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Physical Interpretation of Complex-Energy Negative-Metric Theories
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It has long been held that the divergences of Geld theory could be removed if the theory was formulated
on a Hilbert space with an indefinite metric. The difhculty of this approach was that the theory then pos-
sessed channels with negative probability and therefore violated unitarity. In a recent paper, Lee and Wick
have observed that this diKculty could be eliminated if negative-metric states had complex energy. In this
paper, we produce a model which shows several of the difficulties associated with the Lee-Wick proposal.
The existence of complex energies leads to interpretation difhculties and, in higher sectors, does not com-
pletely solve the unitarity problem. We use the model to show how the Lee-Wick conjecture can be extended
to overcome the difficulties that are produced. We describe the physical meaning of "good" theories with
an indefinite metric.

I. INTRODVCTION

~ ~ ~

LTHOUGH the problem of the divergences in
relativistic quantum field theory has been present

for many years, the more recent successes of the
approximation schemes based on 5-matrix and boot-
strap techniques have tended to mask the difficulties
inherent in the underlying field structure. The problems
of relativistic field theory have to be faced: The
renormalization scheme, found so successful for quan-
tum electrodynamics, is not the panacea in a field
theory that is to be used for describing particle-
physics phenomena, and not only because the couplings
are considerably stronger. In particle physics we are
interested in calculating mass shifts, comparison of
effective coupling constants with the unrenormalized
value, and identification of resonant levels. We must
therefore look for a finite quantum field theory, not one
where apparently infinite quantities are renormalized
away.

In the past, the possibility of circumventing these
difficulties by using an appropriate ultraviolet cutoff
has been considered. This was accomplished either in
the form of a nonlocal field theory with geometrical
form factors, or by an invariant regularization pro-
cedure. We think it only fair to say that no one has yet
succeeded in formulating a satisfactory nonlocal theory. '
The precise mathematical formulation of the invariant
regularization procedure shows that such a field theory
lacks so many of the desirable features for a quantum
Geld theory that it is of no particular interest. We are
obliged to recognize that the invariant regularization
method of Pauli and Villars and of Feynman does rot
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provide the basic idea for a new theory of quantized
Gelds. '

There is a related but distinct method of constructing
a Gnite theory based on a possible generalization of

the mathematical framework of quantum mechanics.

This generalization was invented by Dirac' several
decades ago and has been successfully used by Gupta
and by Bleuler in giving a most elegant formulation of
quantum electrodynamics. 4 The method utilizes a
linear vector space with an indeGnite bilinear form
for the inner product of two vectors, and leads to the
possibility of removal of the standard infinities of local
relativistic Geld theory. A quantum field theory for-
mulated in such a space is referred to as a "field theory
with indefinite metric. "' The major problem encoun-
tered in the formulation of such a theory is that we
must be careful in defining the physical transition
amplitudes since we want physical transition probabil-
ities to be non-negative. The proper identification of
physical amplitudes is part of the dynamical problem
in an indefinite-metric quantum theory.

A careful formulation of quantum field theory in
which these dynamical problems are treated adequately
has been developed in the past decade. A finite quantum
electrodynamics has been constructed on the basis of
such a formulation. This theory is in complete accord
with our empirical knowledge in the field. ' The analytic
structure of the transition amplitudes and other
questions of relevance to dispersion theory have also

been studied. A systematic discussion of the accomplish-

ments and the problems of quantum field theories with
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indefinite metric is presented in a paper by Sudarshan. '
In that paper it is pointed out that an essential pre-
requisite to a complete theory is the restriction of
physical states to a subset of the vectors in the in-
definite-metric vector space, the restriction in turn
being defined by the eigenvectors of positive norm of
the scattering operator. The subset is to be determined
dynamically.

A further modification is possible. In a conventional
theory, the masses of particles should be real; but an
indefinite-metric theory permits the occurrence of
complex masses, provided they occur in pairs. In a series
of ingenious papers, Lee and Wick have explored the
advantages offered by this freedom. ' They have studied
several models that can be solved exactly in their lower
nontrivial scattering sectors. They show that in a
model with complex (renormalized) masses for some of
its particles, in a completely soluble sector, the scatter-
ing amplitude is unitary. They emphasize that this
unitarity is maintained even though this sector is
dynamically coupled to states with negative norm.
Moreover, all the scattering states have positive norm
in the sectors studied. No difficulties arise in the
physical interpretation of the scattering process. Lee
and Wick expressed the conviction that this removal of
the difFiculties could be maintained in any negative
metric theory if they require that all the particles
associated with a negative norm have complex mass.
In the cases that they study, they require the free
parameters of the model to be adjusted so that all
single-particle negative-norm states have complex
energy. As will be emphasized in the present paper,
it is then the requirement of energy conservation for
real energy scattering that decouples these negative-
norm states from the unitarity requirements. In any
sector with only one complex mass state of negative
norm, the scattering via the negative metric is virtual
and does not cause violations of unitarity.

In this paper we have produced a more complete
indefinite-metric model which satisfies the requirements
that all negative-norm particles have complex energy
states. It is the purpose of this model to show that the
requirement of complex energies for negative norm
states is still a possibile mechanism for decoupling of
the unitarity violations in the lower sectors, but that
it is not realistic to expect that the higher sectors will
also satisfy this condition.

A similar situation obtains in the Hamiltonian
formulation of the charged scalar theory with restriction
to one-meson (and no-meson) states. ' We can recover
the Lee-Berber scattering amplitude obeying unitarity
in a formulation that contains negative-energy negative-

7 E. C. G. Sudarshan, PNndamentu/ Problems in E/ementary
Particle Physics (Wiley-Interscience, Inc., ¹wYork, 1968).' T. D. Lee and G. C. Wick, Nucl. Phys. $9, 209 (1969); &&0,
1 (1969); T. D. Lee, CERN Report No. Th. 914 (unpublished).

T. D. Lee and R. Serber (unpublished); C. J. Goebel, Phys.
Rev. 109, 1946 i1958).

probability meson states dynamically coupled to the
physical states. But no physical transitions occur
between positive- and negative-energy states. However,
this theory encounters serious difficulties as soon as
production channels are included: Energy conservation
can no longer prevent mixing of positive- and negative-
norm states.

