ')d'. Lf (P',~,P)3 (2.4)

An alternative construction has recently been proposed
by the authors4 in terms of the projection operators
O(p), defined by the relation

P"O(P) j=~'(P.~. P~.)O(P), —
where

el@= 8/BP~
and

O(P)O(q) =o(q)o(P) =O(P)~'(P q). —

From (2.5) it follows tha, t

~(.)O(P) U- (~) =o(P'),
and from (2.7) that

(2.5)

(2.6)

(2.7)

(2 g)

o(P)d'P =1. (2.9)

If we now define

P„O(P)d'P, (2.10)

it is easy to show that E„has the required commutation
relations with J„„ to be interpreted as the energy-
momentum operator. '

' Formally these equations are satisfied by O(p) =84(P p).It- —
sometimes avoids ambiguity to write O(p) —=0(P, p).
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If all the particles have zero spin, the factors U&"&

reduce to unity, and

0„=1 (for all I), (2.17)

which is the trivial representation of the homogeneous
I orentz group for all particles. We denote such a state
by I

0). Thus the state of 1V spinless particles is

I P»P2, ",PN) =o(Pl)o(P2) o(PN) I0) (2 Ig)

3. MULTI-REGGE MODEL

FIG. 1. The (1V+2l-particle amplitude.

We now define representations of the homogeneous
T.orentz group

(2.11)

where the labels and states are defined in (A21)—(A24).
Then, single-particle states7 may alternatively be
defined as

Consider the 1V+2 spinless particle amplitude,
illustrated in Fig. 1. Tf we allow the time components
of the four-vectors p " to take on. positive or negative
values, this figure has many physical interpretations
(provided the masses are such as to allow for energy-
momentum conservation). Three processes which
interest us particularly are:

(a) the decay of PN+1 into P„P„.. ., P„;
(b) the multiple production process

I p, (its, ),j,x)=—0(p)U(p) I 1',~; j,&), (2.12)

where U'(p) is a boost which takes the four-vector to
the value P„ from its rest value 222„=(m,0) in some
particular frame; if

po+pN+1 ~pl+p2+ ' '+pN j

(c) the multiple production process

Pl+P2 ~PO+PB+ +PN+1)
where

(3.1)

(3.2)
f7(p) &

i J)o& iX)e— — (2.13)

p„=p(coshe, sinhe sin8, 0, sinhe cos8). (2.14)

It is easy to show that (2.12) is an eigenstate of the
same operators as (2.1), and transforms in the same
way Lsee (2.4)j under Lorentz transformations.

The E-particle state is simply an outer product of
single-particle states. Thus (with 0 standing for the
pair 1i)1„,)r„)

The processes (b) and (c) differ only in their ordering,
which is delned below and in Fig. 2. In addition to its
dependence on the 1V+2 particle masses, the amplitude
may be described in terms of

V=3(1V+2) —10=31V —4—(3.3)

independent scalar variables. For the processes (a)—(c),
it is convenient to dehne

I px, (~i),jl ~1 p2 (~2),j2,4;.. . ; PN, (~N)j N ~N)

=0(pl)o(P2) o(pN)
X fbi i(p, )U ioi(P2) f1 iNi(PN)

X I &1)$1)&1j &2)$2)&2 j ~ ~ ~ j rrN)$N)&N) )

where
k =p +k„ 1, 22=0, . . . , 1V

ko=po,

(2.15) and to take the independent scalar variables to be

(3 4)

where

o(p )=0(I' p )—(2.16)
t„=k„2 (22=1, 2, . . . , 1V—1), (3 5)

and Ui"i(p„) are constructed from the operators' I'„)"
and j'„„&"iwhich operate on the nth particle only (and
connnute with the corresponding operators for the other
particles).

7 In this paper, we shall not discuss the labelling of intrinsic
parity (which requires reducible representations M, 0.) but refer
the reader to I.

SA more consistent notation might be to denote the single-
particle momentum operators by I'f ~I', but we find in practice
that this notation is unnecessarily clumsy. However, for the
O(3, 1) generators, we must distinguish between operators on
particular particles, J„„"j,and operators specified in particular
frames J„„(~).

s„=(P„+P.+1)' (n=1, 2, . . ., 1V 1), (3.6)—
S = (P~+P~+1+P~+2)2 (n=1, 2, . . ., 1V—2). (3.7)

There are, respectively, (1V—1), (1V 1), and (1V—2)—
such variables, which form a possible complete set. The
significance of these variables is apparent from Fig. 2.
In the decay process (a), the variables t„are the masses
of the intermediate particles if the (1V+1)-fold decay
takes place as a cascade of two-particle decays. In the
multiproduction process (b), the t's and s's are gen-
eralized momentum-transfer and energy variables,
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FIG. 2. The configuration of the am-
plitude of Fig. 1 which leads to the
chosen sets of scalar variables t„, s„,
and S„or t, 8„, and @„.

arid the operator
+ii Pm+If. n ii—

Q„=a„K„+b„P„,

(3.9)

(3.10)

where a„and b„(WO) are constants chosen so that the
variable

respectively. We will be interested in (b) and (c),
particularly in the limit of s„—+ ~, t„—+0 for some or
all of the (s„,t„), and will obtain them by analytic
continuation from the amplitude for process (a). The
required amplitude' is

&&+il TI P~, ",P-,",P,Pi,Po&= &T&—
=(olo(p )To(p )" o(p.)".

o(p, )o(p,)o(p ) l 0), (3.8)

where the O(p„) are defined in (2.15) and (2.16).
Define operators'o E„an al og ous'l yto (3.4),

In the subsequent equations we omit the 8 function
contained in (T).