We have reinvestigated the questions proposed and
partially solved by Lee and Wick and subsequently
discussed by Coleman and Glashow. We found it more
convenient to construct a new model which incorporates
negative-probability states associated with complex-
mass particles, but in which the particle-production
amplitudes can be explicitly and simply solved. We
recover a result essentially equivalent to the Lee-Wick
result whenever asymptotic energy conservation forbids
the physical transition to states containing complex-
mass particles. But we also show that such a circum-
stance does not always obtain: In this model there
are production processes involving complex-mass
particles (with real total energies), the amplitude for
which does not vanish and which must be included in
the complete set of states. Under suitable circumstances
the production channel leads to a negative-probability
state.

The omission of any of these states would yield an
S matrix that would not be unitary. The availability
of the exact solutions allows us to avoid the questions
raised by the Coleman-Glashow —Lee-Wick debate. The
states considered are not examined in a perturbation
treatment of the interaction picture, or a graphical
analysis, but in an exact treatment. The constraints
imposed by the solvability of the model require that
these production sectors be simple and that our mesons
have a simple energy-momentum relationship. The
resulting model is then only quasi-relativistic, but the
complications intrinsic to this case are probably not
removable by a more general relativistic treatment of
scattering. Regardless, we find that we cannot arbitrar-
ily drop states in our vector space and that the Lee-Wick
proposal is inadequate and incorrect. If we aim to have
a quantum theory of the scattering matrix where there
is a vector space of states and where the S-matrix
elements are related to the scalar product of "in" and
"out" states, we are led to a program in which the
physical interpretation of the theory has to involve the
choice of physical states, which must be considered as
part of the dynamical problem. ~

The program of Lee and Wick can be interpreted by
noting that in their indefinite-metric theory the dynam-
ical restriction of the physical states to states of positive
norm is brought about by using the non-Hermiticity
of the Hamiltonian to decouple the unwanted states.
In the present model, we show that this program is
impossible to maintain in higher sectors even if it is
imposed successfully in the lower sectors. The use of
complex-energy eigenvalues, besides not being able to
maintain the distinction between positive- and negative-
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norm states in the higher sectors, introduces new
complications of interpretation of the one- and two-
particle complex-energy states.

It is our proposal that the use of any dynamical
variable to identify the negative-norm states is probably
doomed to fail in any state composed of direct products
of the states that meet the identification requirements
in the lower sectors. The only consistent solution
appears to be restricting the physical states to the
positive-norm steady states of the scattering operator.
The question may naturally arise as to why one went to
the larger space. This question has already been
answered: We want to deal with the larger space because
it is in this space that we have local relativistic 6elds.
Restriction to the smaller ("physical" ) space destroys
the locality of the field operators. In other words, an
indefinite-metric theory may be the simplest and most
elegant method of constructing a relativistic quantum
theory that is equivalent to a nonlocal relativistic
theory with a positive-definite metric. Manifest co-
variance for interacting fields makes an indefinite
metric inevitable.

The plan of the present paper is as follows. In Sec. II
we construct the model which contains fields associated
with both positive and negative probability. In Sec. III
we solve for the lower-lying sectors and we show that
only one-particle states with complex mass have non-
positive-norm components. We show that there are
states with positive norm and real energies which can be
composed of such particles. Some questions of physical
measurability are also discussed here. The production
amplitude is explicitly solved in Sec. IV. In Sec. U we
derive and describe the S matrix for this model; but
we also see that in general the complex-mass particle
production amplitude should be explicitly included in
the unitarity relations. Section VI describes the manner

in which the dynamical restriction of physical states to
positive-norm states can be accomplished. The last
section contains a critical discussion.

II. MODEL

where
+p++Il++r21 (2.1)

Since the purpose of this paper is to establish in a
clear way some of the difhculties associated with
indefinite-metric theories, we propose a model that will

quickly and directly show the problems of interpretation
and unitarity in these metric spaces. With this goal in
mind, we carefully formulate the form of our Hamil-
tonian. There are four particles in this model. The source
particle is a massive (static) nucleon (E) and provides
the source of our scattering. The rest frame of this
nonrelativistic nucleon will provide a convenient frame
in which to describe our system. There are three
distinct mesons (n.~p.2,7rp); two mesons with positive
norm, and one with negative norm. One of the positive-
norm mesons is basically a beam meson and it has mass
p~. The other positive- and negative-norm particles are
mass-p partners (p2 ——pp ——p) which mix via a direct
interaction. In order to separate the elastic and produc-
tion thresholds, we assume that pi&2p, .

The Hamiltonian consists of three terms. The non-
interacting or free Hamiltonian describes the kinetic
energy of the freely propagating fields. These Hamil-
tonians are written directly in momentum space where
4p;(k) —= (p +k')'~' has the usual relativistic momentum-
energy relationship. There are two types of terms in
the interacting parts of the Hamiltonian. The first is
the mixing of the pion partners with equal mass but
opposite metric. The second type describes the direct
production of meson pairs. The Hamiltonian is

d k d k d'k
H p —nz~g ~ PN+ —

cpl (k) alt (k)al (k)+ 4p2(k)apt (k)a2(k)+ — — — 4pp(k)a pt (k)ap (k), (2.2)
2cpg(k) 24p2(k) 24pp(k)

Hy] =gyp
d'k

[a2"(k)a, (k) —a,t (k)a2 (k)7,
2~2(k)

(2.3)

Hg2=p,
d ky

24pg (kg)

d'k2 d'k~—(P~ ag (k,)tt~{R(k,; k, ,k;)[a,(k,)a,(k,)+a, (k2)a, (k,)7
24p2(k2) 24pp(kp)

+Gm (ki,. km, kp) [a2(k2) a2 (k,)—up (km) a,,(kp) 7+2Gp (kg,. kp, kp) u2 (k2) ap (kp)+2G4 (kg, kp, kp) ap (kp) ap (kp) f

+ig~t {G~*(k~,kp, kp) [a2t (kp) a2t (k2)+apt (kp) apt (k2)7+G2"(k~, k2, kp) [apt (kp) apt (k2) —apt (kp) apt (kp) 7

—2Gp*(kg, kp, kp)a, t(kp)a2t(kp) —2G4 '(k, ,k2, k,)a,t(k, )a2t(kp) I ag(kg)p~), (2.4)

with the usual commutation relations. These are

[p~,p~t7=1, [a~(k),aP(k')7=24pg(k)h'(k —k'), [a,(k),a,"(k')7=[up(k), apt(k')7=24p2(k)P(k —k'), (2.5)

with all others zero. The physical space is an indefinite-metric space with the metric operator

tt' d'k
e =exp~~ e - e,&(k)ee(k)) .

24pp(k)
(2 6)
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The functions G;(kl, ks,ks), i=1, 2, 3, are symmetric under the interchange of the ks, ks arguments, while

G4(k» k»ks) is antisymmetric. The pseudo-Hermiticity condition

(2.7)

is satisfied with gl real. For simplicity, we take G, (k» ks,ks) to depend only on the magnitude of the momenta k;.
With this assumption it is now easier to work in a spherical basis and we de6ne

a,s„—= d (cosgs) dp2Y3„*(82,4I)2)a; (k) .

In this form, the Hamiltonian becomes

(2.8)

k'dk k'dk
IIQ tss~lpp——7'ipsr+ -~1(k)p all„(k)all (k)y -- p 002(k)Lasl (k)ass„(k)+ass„(k)ass (k)g, (2.9)

p 2401 (k) 1m '

p 2402 (k) 1 na

and

& I ass.t(k)a„„(k)-a,l.t(k)as&„(k)j,
o 2M2(k)

(2.10)

~ kj'dkg " k2'dk2 " k3'dk3
His=@ ' (4N'aioo'(kl)fx {Gl(klj ks, ks)I aspo(ks)aspo(ks)+asoo(ks)asoo(ks) j

o 20)1(kl) o 2402(ks) o 20)3(ks)

+G2(kl j ksqks)Lasoo(ks)a200(ks) aspp(k2)aspp(k8) j+2G8(kl j k2qks)asoo(k2)asoo(ks)

+2G4(kl k2 k3)a200(k2)aspp(ks) }+/K {Gl (kl k2 ks)la200 (ks)aspo (k2)+aspp (ks)asoo (k2)]

+Gs (kl j ksyks)La200 (k8)a200 (ks) a800 (k3)aspp (ks)j 2G8 (kl j kspks)asoo (ks)asoo (k2)

—2G4*(kl, ks,ks)asppt(ks)asoot(ks) }aloI)(kl)f))r}, (2.11)
and

20);(k)
Itpsr, psrtj = 1, La, l„(k),a,s„t(k')g =811 8 „.b, ; 8(k —k')

k'
(2.12)

with the metric

" k'dk
g=exp ix Q ag '(k)a, g (4)). IZ. I3)

I) 2102(k) I m

We point out the Gs(kl, ks,ks) and G4(kl, ks, k,) are
symmetric and antisymmetric in k&, k3.

In order to investigate as completely as possible the
unitarity of the model, we will have to use a solvable
model. For this reason, when necessary, we will assume
that G;(kl, ks, k,) is separable, '0

III. STATE VECTORS OF SINGLE-
PARTICLE SECTORS

The state vectors of this model up to the production
sector are quite simple and, since the Hamiltonian was
chosen to minimize renormalization complications,
most of the one-particle sectors are the same as the
free Fock-space state vectors. The only renormalization
required in the one-particle states is due to the direct
interaction of the negative- and positive-metric mesons.

The energy eigenstates for this one-particle sector
follow from the Hamiltonian

G4(kl j ks)ks) =8'(kl)A '(ks)ks), (2.14) H
I

ll 2 k& =0)2 (k) I mrs k& —gl))4-'
I srs, k & (3 1)

and that the form factor for the elastic channel is
universal. This is the requirement that 84(kl) =B(kl).
Although describing a model theory, and noting that
this assumption will remove most of the unessential
manipulative complications, this assumption has a
very reasonable physical basis. Since the 8'(k 1) describes
the elastic-channel portion of the potential and this
channel is common to all Anal states, it is not unreason-
able to require it to factorize in a universal fashion.

~0 For a complete summary of the techniques of solution for
separable potential theories see E. C. G. Sudarshan, in Lectures irI
Theoretical .Physics, Brandeis Summer Institute, 1961 (W. A.
Benjamin, Inc., New York, 1962).

and

where

H
I E+,k& =

I 402 (k) +sglP,
—'g

I E+4&

H
I E,k& = Lp) 2 (k) —sg, 44

—'j
I E,k&,

IE+&&= (v'2) (I ~21 &+3 I ~31 &)

(3.3)

. (3.3)

IE-,i &
= (V'2) (I ~2&& —3I ~si &), (3.6)

As is always the case in theories with a negative
metric, the pseudo-Hermitian Hamiltonian admits

III28,k&=o)8(k) Ilrs, k&+gl))4
—'Ilrs, k&. (3.2)

There are two complex-energy eigenvalues having the
values
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(E+kl20)g[E+k'l'I') =0=(E kl238[lj )E k'i'm),

complex-energy eigenvalues. As also follows from with
general arguments, these complex-energy states have
norm zero:

{E+kig)E+k')=0={Eki2liE k'),
{E+k~ll

~
E k') =2402(k)88(k —k') . (3.7)

8(k —k') (3.11)
(E+kl223I'VIE-k i 223')=2002(k) bll. fj~~ .

k'

All of these arguments are also applicable to the
spherical states. These are

Before proceeding further, we make several modi6ca-
tions to our Hamiltonian. The operators

and
H

~ E+,kl228) =P (k)+iggc ')
~
E+klm) (3.8)

&IE-233kl~)=5~2(k) —igu ')IE-tkl~&t (39)

A 2ltn(k) = (/2)pt32ltn(k) 2t33ltn(k)) t

A31 (k)=—(Q-,')fa21„(k)+iu81 (k)),

(3.12)

(3.13)

where with their adjoints defined in the usual fashion, satisfy
~E~ki423) = (g—',) ()7r2kim)&i)2rpkl233)), (3.10) the uSual COrnmutatiOn relatiOnS,

(k),A ~ ~ (k')) =PA (k) A ~ (k')) =L2 (k)jk')8(k —k') 8

with all others zero. The Hamiltonian in terms of these operators is

(3 14)

" k'dk
&o=mAar'gz+ - — ~1(k)Z u '(k)4311-(k)

2011(k)

(3.16)

" kg'dkg " k2'dkm " k3'dkg
Hgg=p {413' 13100 (kl)4'K {Gl(kl j kptkp)LA 200(k2)A 800(k8)+A 300(k2)A 200(k3))

p 2011(kl) 0 2&02(k2) p 2008(k8)

+G2(kit kptkp)t A 200(k2)A200(k3)+A 300(k2)A800(kp))+ZG8(kit kptk8)t A200(k2)A 200(kp) A 800(k2)A800(k8))

+3G4(klj k2tkp)pA 300(k2)A 200(k3) A200(k2)A 300(k3))}+/vjGt1 (kl j k2tk8)LA 800 (k8)A200 (k2)

+A200" (k8)A 8002(k2))+G2*(kl, k,2k)8p A2002(k )8A 2002( k)2+Apoot( k)8Appo(tk)2)+i G8( kl kp, k3).