To display the dependence of the amplitude (T) on
the variables (3.5)—(3.7), consider Fig. 2 as a succession
of pseudo "scattering" processes of which the eth
typical example is

kn i+Pn v ~n~l+Pii+1 ~ (3.19)

U (&1 )=e—iris&") ~(iia, sn) (3.20)

Define the corresponding mth c.m. scattering frame to
have its time axis v in the direction of k (assumed
positive timelike), s axis y„along the "incoming beam"

—i and y axis P„perpendicular to the "scattering
plane. "The (n.+1)th frame is related to the mth frame

by the boost B„(X„).[See (A12)—(A15) for details. )
%e also introduce the boost of g„ in the eth frame, "

namely,

&1„=a„k„+bp„(is=1~ . 1V), (3 11) where by (2.13)

is positive timelike. It is important to note that for
arbitrary a„and b„, q„' is a function only of the
"masses" at the tsth vertex, t„, t„ i and p„'. Now by
(2.16) and (3.9)—(3.11)

O(p„)o(k„,) =O(q„)o(k„) (I= 1, 2, . . . , 1'). (3.12)

coslle (k„,,(1„)=. k„'gii.

This boost has the property that

O(C-) = U(-) (C-)O(C-&')) U(.) '(V-),

(3.21)

(3.22)

(3.23)

Now since
&0lP=&0IP "

[T,P]=0,

(3.15)

(3.16)

O(PiPN+i) To(Pi~)v) O(PiPN+i) Tb(/tN Ps(+i) (3 17)

Thus,

&T&=&olo(P,p +,)To(q )".O(v.)" o(q,)lo

X&(Q p ). (3.18)

~In order to obtain the formal expansions given below, we
could equally have started with the amplitude for the process
p0+pl+ ' +pn ~ pn+1+pn+2+ ' pN+1

'0The reader should not confuse these momentum operators
E„with I.orentz transformation generators E("& defined in the
Appendix.

By repeated use of this relation in (3.8),

&T&=(olo(pp „)To(p,u )o(q ) "
O(q ) O(&1i) l0), (3.13)

where we have used the fact that for the initial state

Plo&= lP,+P,+" +P~ fo&—=Z~lo&, (3.14)

and for the final state

in the eth frame.
Now consider two typical operators in (3.18). Using

(3.22),

o4-+i)O(V-)
= U(.+i)(V +i)o(V +i'"')U(+i) '(q-+i)

XU (&1 )O(q '"')U '(V )
= U,„„,(~.„)o(.„)~„(x„)U,„,—(~„„)

X '( -) -(-)o(-'"') -( --)
X U(. i) '(g.)B. i '()(.-i), (3.24)

where in writing (3.24) we have used (A20).
Between the factors U(„)(q„) and O(q„&")) one can

insert a complete set of states in the eth frame based
on (2.11) and the eigenvalues o) of the other operators
necessary to complete the set:

U&.)(q.)o(q. & )) =QU&.)(q.) l~,~,~,j,»(.)
x &„)&~,bf,~,j,) l o(q. ( )), (3.25)

"The operator E3(") is defined in (A10). From the definitions
of q„, (3.11), and the eth frame, q„has only a "0"and "3"com-
ponent. That xs, q„t'=z„t"(q„r „)+p„t'(q„y„).If (q„p„) cs nega-
tive (i.e., if the three-vector q„points in the negative "3"
direction), (3.20) must be multiplied by an additional factor
exp( —ivrJ2(")). We shall, for simplicity, omit writing this extra
factor. Note also that the rest vector I Eq. (3.22lg is q &"»=v "
)(' (q 2)1/2
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M= j=) =0)
where the summation is over the labels appearing in where IO) is the state with
the states and the states are defined's in (A21)—(A24).

Similarly, between the factors B„(X„)and U&„& '(q~i)
one can insert a complete set of states in the nth frame:

(3.33)

&„&&o&&,M&,o &j,)
I
0 (q„&"&)

I
&o,M,o,j,)~) &„&—G»', &i&', o',», iv, », &', && (3 27)

From the remark following (3.11) and the definition
(3.23), it is clear that this is a function only of the
vertex variables:

G&»& G(n& (c»&f» 1&p» ) ~—

The other basic factor" is

(3.28)

&„&&o&',M', o.',g', )~'
I
U &„&-'(q„~i)8„-'(X„)

XU& &(q„) I&d,3f,o,j,)&)& &

~CO' M' O-' -' X' I t.'~8'"'~.e'~3'""('~ & +»=(n)X~ ~ re ~j ~

Xe&z&&"&&&&&&~+&,q~:sn&e—&&r& "&&&»n,»n&
l&d ~ &r ~ )&)& &) 0 J) l (n)

DsI~, il'x&'xg, '»),4,IM "4&"8»»'
&

(3 29)

where the only dependence" on e is through the angles

4-= (4-,e(q-+i, k-),8-,e(q-, k-)), (3.30)

which are defined in (3.29). LFor the notation see (A18)
and (A28).)

Some care must be taken of end e6ects, which, how-
ever, are quite simple. Thus

0(q,) I 0) = U&»(q, )O(q, &"&)U&»-'(q, ) lo)

=2 U&i&(qi) I~ 0,o,0,0)&i&

B-(&c-)U&-& '(q-+i)
= pa. ()c.) I~,m, o,j,x)&„&

X & &(&o,3E,o,j,)&
I

U &„& '(q„+i)

=El™j»)& +»
X &.&&-,~,-,j,) I U&.& (q.„-), (3.26)

where we have used (A25). By making such insertions
in (3.18), it can be seen that (T) is made up of a product
of two types of factor, one of which is the form factor
of the eth vertex,

and that

L(J"')' o(q ")j=L~ "' 0(q ")3=0
The final term in (3.31) is G&i&, and U&» (qi) is a required
factor in D(&pi).

At the other end,

(o10 (I',p~+i) TO (q~)
=Z&oIO(»p~+i)TU&~&(q~) I~ 0,o,&,0)&~&

X &&v& &&o»o j 010 (q&v
&"&)

I
o&', J&&&1',o',q,o) &Ã&

X&~&&~' ~' o',j,0IU&~& '(q~), (3 34)

where the sum is over ar, cr, co', M', 0-', and j. The
values of the labels entered in the states follow since,
first, p&v+i=ks&. , second, T is an 0(3) scalar, and,
finally, Uov&(q&v), 0(q&v '), 0(I',p&v+i) commute with
Js&~&. The matrix element of 0(q~&"&) is just Gov& and
U&&v& '(q&v) is a required factor in DQ&v i). The first
matrix element in (3.34) refers only to the Xth vertex.
YVe define

&olO(~,p~+i)TU&~&(P) l&v 0 o. j 0)i~&
F"' &(pN+—i &pN &iN). (3 35)

Thus finally,

&T) =~G&&v&DQ'&v —i)G(~—i&' ' 'G&s&D(4'i)G&i&
& (3 36)

which is to be understood as a matrix product in the
space labelled by co, M, 0-, j, X.

The factors I& and G in (3.36) depend only on vertex
variables. Note that since in &P the variables e(k, q +i)
and e(q„,k„) also refer only to the (is+1)th and nth
vertices, respectively, the entire s, S„dependence of
the amplitude is contained through 8„and»I&„. We may,
in fact, regard C„, 8, and»&„as a complete set of scalar
variables alternative to (3.5)—(3.7). To obtain an
alternative form of the amplitude, we can collect
together all the t„dependences by combining the pure
boost factors in D(&P„) with the G factors. Thus we
define a new vertex factor

~',M', o', co,3II,o,j',j,X
g( )(n)

c&&, o'

X&i& &&o,0,&r,0,0 I
0 (qi &'&)

I 0), (3.31) =P &M', o', g', ) Ie
—'x"« '&I%',o.', g, )&)

where we have used the relations

U&i& '(qi)
I » =

I o), (3.32)

zx~ (n)

X&M,o,g, )&
I

e'x&'&"" &&-&
I
3f&o &g&X) &

(3-.37)

"The boosts U&„)(g„) do not acct the degeneracy label co and
the states de6ned in the Appendix are labelled only by the homo-
geneous I.orentz-group parameters.

'3 In deriving the right-hand side of Eq. (3.29), we have used
(A29) which gives expgiK»&"&e(k~+&, g„+&)j expriK&&"&e(k„,k +&))= expgiK&&"&a(k„, g„+&)j.

This is so since matrix elements of the operators J(n), IO") in
the eth frame are independent of n and depend only on the labels
in the states. From now on, when no confusion arises, we shall
drop the labels e on states and operators.

which also depends only on the scalar variables of the
arith vertex, c„, c„ i, and p„'. Similarly, we define

d;, ,(8.,y.)= &7,) 'I e'"~.e'& 'I q,) )
=e"'"&fx x'(8~) (3.38)

which contains all the dependence of the amplitude on
s„and S„.The dx x&' are the usual 0(3) functions. The
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factor U~~l(q~) in F Lsee (3.35)) is absorbed in gi~&
and the remaining factors are defined to be f. Then

&T) =fg(»d(e~ tA'j—v i)g-&~ il -'Ct»&(fit &'i)girl (3 39)

may be solved in a similar manner by returning to the
expansion (3.36).

According to (A27), we can write (3.29) as

DM, ~,j ',x', j,x (lan)

=&M,o,j',X'~ exp(iJsg„) exp( —iJ&8„~)

Xexp(ipse„c) exp(iJse„")
~ M, o', j,X) (4.2)

=p &ji'pad„, j'(0 I)d., Mn(s C)d „y(fj R) (4 3)

where [see (A18)]

(4.4)

(4.5)

().z=8(k„,q„; q„+i),

(jn =f (&nqq~i, qn) q

en =e(qe)q~i) ~

[M'f &min(j', j),

alld
(4 6)

Note that

cosp„a+bS /s„s„+i, (3 40) and

~
jjr~ &min(j', j). (4 g)and (for small but nonzero i„),

which is again to be understood as a matrix product. "
If some or all of the summations over the j's that

are implied in (3.39) are replaced by integrals of the
Sommerfeld-Watson transform, this expansion over
O(3) functions Lin the decay region. -process (a) of
(3.1)) can be continued into regions of multiparticle
production processes such as (b) and (c) of (3.1). The
expansion then would be over 0(2,1) functions and we
would pick up the Regge poles in the vertex factors
g(„) in the standard way. To obtain the multi-Regge
model for process (b), we would perform the Watson-
Sommerfeld transform in the j's canonical to all of the
8„.