X/A2002(k3)A200t(k2) Apppt(kp)—A300t(k2))+3G4*(kl, kp, k8)

XLA200 (k8)A 800 (k2) A 800 (k3)A 200 (k2))}~1004K} (3 17)
The metric operator in these new variables is

" k'dk
q=exp 2'ilr — — g fA23~t(k)A23„(k) —A81„(k)A21„(k)—A23„(k)A83„(k)+Apl„(k)A31~(k)) . (3.18)

0 2&02(k) lm

" k'dk
+ 002(k)g PA 21„2(k)A21~(k)+A 31~ (k)A 31~(k)), (3.15)

2402(k) lm" k'dk
Hrl iglI8 ' — ——Q LA23 t(k)A2& (k) —A81 t(k)A81 (k)),

2002(k) lm

In this form it is apparent that Ho+Err form a new kinetic energy Hamiltonian with the variables associated
with the metric operator having complex energy eigenvalues.

Splitting the metric operator into two commuting parts, we 6nd

g =gyg2= exp gzx'1 '
" k'dk

g (A21~ (k)A21„(k)+A31~'(k)A31„(k))
2002(k)

Xexp —-'oilr p pA31 t(k)A21„(k)+A23J(k)A31„(k)), (3.19)
0 2402(k) l~

In this form the nondiagonal character of the metric is
apparent. The gl portion of the metric is (i)~1~+1+~1~ l.
The i is necessary to recover the phase change in p&.

The metric g2 is q2~E+tklm)= i~E kl228)—As before. ,

the metric commutes with G~ and G2 parts of II~2 and
anticommutes with the G3 and G4 parts.

Before leaving this sector, we note that the one-
particle completeness relations in this sector require
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the presence of the complex-energy states. This may
appear to cause difFiculties in going to large positive
and negative times. In order to interpret this theory,
this difFiculty must not exist in the physically relevant
matrix elements of any operator. The time development
of the expectation value of any operator in the two-
dimensional space spanned by states with energies E+
and 8 is given as

(A, ti~eIB, t&=a+*8 +b+e-» +t+a+ 8 b

+a *8++b++a *8+ b e2™e+t, (3.20)
where

Hamiltonians. This wouM appear to imply the undetect-
ability of these single-particle asymptotic-energy
eigenstates in any normal context. From this non-
detectability of the single-particle states, it does not
follow that one cannot detect single-particle operators
in the many-particle portions of the spectrum. In cases
which will be produced by this Hamiltonian, a suitable
combination of two complex-meson spectra will have
states in which each single particle can be detected.
This problem will be discussed in more detail in that
section.

and
a, =(E„iw,o&, b, =—(E,ia,o&, (3.21) IV. SCATTERING STATES

8~+—=&E+ I
& IE~&. (3.22)

Thus only operators with 5+ = 5 +——0 are asymptot-
ically reasonable, and these are stationary. These are,
as usual, the operators that are simultaneously diagonal
with the Hamiltonian. The problem here is that they
give zero for pure energy eigenstates. This is a direct
result of the pseudo-Hermiticity of the negative-metric

The next higher sector of interest is the N+srs —p N
+srs scattering sector. The Hamiltonian was chosen to
force this elastic channel to couple directly to the mixed-
metric production sector. The assumption of the 6;
depending only on k; allows us to study only the scat-
tering and production of S-wave mesons in the nucleon
rest frame. The states in this sector are expanded in
the spherical basis in the states

where

iN; kg, o,o&, IN; E+(ks),0,0; E (ks),0,0)+—= i1,ks,ks&, IN; E+(ks),0,0; E (ks),0,0) —= i4,ks,ks),

IN Es(ks)0 0 Es(ks),0 0)~—= I 2,ks, ks), and IN; Es(ks)0 0; Es(ks),0 0) —= I3,ks,ks&,

IN;E (k,),0,0;E (k,),0,0) =-,fiN, E (k,),0,0;E (k ),0,0)+iN,E (k ),0,0;E (k ),0,0&g (4.1)
and

iN;E (k ),0,0;E (k ),0,0) =(Q—)fiN, E (k ),0,0;E (k ),0,0)aiN, E (k,),0,0;E (k ),0,0)j.
This set of states are eigenstates of the metric operator. They satisfy

~iN; E+(k,),O,O; E (k,),O,O),=~ iN; E,(k,),O,O; E (k,),O,O&„

(4.2)

(4.3)

g IN, Es(ks),0,0; Es(ks),0,0)g —& IN; Es(ks),0,0; Es(ks),0,0)p,
which implies the norm

,(N; E,(k, ),O,O; E (k, ),O,Oi & i N; E+(k,),O,O; E (k,),O,O&,

1 2&p, (k,) 2tds(ks) 2tps(ks) 2tps(ks)
b(ks-ks') b(ks ks')a -b(ks-ks') b(ks-ks')

2 k~' kg' k2' k3'

=g(N; Es(ks') toto; Es(ks'), 0 OI gIN i Es(ks),0 0; Es(ks),oto&~,

(44)

(4.5)

where the relative minus occurs only for IN; E+(ks),0,0; E (ks),0,0) and with all other combinations zero. The
state IN't E~(ks),0,0; E—(ks),0,0)~ has real-energy eigenvalues and positive and negative norm. The simplicity of
the state IN,E~(ks),O,O,E (ks),0,0) implies the existence of states that violate the Lee-Wick conjecture. In all
the subsequent calculations, we shall suppress the redundant l =0, m=o indices.

The scattering wave function with outgoing-wave boundary conditions is given by

INk &'~'=

where

k'dk
~+(k„k) INk)y

p 2(ps(k)

+P+'(kg, ktks) IN, E+(ks),E (ks)) $, (4.6)

"k'dk "k'dk
L4+'(k~; ksks) I»' E+(ks),E-(ks)&+

p 2(ps(ks) p 2(ps(ks)

+P+'(kg, ksks) i N, Es(ks),Es(ks)&~+/+'(kg, ksks) i N, Es(ks),Es(ks)&

p+(kstk) = f2cps(k)/ksg5(ks —k)+ (outgoing wave)
—=f2Ms(k)/ksjb(ks —k)+sl„(k„k) (4 7)
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and"

The Hamiltonian equation requires
p+'(kl, ks,ks) =' (outgoing wave) . (4.8)

Leal (kl) —col (k)j44.(kl, k) =p 'K2
" k2'dk

+i/4. 3(kl, ksks)G3(k; ksks) —ilt4.4(kl, kpks)G'(k; ksks)) (4.9)

" k'dk

" k3'dk3
Q+'(kl j ksks)G1(k j ks, k3) +it+'(kl j ks,k3)G2(k j klk3)

p 2co2(k2) p 2cos(k3)

Leal(kl) co2(k2) cp3(k3)jf+ (kl j k2k2) p v2G1*(k; kzks)y+(kl, k),
p 24ol(k)

" k'dk
(col(kl) co2(k2) co3(ks))f+ (kl j kpk8)+2zglp Q+ (kl j k2ks) p ~2G2 (k j k2k3)$+(klyk) p

p 2col(k)

" k'dk
I co, (k,)—co2(k2) —

cop (k3)gtt+ (k, j kskp)+2zgltz-+, (k„k,k,) =p,
— iV2G8*(k; ksk3) y~ (kl,k),

p 2pol(k)

(4.10)

(4.11)

(4.12)

k'dk
Leal(kl) —cos(k2) —lo, (ks) jp+'(k» ksks) =p,

' (—i)v2G4*(k j ksk3)4+(kl, k). (4.13)
p 2co, (k)

Utilizing the separability assumption, we define

and

" kg'dkg " k3'dk3
y+t(k, )

—= — A &(kzk3)it+&(kl, ksk;)
p 24o2(k2) p 2co3(k8)

k'dk
C+ (kl) —= — B*(k)y4. (klk-) .

24ol(k)

(4.14)

(4.15)

The mixing of /+2 and /+3 is removed by studying

f+ (kl j k2)ks) =f+ (kl j k2pk3)+f+ (kl j k2pk3) (4.16)

Kith substitution and some straightforward algebra, the middle two Hamiltonian equations are replaced by

)col(kl) co2(ks) cop—(k3)+2z—glts 'lp~&+&(kl j k2)ks) =p 'V2LA'*(kzk3)+zA'*(ksk3) jC+(kl) (4.17)
and

Leal (kl) pp2 (k2) cp3 (k3) —2zglp 'jp+' ' (k» ksk3) =ps&2)A' , (ks,k3) iA ' (k—l,kp) jC+ (kl) . (4.18)

Since both coeflicients of f&+& do not vanish for all physical kl, k2, and ks, the solutions are directly given. The
f+ (kl, ks,kp) and f+ (kl, klks) have to satisfy the outgoing-wave condition. This outgoing-wave condition is
imposed on the entire state and is due to the fact that its energy denominator has a zero in the physical region. The
method for developing the outgoing-wave condition is the classic one and is described by Dirac."We note that
this prescription is not modified by the presence of complex-mass states, since it is a condition on the total outgoing
state and does not depend on the nature of the constituent particles. This is not the same as the ie utilized in a
perturbation expansion of an interaction-picture solution. The is used in that case is intrinsically related to the
nature of the. constituent particles. In this model which is exactly soluble, we avoid these possible ambiguities.

The solutions for the coefEicients are

p
—'V2

where g'=1, i, i, —i for j=j., 2, 3, 4, respectively, and

p, 3%2C+(kl)A '*(ksk3)
P~'(kl, ksks) =

col(kl) pcs(ks) co3(k3)+—ze—

2col(k)
y4. (kl, k) = 5(k —kl)+Q . (9'&(k)V+'(kl)}1

k t ~,(k,)—~, (k)+is
(4.19)

(4.20)

The general procedure for the construction of outgoing and incoming waves is given in P. A. M. Dirac, Przrzczples of Quantum
1lf'echauzcs {Oxford University Press, London, 1958), 4th ed. , pp. 195-198.
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(—) (k 1, k2, k2)3(+) (kl', k2k2t. 2(k, ; k2k2) —2 +

+.ig2*(k2k4) ) ig&*(k2k2)
C (k ) (4.21)

g24: k2, ka

G)1 1 k ) (k 2) —22g1)t4

(4.»)

(4.24)

(4.25)
( pl(k2k2) I

'~ k22dka

2(g2(k2) & ' ',
k k )g2*(k2k2) g~

2 —2

2dk2 ks

(k )g2+4gl )|4kl) —%2(k2)

(k1)—442

2,(k,) t: ('
p 32d~ 3k2 dk2

—

(k ) (k2)+26
44 —

2 (k2) Q)1(kl)
p+,

2442(k2

~hele

(4.26)

(4.27)

22=P+

(4.28)

23 ——ZP+

(4.29)

(4.3O)

(4.3&)

so]QtjoD o~
„d ~g other»ero'.

@cjegt js t"e sThe +' @bj/jty coe

$2dk ~*(k)&(k) ' '(k )~"C+(k).))1 p+
44 k

C (kl =g+(k )+& '2 ~
2441(k) "1(k')

j~ terms oof the lIl~erS

(4.»)

~

resseg symP~y

2

26
k (~(»))=—~ "

2~1(k) "1( ')

l~ (k2 (k) —~2( ') ' —
2~2(k2)»( '2»(k2(k ) Q)2(k3)gL441(kl

p, dkgp, 'F2
g „1p„44'(kl)))' =

. (4.33)

—1)»(k,)+22g V„,(kl) —442

~ &
—)(kl; k2ka)3

) ps*(k,k,)
(k ) (4.22)

g2@(k2 k2 —4

C+ 1

2(kl', k2k2) 2

k )+i+2+(kuks)

(k ) 24g~(k4)+2iglP~,(kl) —4'2

(k )g4+(k2k2)
4(kl; k2, k2 =&

441(kl
2~2( i)—

(k,) (g, (ka)+2'
'

nts s,re given g
., ;.C+(k,),

b'iity Qpefflclen

2~2 Q p+ (kl

The 7 separa 11

~+4(kl) =~
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Fro. 1. Cut structure of h (s).