From (A13) we have, for large s„, s„+i, S„, and finite

dz i,j(0„)-s„j. In the limit s„~ ~, t„—+0, with j„ i, t„+i held finite
and fixed~

If the high-energy limit for process (b) is taken so that
cosP„ is kept constant, and it is assuined that the
integrals over j are each dominated by a single Regge
trajectory rr (t) with factorized residues, the high-energy
behavior of the amplitude is of the form

L 0 Jt,'
~

1/2

coshE~ ~s~ )

so that"

D(P„) ...,',i,j x-P exp(i) 'y„)j l~'+ ~

(4 9)

(4.10)

n=1
(3.42)

Pi+Ps ~ 7io+4, (3.43)

This is in agreement with the result of Bali, Chew, and
Pignotti. '

The analytic continuation into the region of process
(c) will be useful when si is large but the other s„not
necessarily so. Since here the variable t2 is timelike, the
process we are describing is the high-energy production
of a "k2" resonance

e—1—(m—M[I -', (x+m[ (4 1])

which is nonsingular at t=0. The leading behavior for
large s„ is given by the term m=3', which gives as
the leading term in this limit

DM...j,i,j,ig )
~exp(t') ~y )j -', [x'%M[ j —',txTM[r ~—i (4 12)

Performing all suminations implicit in (3.36) except
over those labels on which D(it „)depends, we can write
(3.36) as

followed by the cascading decay of "k2."
M, o,j',x', j,)I

T "'"''"DM. j i, j,~(P ), (413)

4. MULTI-TOLLER MODEL

s„—+ ~, t —&0. (4 1)

However, this limit of cos&„ is not uniform, since it
depends on (sj) and the boosts in D(f„) Lsee (3.29)j
that have been combined with t"(„~ to form g(„~ are
singular. This is the well-known difhculty pointed out
by Freedman and Wang' for two-body scattering. It

'5 Multi-0(3) expansions of the type given by (3.39) have been
obtained previously by many authors. See, e.g., A. J. Macfarlane,
Rev. Mod. Phys. 34, 41 (1962); and W. H. Klink and G. J.
Smith, II, Phys. Rev. 175, 2010 (1968).

The above expansion has been applied to particle
production in the limit

where the entire s„and p„dependence" is contained
in the explicit functions D(P„), and the coeKcients T
depend on all the other scalar variables. We shall be
interested in using (4.13) in regions in which s is an
energy and t„ is a momentum transfer. There are many
processes for which this is true )see, e.g. , (4.16) and

'6 For the behavior of the variables g„~, g„, and ~„~ for large
s~ and small t, see (A33), (A34), and (A36). For the behavior of
the O(3,1) and O(3) d functions in this region, see, e.g., Appendix
C of I or K. M. Sitar and G. L. Tindle, Phys. Rev. 175, 1835
(1968). The W sign in (4.11) depends on whether cos8~
(cosg ) ~ &1 in this limit. This in turn depends on the size of
the masses p~', p~12 relative to t„+&. The subsequent discussion
does not depend on this sign."We are here choosing the independent variables to be the set
j;, s, (or 8~), and g;.
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(4.17) belowj. With this in mind, we make the assump-
tion that, after performing a suitable Watson-Sommer-
feld transformation in the 0. plane, we obtain a repre-
sentation for the amplitude describing processes such
as (b) and (c) of (3.1). We further assume that
T~ &' "' &' " is dominated by a Toiler pole with quantum
numbers 3II and o (t„) and that it is not singular for f„
small. It follows using (4.12) that the leading terms for
s„—& and t„small coming from the sums over X and
X' are those for which

A, =&M, X'=&M.

Substituting into (4.13), this determines the depen-
dence's of (2') on P„ to be of the form

(T~+T ) cosMP„+i(T~ T) si—nlVQ„, (4.14)

for s„-+ ~, t„~ 0.
It is instructive to consider the special case of %=3,

illustrated in Fig. 2, with the momenta ordered as
shown. The Ave independent variables can be taken
to be

f, =k,', t, =k,', si ——(Pi+Ps)', ~s=(Ps+Ps)',

Thus, using (4.3), (4.4), and (4.6), we have

De,.,;,~, s,sf'r) =2 e"A '(ilr')di, .s"(et'), (4 19)

and the expansion becomes

(&)= P &' ""'Do...;,i, o,e(Pi), (4.20)

where jo and j& are the spins of the particles labelled
"0"and "1,"respectively. Thus, in general we will have

20+21

where the p and sr variables appear only in the explicit
D(fi) function and not in the T. We now assume that
we can take the limits s~~ ~ and t~ —+0 inside the
sununation signs' in (4.20). Using (4.11) and (4.12),
it follows immediately that (T) is independent of P in
this region of the (si,fi) plane. "That (T) is independent
of P is because we have been assuming the particles to
have zero spin. When one includes spin (see Sec. 5),
the sum in (4.20) will also run over M, with

&i= r = (Pi+P—s+Ps)'= (P4+Ps)'. (4.15)

P')„„,i, o= P /fir(~s, 4)e'~'
3E=O (~2)

+j sr(ss, t, )e 'e$si' ',— (4.22)—

pe+p4 ~ 7il+Ps+7is y (4.16)

g is what we shall calli' the "Toiler angle, "whereas for
the process (c),

(4.17)At+Ps ~ Iis+Iis+P4 ~

@ is the Treiman-Yang angle. se

For X=3 the general formula (3.36) becomes

P') =FGsD(A)GsD(A)oi. (4 1g)

We use the results of Sec. 3, especially Kqs. (3.31),
(3.34), and (3.35), to obtain the labels which will

appear on the D(gati) matrix in the expansion (4.13).