The function k+(~(kt)) is the characteristic function
of this sector. Most of our conclusions about this model
can be seen directly ink+(ce(kt)). The solution associated
with zeros of k+(tut(kt)) for tet(kt) below any of the
cuts of the spectral functions is a bound state. As is
usual with negative-metric theories, Imk(tet(kt)) below
the production sector is not of positive-definite value

and, therefore, by suitable choice of strengths in G~, G&,

G3, and G4, complex-mass bound states can be generated.
For simplicity, we choose strengths that generate no
new bound states. The analytic structure of the k(s)
which reduces to k+(tet(kt)) when s ~ tet(kt)+is
determines the analytic structure of the S matrix. As is
always the ease with separable potentials, there are no
left-hand cuts in s. The absence of bound states and
complex poles removes all poles from the physical
sheet. The cuts from the production terms drive the
amplitude (see Fig. 1). Each term within the curly
brackets contributes to both the elastic and the produc-
tion cuts. YVe will discuss each term separately and in

doing so will assume that the other nonrelevant terms
are zero. The complete solution is displayed later and
it can be verified that the omitted effects do not alter
our conclusions about each part.

The first term in the curly brackets of k(s) is due to
Gt(ktksks). This term in the Hamiltonian is responsible
for the direct production of a meson pair with positive
metric. This can be seen from the Hamiltonian (2.4)
and metric (2.6) or, equivalently, the Hamiltonian
(3.7) and the metric (3.19). From the form of (3.17),
those mesons are produced which have complex
conjugate energies or a net real energy. This real energy
of the mesons of this production sector is reQected in
k(s) by associating a production cut along the real
axis with this term. To a large extent this term in the
scattering states might be called the most normal. .

If the Hamiltonian contained only G& and no other
production terms, the S matrix would be unitary, all
cuts would be real-axis cuts, and only positive-metric
states would exist. The unitarity of the resultant S
matrix will be seen when all terms except G~ are set to
zero. We note here that the sign of this term in h(s) is
crucial to the unitarity of this portion of the solution.
Where cut(kt) is above the production threshold, k(s)
has a negative-imaginary part which is absorptive and
reduces the S matrix. Imaginary parts of opposite sign
violate unitarity. In addition, we see that for energy
below the production threshold, the virtual production
acts as an effective attractive potential. This does not
mean that this portion of the scattering is normal. The
unitarity is inelastic unitarity and some of the beam is
going to production of meson pairs. But the mesons of
these pairs are not observable as single-particle states.
In other words, a normal detection of coincident pairs is
possible, but no single-particle production (anti-
coincidence) detection of these particles would be
possible. If we add a term to our Hamiltonian to produce
just x2 or x3, this si'ngle particle would not be detectable
in any apparatus. This problem was described earlier
and when compared with this production result would
certainly lead to an anomalous interpretation of the
nature of this particle. The astute reader may now ask
why, when we added m~ or 7I-3 single production, no
violation of unitarity resulted. The addition of this
term will not affect the unitarity of this sector. This
result is quite general and is due to energy conservation.
Since this problem arises in the next term, we will
describe it in more detail there.

The next term is another almost normal term and it
owes all of its uniqueness to the presence of g~. This
driving term is due to Gs(kt, k2k3), which is also a
contribution that produces two mesons in a positive-
metric configuration. The presence of g~ forces these
mesons to have complex energies with imaginary parts
2g&p '. This term has two symmetric complex cuts as
its production cuts. The only real-axis cut is due to
elastic unitarity. Since unitarity sees only the real
cuts and the elastic cut satisfies unitarity, there is no
violation of unitarity in this term. Below production
threshold, this term is an effective attractive potential.
This is again due to the positive metric. This complex-
energy state has the same interpretation difficulties
described earlier. .

Skipping the next two terms, the 6fth term in the
curly brackets is very similar in nature to the second
term. It has complex-energy cuts and does not violate
unitarity. In this case the complex-energy mesons have
a negative metric. This is exactly the case of I,ee and
Varick. Here the energy conservation requires that the
only cut contribution be the elastic-unitarity cut of this
term. One manifestation of the negative metric of
this effective repulsive potential due to this term. This is
the only real difference between this and the second
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term discussed above. In the limit g~ —+ 0, the complex
cut becomes real and this term would lead to a factor
which above the production would have a typical
negative-metric violation of unitarity. This would not
be a violation that would disagree with the requirement
of Lee and Wick since the theory would no longer have
complex-energy particles. In this limit the second term
does not violate unitarity.

The third and fourth terms are the cross terms of
the previous two effects. They do not violate unitarity
and vanish if g~

—& 0.
The sixth, term is the term that directly violates Lee

and Wick s requirements. This factor is driven by G4,
which produces two mesons with total energy real.
The mesons are in a negative-metric configuration.
The negative metric is manifest by the sign of this term.
The force is repulsive and below the production thresh-
old the elastic unitarity holds. Above production
threshold, the imaginary part of this term would tend
to drive the amplitude above the unitarity limit.

V. ELASTIC TRANSITION MATRIX

where
II.,(i,) =&o+&r(~i(ki)), (5.4)

eo ——my~+y~+ o~i(k)ai+(k2)a(k2) (5.5)
2(vi(k)

and

We emphasize once again why the simpler calculation
of I,ee and Wick yielded a positive result while we have
a much more complex situation. The p p p and p 3

terms in the t matrix, although strange, do not possess
a real-axis cut and therefore are decoupled from
unitarity. These are the terms that scatter with complex
energy, and the conservation of energy associated with
crossing the real-axis cut removes the sects of these
terms. We note that although they do not violate
unitarity, they do act as driving terms and their virtual
production is possible.

In order to clarify our results, we will interpret this
model in terms of a much simpler two-body elastic
scattering model. Assuming a model with only E and
zq scattering, we can produce the above t matrix at a
given coi(hi) by using the Hamiltonian

The t matrix for the elastic scattering amplitude is
easily constructed and we obtain

g d'k

2oii(k)

d'k'

2ioi(k')

t(N+vri(hi) —+ X+mi(ki')) =—t(o~(ki),oi(ki')), (5.1)

with

t( (»), (k))=t '2(l&(k)l'LZn'p "'(k)~"j)/
j2'

h+((ai(ki)) . (5.2)

Below the production threshold this matrix is unitary,
since

Imh+(o~i (hi))
t(oo (ki),oo(ki)) =

hp(ooi(ki))
(5.3)

This is directly due to the fact that p+&'&' has purely
real contributions in this region.