'8 To obtain this result, we have used the fact that if a Toiler
pole leads to a term in the amplitude of the form 2'~ exp (5354 „),
parity conservation requires the existence of the term T ~
&exp( —i'& ). Here, T~ is an abbreviation for the amplitude
in (4.13) multiplied by s„~'.

"The decomposition of a process such as (4.16) has been
written down earlier by T. W. B. Kibble LPhys. Rev. 131, 2282
(1963)j and K. M. Ter-Martirosyan |Nucl. Phys. 68, 591 (1965)j,
who introduce the angle @."$.B. Treiman and C. N. Yang, Phys. Rev. Letters 8, 140
(1962).

In place of s, we use'r the angle Pr =P defined generally
by (A13). One can see that the P„" defined in the
Appendix are all spacelike unit vectors for all physical
processes implied by Fig. 2 (i.e., all the p & are time-
like, positive or negative). Thus cosg as a function of
the variables defined in (4.15) will (for physical
processes) always lie on the range (—1, 1). In fact, for
whatever process one discusses, P is the angle between
the planes whose directions are given by p~gpo and

ps Xy4 in the frame ps ——0. For the process (b),

and the assumption of the dominance of the amplitude
by a single Toiler pole with quantum number 3E will
lead to a unique P distribution in the high-si, low-fi
region of the process.

In particular, let us consider the specific reaction

Ei+s.s —& iYp+n. s+a 4, (4.23)

corresponding to the labelling (4.17) where the 1V's are
nucleons and the x's are pions. In this case s~ is the
tota1 energy of process, tj the momentum transfer from
initial to 6na1 nucleon, and t2 the energy squared of the
(s.s,s.4) system. If we assume that this amplitude is
dominated by a pion Toiler pole in the variable t~, the
M value of this pole can be obtained by studying the
distribution in the Treiman-Yang angle" for the large-
energy, low-momentum-transfer region of the process.
The value t& ——0 is not physically accessible in this
reaction. However, the minimum value of lfil is

risiv'(fs —m ')'jsis, (4.24)

for large s~. For t2 in the neighborhood of m, ', say, small
values of

l 4l/miv' are reasonably accessible.
I„' .'Processes in which the value t~=0 lies within the
physical boundary can easily be found. Choosing the

"If the sum over o appearing in (4.20) is only over a fmite
number of terms (i.e., if there are a Quite number of Toiler poles),
then this interchange is clearly possible."The angle p is the angle between the normals to the (po, p&, p2)

(P2 P3 P4) "scattering planes. " The @ dependence of the
matrIx elements has been obtained for those events for which the
angles 81~ and 81+ are small (i.e., tI small as sq —+ ~). It is im-
portant that neither 8&~ or 0&+ is actually zero, since then the
"scattering planes" are not de6ned.



H I GH —ENERGY LI M I TS OF P ROD UCTION AM PL I TU DES

labelling (4.16), the necessary conditions are

and

For example,

(4.25)

(4.26)

(4.27)

would be such a reaction provided that we stick to
events" for which the energy in the (s&,ms) system is
larger than miv. Note that in this case, @ is the Toiler
angle, i.e. , the angle between the (¹p.s) plane and
the (Pop i) plane in the rest frame of the ws. Also large
si means large (xi,ws) energies, and ft is the momentum
transfer from So to x~.

C+1
p„=P b;.

Each cluster gives rise to 3C„scalar variables —to be
referred to as the cluster variables —additional to those
considered in Sec. 2 which may be taken to be the
directions of the vectors b;& (i= 1, 2, . . ., C„) in the
eth frame. The other variables can be taken exactly
as before, with the new definition'4 (5.1) of p„. (This,
of course, reduces to the old definition when C„=O.)
The dependence of the amplitude on p„' may still be
regarded as dependence on the external masses, since
the value of p„' is d.etermined by the specification of the
mass of the (C„+1)th particle in the cluster (which
reduces correctly to p„'=m„' in the no-cluster limit
when C„=O). The general analysis of the amplitude
given in Secs. 2 and 3 is immediately applicable, pro-
vided only that G( ~ is allowed to depend also on the
mth cluster varriables.

Finally, we briefly sketch the formalism for particles
of arbitrary spin for the amplitude which, for simplicity,
we take to be that of Secs. 2 and 3 (that is without
clusters).

"For processes of the type {4.27) the @ dependence can in
general be somewhat more dificult to extract in the "multi-
Toller" region, i.e., where si and s2 are both large and ti, t2 both
small. In this region the @ dependence can be governed by M1, M2
or a combination of 3fi and 312, depending on the relative (sl,s2)
and (t&,i&) values. An analysis of events of type (4.27) in the high
s1, s2 region has been made by Chan Hong-Mo, K. Kajantie, and
G. Ranft, Nuovo Cimento 49A, 157 (1967). They assume that
(T) is a slowly varying function of p. See also I. T. Drummond,
Phys. Rev. 1?6, 2003 (1968).