If oui(ki) increases above the production threshold,
p+~~' contributes an imaginary part. The imaginary part
of g,, rt'p+»'(ki)q&' comes from the p+" and p~4' terms.
The sign of this factor is determined by (z')'. For
j= 1, we get the usual type of absorption seen in normal
production processes. The imaginary part is negative
and reduces the modulus of the elastic S matrix. For
j=4, we get a positive-imaginary part which in turn
forces the elastic amplitude to increase out of the
unitarity circle in the Argand diagram.

Another and more obvious problem with these models
is, of course, the interpretation problem. Obviously,
once o&i(ki) is above the production threshold, the S
matrix is no longer "elastic unitary. " If the channel
is a positive-norm channel, one still has a normal
absorption, but must be able to describe completely the
strange two-meson final states. If one has strong
negative-metric scattering, one will have both a strange
S matrix and a strange state to interpret.

a(~(ki)) =Z n'p+"'(k)n". (5 7)

The function g(s) for which

lim g(s) =g(~o, (k,))
+~ta~(a)+~&

has very similar analytic structure to that of h(s). The
only significant di8erence is that g(s) does not have an
elastic-unitarity cut (see Fig. 2). We can now make all.
of the usual statements about the properties of g in
potential scattering. "If oui(ki) is below the production
threshold, the g utilized is real. Real g has a unitary S
matrix and therefore so does our model. We see also
that the sign of g determines whether or not a potential
is attractive or repulsive. The positive-metric con-
tributions are an effective attractive potential and the
negative-metric contributions, by virtue of having
negative g's, are repulsive. This result is actually the
usual perturbation-theory result that any second-order
perturbation lowers the energy of the lowest bound
state. The production terms enter the elastic channel in

"Several examples of simple indefinite-metric models are
described in E. C. G. Sudarshan, Phys. Rev. 123, 2183 (1961};
H. J. Schnitzer and E. C. G. Sudarshan, ibid. 123, 2193 (1961).

XPN+ai+(k)B(k)B*(k')iPioa, (k'). (5.6)

In the usual formulations of separable potential scatter-
ing, g(coi(ki)) is a constant and is designated the
coupling strength. Here, by allowing g to depend on
o~i(ki), we reproduce the elastic sector of the previous
model at energy cur(k&), making the identification
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the second order. If these production potentials were all

Hermitian contributions, we would have only attrac-
tion. The negative-metric terms are anti-Hermitian or,

in terms of potentials, pure imaginary. They are there-

fore repulsive in the second order.
Above the production threshold, g(&st(kt)) becomes

complex from the A' and A4 contributions. The simple

model now looks like a typical optical model with

complex potentials. In that case the potentials corre-

sponding to absorption have positive-imaginary parts.
Potentials with negative-imaginary parts violate uni-

tarity. The positive-metric A contribution has a
negative-imaginary part and looks like a typical

absorptive optical potential. The negative-metric A4

has a positive-imaginary part and violates inelastic

unitarity. The A' and A ' contributions, although

production terms, do not have a real-axis cut and, if

only these terms were present, the associated g would

be real and all scattering would be unitary. We note

that these two terms correspond to the case of Lee and

Kick. The sign of g from pure A' or pure A' Hamil-

tonians again follows directly from their respective

Hermitian or anti-Hermitian value.

VI. DYNAMICAL DEFINITION OF
PHYSICAL STATES

With the exact solution of this simple model available,

we would like to return to the problem of the physical

interpretation of the states in a theory with an indefinite

metric. ~ The physical basis of such an interpretation

has already been discussed elsewhere and is based on

the recognition that the identification of physical states

is a dynam~ca/ problem. "Unlike the proposal of I.ee and
Wick, ' it does not arbitrarily exclude the contribution
from complex-mass particles and is therefore not
subject to the problems we have demonstrated in the
previous sections. To carry out this program for this
simple model, we note that the primary problems to
be resolved is associated with the fact that when cot(ki)
rises above the threshold of the production channel, we
see that the elastic scattering amplitude by itself does
not account for the conservation of probability. We
ought to take account of the three-particle channels
made up of pairs of complex-energy particles. If the
metric for these states is positive, the elastic scattering
amplitude will have an absolute magnitude too small
to satisfy unitarity; it would be the standard situation
in multichannel scattering but for the fact that this
three-particle state cannot be physically identified with
a state that is made up of a nucleon and two particles.
We would have to get used to the idea of having a
continuum of masses for physical states xitholt the
state having physical comstitlent particles (The si.tuation
would be similar to the quark picture in which multi-
quark states are identified without being able to identify
the quark states. ) Xt would be desirable, if possible, to
have a physical interpretation in which all continuum
states are analyzable into particles with well-defined
discrete masses.

In the case in which the coupled three-particle sector
has negative norm, we have no choice but to seek such a
physical interpretation, since otherwise probability
would not be conserved at all; the elastic amplitude in
the model has an absolute magnitude too large to satisfy
unitarity. We must either abandon the indefinite
metric or develop a new physical interpretation.

We have already remarked that the identification of
the physical particles is a dynamical problem. The
identification is to be made so that probability would be
conserved. I,et us see to what extent such a choice of
physical states can be made within our model.

For this purpose, it is necessary to construct the
operator R which maps the "out" wave functions onto
the "in" wave functions. This operator must include
transitions from three-particle initial states into three-
particle or two-particle final states. This construction is
straightforward, but the resulting expressions look
somewhat unwieldy, though basically they have a very
simple structure. In order to simplify the resulting
matrix, we will describe only real-energy scattering
and thereby remove the external states associated with
the G2 and G3 production elements. This does sot remove
the eGects of the virtual production of these states.
The virtual effects of G~ and G3 can be seen in the
explicit form of the matrix below. We construct this
operator by means of the usual defined S matrix. We

'~ This program was described originally in Ref. 12, applied to
quantum electrodynamics in Ref. 6, and reviewed extensively in
Ref. 7.
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obtain for S

with

-'-(N, k) )N, )- '-(N, k[, ~1,k, k, )- '.(Nk~„~4, k, k, )- .
(S)—= '"(1,k2k, q Nk')'"' "(1,k,k3 q 1,k, 'k, ') « '"(1k,k, q 4,k, 'k, ')«&