'4 Our coordinate frames differ from those of Bali et gl. (Ref. 1)
in that they are dered in terms of "scattering planes" rather than
"cluster frames. " The advantage of our choice of frames is that
there is no diS.culty in passing to the "no-cluster" limit (i.e.,
C =0, all n). Also the dependence on qb„ is always explicitly
displayed.

5. CLUSTER APPROXIMATION AND SPIN

Only trivial changes are necessary if, instead of a
single particle at each vertex, there is a cluster of, say,
C„+1particles at the Nth vertex with specified masses
and four-moments b», b2, . . . , bq„, bq„+~,

The general e-particle state was delned in Sec. 2,
Eq. (2.15). The implication of that definition is that
the spin components of all e particles is measured in
some axed frame. It is convenient for the later ex-
pansions to take the spin components such that the
spins can be combined consecutively in a given order.
That is, we shall specify the spin components of
particles "0" and "1"to be the helicities in the (0,1)
c.m. frame, the spin component of particle "2" to be
the helicity in the (0,1,2) c.m. frame etc. To this end,
we define the eth-particle state in the eth frame thus":

~ pn, Jn~)in)—=O (pe) U(n) '"' (pn) ~
~n Jn,~n)(n), (5.2)

where the index Lri] implies that the boost U is a
function of the operators J„„~"& which operate only in
the space of the rrth particle; and the suKx (n) implies
that the boost is the nth-frame boost Lsee Eq. (3.20)7.
In (5.2) the label o. is an abbreviation for the pair of
labels M„, O„which specify a representai. ion of the
homogeneous Lorentz group.

The argument then goes essentially as before, pro-
vided we note that in the expression )see Eq. (3.22))

(5.3)

only those operators J"' are involved for which"

(5 4)

The combination of factors appearing in (3.24)
which go to make up D(f„) Ldefined by equation (3.29)j
also involve these same J~'~ operators times an addi-
tional factor

(5.5)

This latter operator depends only on the J„„~"+'~ and
so commutes with all the 8; and O(q~) operators to its
right. In can then be combined with the operator
Ut +t&'"+"(p„+i) in (5.2) for the (n+1)th particle to
form a spinor. Thus, for the eth particle, we de6ne

The final result for the amplitude is then2~ of the general

"The )„are thus eigenvalues of the "covariant helicity"
operators 8"„~"~v &, where 8'„~"~ are the Pauli-Lubanski operators
defined by (2.3). Note that W~l'lvo"=0. For this particle we
specify lV„~'~v1i'. Thus, we are specifying the spin components of
particles "0"and "1"to be the helicities in the (0,1) c.m. frame.
Also S'„~~+'~v~&=0. Since the process under discussion is the
decay of particle X+1, we can choose its spin component to be
the s component of J„„~ +'~, where y~& is taken as the s axis.
See G. Feldman and P. T. Matthews /Phys. Rev. 168, 1587
(1968)g for the properties oi "covariant helicity. "

2' This is immediately obvious from the dehnition of the oper-
ators Q given by (3.10) and {3.9)."A possible choice for q„ is p„[see Eq. (3.11)].This wouM
be a great simplification by reducing all but two of the v„ to unity.
Thus, in the initial state, we would have remaining v0 ——U(1) &'~ (p1} '
XU(1) l l (pa), and in the final state a factor ss = U(Q) l~+'l (p~).
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form into the (22+1)th frame. The nth frame is defined by
the orthogonal tetrad'

P') =(~~+),i ~+1,&~+1 I ~G(~)~~
XD(4'12'—1)G(X—1)2')2'-1DQ'N-2) ' ' ' G(2)()2

XD($1)G(1)2122I ~a,jo,&o, . . . ,~arj zr, 4 ), (S 7)
where

(P ",(2„",P ",y "),

where 2)() ——V(1) (2) (q1) 'U(1) ")(P,) .
The matrices G(„) and D()P„) are diagonal in the

space of all particles i for which i&e. The eth-particle
labels enter the matrix product in (S.7) from the right
in a nontrivial way through the spinor ~„, and are
active in the matrix product in factors which lie to the
left of v„.

The spinor factors are well behaved in the s —+ ~,
t —+0 limit, so the multi-Toiler approximation goes
through as before.

k„n=P p.n

i=a
(A1)

v„v„v q
—v

I:(~- "-1)'—1j'" (A2)

(Pn), =~,)...kn 1"kn kn+1'/LC'(kn )an, kn+1)j'", (A3)

aild
(&n)n= &n) np&n pn 'Yn (A4)

6. SUMMARY

Using the projection-operator technique developed
previously, 4 we have obtained a multiple expansion of
the iV+2 particle amplitude into O(3) and O(3,1)
functions. This amplitude may be regarded as a series
of pseudoscattering processes. The Toiler variables' '
(in the no-cluster limit —only three lines at each vertex)
are just the angles that appear in the transformation
from one scattering frame to the next. In particular,
the "Toiler angles" P„are just the angles between the
perpendiculars to two successive "scattering" planes.
The use of frames of reference defined in terms of
"scattering" processes, rather than the cluster frames
used by Bali et al. , leads to a minor simplification in
the phase factors, which appear in the final formula
(3.39).

By suitable analytic continuation of the O(3) ex-
pansion into the high-partial-energy regions (s„~~ ),
we obtain the multi-Regge expansions previously
derived by Bali ei al. '

The expansion in O(3, 1) functions shows that prob-
lems of analyticity in the multi-Regge region for small
momentum transfers (t ~0), can be removed in a
manner similar to that for scattering processes. In
addition, we see that the value of the 3f quantum
number of a Toiler pole can be found by measuring the
distribution in the Toiler angle for large energies and
small momentum transfer. In a suitable region of the
other variables, the Toiler angle is just the Treiman-
Yang angle. Further, if we assume that we can inter-
change high-s limits with summations over 0(3,1)
amplitudes, it is possible to show that the dependence
of the production amplitude on p (in the small-t region)
is a Fourier series with the maximum frequency given
by the sum of the spins at the t vertex.

APPENDIX

In this appendix, we define the eth frame and obtain
the Lorentz transformation which takes the eth frame

and C (a,b,c) is a Kibble function. (See I, Appendix A.)
Thus,

—4C (k„1,k,k +1) =4t„rt„t„~1+(t„+.t„r p„')—
X (" +1+~ —p +1') (~ +1+~ —1—& )

(~n+~n —1 Pn ) 4+1 (~n+1+fn Pn+1 ) tn 1—
—(t„+1+),'„1—s„)2t„. (AS)

For the multidecay process (3.1a), all the k„& are
positive timelike and thus

v„2= —„'=—p„'= —y„2=1.

Note also that successive frames are such that

(A6)

J (n)=J (n)=& nJ p

J (n)=J (n)=~ pJ ~ )I

+ ()=J ()=v uJ

(A8)

(A9)

(A10)

(J(n))2 —(p nJ „~ 1)2+(~ nJ' „~ 1)2

+(~-"J.1P-')' (A11)

By operating on the unit vectors in the (t,x,y, s)
directions, respectively, it is easy to see that the Lorentz
transformation which takes the eth frame into the
(22+1)th frame is B„(X„),where

B„(x„)=—B (c,8„,y ) =exp( —28 J2("))
Xexp( ie E2(n)) e—xp( 2y„J2("))—, (A12)

'8 The gth frame has been chosen to be the c.m. frame for the
pseudoscattering process (3.19) (i.e., p„& is the time axis). The
s direction y„& is the direction of the incoming "beam" particle
k 1, in this c.m. frame. The y direction p„ is the normal to the
"scattering" plane.

pn+1'pn= Vn/1'pn =pn+1' ) n=(2n/1' &n =0 ~ (A7)

In each frame e, we define the set of Lorentz gen-
erators that implies that the unit tetrad () „&,n ",p ",y &)

is taken to be the coordinate frame (t,x,y,s). Thus we
shall have, e.g.,
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where

—Cospn=I9n)1 Pn S[(tn+tn —1 Pn ) (tn+1+tn Pn+I ) (tn+2+tn+1 Pn+2 )+ (tn+I+tn I -Sn) —(tn+2+tn Sn+I)

X (tn+I+tn —Pn+1)+4tntnpi(t~2+tn —1 &n) 2tn(t~l+tn —1 ~n) (tn+2+ tel Pnp2')

(tn+1+tn Pn+I ) (tn+2+tn —1 &n) 2tnpl(tn+2+tn ~n+I) (tn+tn —1 Pn ))
X[4'(kn I)kn)kn+I)4(kn)kn+I, kn+2))

—I~', I=1, 2, . . . , E 2—(A13)

cosh»n =)'n+I Pn =kn+1 kn=kn~l. kn/(kn+I'kn')"'= (t„+t„~l—pn~i')/2(t„tn+I)I(', n= 1, 2, . .., AT —1 (A14)

and
COSOn =COSO(Vn, Vn+I ) Pn)

=COSO(q„,q„+I, I „)
=COSO(Pn, P„+I', vn)

=cos8(k„ l,k„+I,. I „)

7n ' Vn~1/& n &n+ I

2tn(tngl+tn —1 &n) (tn+tn 1 pn —) (tn+I, +tn, pn~l )

6 (tn)tn+lipn+1 )6(tn—1)tn)pn )
x=1, 2, . . ., g —1

(A15)

(A16)

where
6'(x,y, s) =x'+y'+s' —2xy —2ys —2sx, (A17)

(J("))'IM,~,j,~)(-& =j(j+1) IM,~,j,&)(-),

J,(")IM,~,j,&()(„)——& IM, ~,j,& )(„),

(A23)

(A24)

cos0(a, b;c) =a, b„ (A18) with

I +In = (cosh», sinh» sin8„,0, sinh» cos8 ),
(Knyln = (0& COSOn Coskni Slnitinq —S1IIOn COSgn) q

Pn+I = (0i COSOn Slngn& Cosfn& S1I10n, Slngn) y

V +In= (sinh»„, cosh»„sin8, 0, cosh»„cos8 ) .

(A19)

From the definitions of B„(X„)and J("),we have

J(n+1) —B (X )J(n)B —1(X ) (A20)

We introduce "eth frame states, " which are repre-
sentations of the homogeneous Lorentz group, by
dehning them as follows:

(J'—K')
~
M,o,j,&()( ) = (M'+0' —1)

~
M,o,j,&() („&, (A21)

J K~ M,~,j,& )(„)———iMa~ M,~,j,& )(„), (A22)

where a, is the unit three-vector in the direction a in
the frame in which c=0. The various equalities in
(A15) follow from the definitions (3.4) and (3.11) and
the fact that all the vectors in (A15) lie in one plane.

Note that the factors which appear in B„(X„),defined
through (A13)—(A15), have very simple physical inter-
pretations in terms of the eth and (21+1)th "scattering"
subprocesses (3.19).The rotation through p„aligns the
scattering planes, that through H„aligns the "beams, "
and the boost e relates the two total momentum four-
vectors. Of course 8 is also the c.m. scattering angle in
the mth subprocess.

If we take the tetrad (& ",(I ",p n,V„n) in the (t,x,y, s)
directions, respectively, then we obtain

From (A20) it follows that

IMia|jX)(n+»=B (X )IM0 j~)( ) (A25)

Thus, substituting for B„(X„)from (A12), we obtain

(„){M',~', j'&('IM ~ jX)(~»
=02r2r 0- ( ){j'"'Iexp( —i0 J2'"')

I
j'")(n)

X( )&M & j'&(l exp( i»„E2'—"') IM0' j")( )

X(.&(jXI exp( —i(t-J2'"')
I j& )(-&

02I2I O„dl—1"(8„)dpi) '(»„) exp( i&((t&„),—(A26)

4[(a.c)(b c)—(a b)c']
cos8{a,b; c) =- (A30)

6(a2,c2 (a&c)2)5(b2,c2 ( +bc) )2

where the d&'(8) and d~'(») are the conventional O(3)
and 0 (3,1) functions, respectively.

A useful identity which helps to transform 0(3)
expansions into 0(3,1) expansions is (see I, Appendix 8)
exp[iE2»(a, b)] exp[i J20(b,c; a)) exp[ —iE2»(c,a))

exp[ —iJ28(a, c—; b)) exp[iE2»(c, b))
Xexp[iJ28(b, a; c)], (A27)

where a, b, and c are any three timelike four-vectors and

cosh»(a, b) =a b, (A28)

and cos0(b,c; a), etc. , are defined in (A18). For the
special case of u, b, and c in the same plane,

exp[iE2»(a, b)] exp[iE2»(c, a)]=exp[iE2»(c, b)]. (A29)

We may a,iso write (see I, Appendix A)
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42csC (a,b, c)j'"
sin0(a, b; c) = (A31)

t2 (a',c', (aac)2)h(bs, c2, (b+c)2) Similarly,

If for example we take tt, b, and c to be k„, P„, and

p„+1, respectively, one finds that as s„+c—o,

0(k„,q 1.1, q„)

Sn Pn Pn+1
coshe(p„,p„+,) =

2(p 2p 2)1/2

(A34)

(A35)

0(knqqni qn+1) tn (A33)

0(k,p; p„~i) t M2, for t small. (A32)

Choosing q„and q„+1 as in (3.11), we find also that as
s ~ Go

Similarly,
~s„as s„~ .

Coshe„'—=Cosh e (q„,q„y 1)

~s„as s„~ ao.
(A36)
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Simply Factorizable n-Point Amplitude
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A general n-point amplitude based on tree diagrams which has Regge asymptotic behavior and poles in all
channels, but which is not dual, is explicitly factorized, and the coupling of three or more Reggeons is
computed. The degeneracy of levels of the factorization of the n-point function is rP, the same as in the
four-point function. Group-theoretical implications are brieQy discussed.

r. DTTRoDUnlom

'T is of interest to have an e-point amplitude eon-
' - taining infinite multiplets of states that is escpticitly

factorizable in every channel. One can then define

arbitrary amplitudes with external particles of arbitrary
spins through the factorization, in particular, the
coupling of three or more Regge poles or composite
particles.

For the e-point functions' based on the Veneziano-

type four-point function, the factorization problem is

very complicated and exhibits a high degree of de-

generacy of the type e ".'
Here we present a model based on the four-point and

e-point representations given by one of us' which al1ows

a very simple factorization with the same e' degeneracy
as the four-point function. The model has crossing sym-
metry and Regge asymptotic behavior in all channels.
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Chan Hong-Mo, ibid. 288, 425 (1969). For further references,
see Chan Hong-Mo, CERN Report No. TH. 1057, 1969 (un-
published).

S. Fubini and G. Veneziano, Nuovo Cimento (to be published).' J.W. Moffat, Nuovo Cimento 64A, 485 (1969);J. W. Mogat,
Nuovo Cimento. Letters 2, 773 (1969).

It does not have the so-called "duality" in the sense of
the Veneziano model that the sum of the s-channel
poles alone also contains an infinite number of poles in
the t channel. On the phenomenological level, all the
experimental successes of the Ueneziano model can be
reproduced in an equa11y if not more satisfactory way
with this model. ' ~ On the theoretical side, whether
there is a duality in the strict sense of the Ueneziano
model is a matter of dispute. What we want to show is
that a reasonable model exists in which the coupling of
all higher spin states is explicitly obtained from the
amplitude and to exhibit general amplitudes with
arbitrary spins. This information is crucial for a group-
theoretical understanding of the multiplet, which we
also briefly discuss. If we are working with a definite
composite system, which has a certain degeneracy, we
can put a physical requirement on the e-point amplitude
to the effect that the factorization of an e-point ampli-
tude should give the same degeneracy as the four-point
amplitude. This is the case for the present model.

In Sec. II, we discuss the prescription for constructing
the "pole" diagrams for the amplitudes described by
the multiperipheral diagrams (Fig. 1) and other

4 H. H. Aly, Fayyazuddin, and J. W. Morat, Nuovo Cimento
Letters 2, 327 (1969).' J. W. MoBat, University of Toronto report, 1969 (un-
published).