.'"(4,k2k3 q Nk')'"' ' (4k2kg g 1k2'kg')'"' ' (4k,k3 g 4k, 'k, ')'"'
(6.1)

2(og(k) B*(k)B(k )
'"(Nk~g~Nk')'" = 5(k —k') —2si5( (k) —q(k'))p ~2 LP g'p "(k)q'),

k'

h+(cog�(k))
(6 2)

2~2 (k2) 2~3 (ka) 2~2 (k2) 2~2 (k,)
'"(1,k2k3~&~1,k2'k3')'"'= 8(k2 —k2') -8(k, —k,')+ — — g(k, —k3') p(k, k2')

k2 k3' k2' k3'

2A'*(k,k,)—2%'ZB(672(k2)+6)3(k3) —G)g(kg ) ~3(k3 ))p A '(k2'k3')
h+(s) 2 (k2)+cv3 (k~))

k'dk
i B(k) )

'
X (6.3)

2'&(k) co, (k,)+~,(k,)—~,(k)+j,

-2~2(k,) 2~, (k,) 2~, (k,) 2„,(k,)
'"(4,k2k8 ) g ~

4k''k3')'"" = — 5(k2 —k2') g(k3 —k,') — g(k, —k, ) g (k,
k2' k3' k2' k3'

2A 4~ (krak, )—2mB(4&2(k~)+~3(k3) —~2(k2') —~3(k3'))& ' A'(k2'ks')
k~(a) 2 (k2)+(o, (k,))

k'dk
~
B(k) )

2

X (6.4)
2~~(k) co2(k2)+(u3(k3) —cog(k)+i&

B(k)A '(k2'k3')
'"&Nk

~ q ~
1&k2'&k3') "'=—2~i&(~, (k) —~, (k, ') —~, (k, ')) p,

—'K2,
&+(~~(ki))

(6.5)

B(k)A'(k2'k3')
'"(Nk

~ g i 4,k~'k, ')'"'= —2~8(~, (k) —~,(k,') —~, (k, ')) p,
—'V2,

&+(~~(k))

'"(1;k2k, i g i 4,k2'k3')'"'= —2vrB(o)2(k2)+~3(k3) —~2(k2') —(o3(k3'))

(6 6)

A '*(k2k3)A'(k2'k3')
Xp '2

k„((o2(k2)+a) g (k3))

[B(k) [2
(6 &)

2~1(k) ~2 (k2) +%3(k3) —(8y (k) +16

wjth al]. the others following from the pseudo-Hermjtjcjty of the Hamiltonian. Because of this pseudo-Hermjtjcjty,
S does not satisfy unitarity.

external channels associated with complex energies can be further simplified. To exhibit this, we form a
quasi-two-particle state of energy E=co4(k) = (4y'+k')"' from the three-particle states which is parallel to the
produced state; in other words,

(N,k; 3)„'"'=
i h(~4(k)) (

2(a2(k2)

where

&(~4(k) —(o2 (k2) —(og (k,))
2u) 3(k,)

&&V'*(k2,k3) I1; k24)'"' —'A'*(k2k, ) ~4 k,k,)- ~,

6'((v4) =-', k
k3'dk3

'(~4(k) —~2(k2) —~3(k~))EI A'(k2k~)
i

'—
~
A (4k,) ~

2j
2or2(k2) 2(o3(k3)

(6.9)
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The state orthogonal to
~
Ek; 3)„'"' is formed with the interchange 3'*~iA'. We emphasize that these states

are normalized in the physical indefinite metric. With these states, the S matrix is block-diagonalized to

where

. '-y ki&izk')- '-(Xki&iXk', 3)„-
(S')= '"(1Vk; 3(g(1A') '"' ' (1Vk; 3(g[Ek'; 3)„'""

0
0

'",(Xk 3 igiEk 3),'"".
(6.10)

B(k) 2 6'(a)4(k'))p '
-(uk[& (iVk', 3)„"'= 2— b((u4 (k) (u4(k—')) — K2,

k+((ui(k)) k
I
~(~4(k')) I

(6.11)

2 ~'(~4(k))
'"„(Xk;3 (g ~
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and a similar form for '~»P k; 3
~ g ~

~&k'; 3)»'"'.
This last term is now decoupled from the beam

channel and is therefore irrelevant to physically access-

ible scattering. We emphasize again that its effects, like

those of the complex-energy three-body states, are not

neglected. They appear virtually in the driving forces

but they are not produced physically. Ke see that, for

this very complex four-channel problem with which we

started, the physicaHy accessible scattering is restricted

to two channels: the beam and the produced state. All

other channels are necessary to drive the model virtually

but are not observable. It may appear that, since all

these states are not observable, there is no reason for

incorporating them in the original Hamiltonian. As is

apparent in this formulation, they have the eGect of

nonlocal potentials. In other words, by means of a
simple "local" Hamiltonian, we have constructed a
system with nonlocal effects. In addition, the state

~cV,k;3)„' ' is a state that, although composed of

two-particle-plus-nucleon contributions in the local

fields, appears as one particle. This interpretation

correlates with the difhculty of interpreting these

complex-energy states one at a time. To draw an

analogy from the present "style" of physics, in the

quark model, many physicists believe that, although

the baryon and meson resonances are composed of

rnultiquark states, there will never be a single quark or

continuum of quark. states discovered. In our case, the

local 6elds cannot be isolated by physical experiments.

They are necessary to completely describe with local

fields the complex physical processes observed.

e have now isolated all physical problems to a
two-by-two S-matrix problem. It is at this point that a
generalization of the Lee-Wick program must be

applied. This two-by-two process of one real particle

and one quasiparticle (two complex-energy particles)

must be physically interpretable. The physical norm of

the quasiparticle state is

6'((o4 (k))

I ~(~4(k)) I'
(6.13)

or the sign of the norm is the sign of 6'(a»(k)). We see
therefore that this problem reduces to a simple two-by-
two scattering problem with the second channel as
either a positive- or negative-norm channel, depending
on the relative strength of A4 to 3'. In this model, the
channel associated with the beam meson has several
direct nonlocal potentials associated with the virtual
states that have been decoupled. The coupling potential
between the channels is B(k) times the 6(&u4(k')).

The case of A4 dominating A' produces a pure
imaginary effective coupling potential. The legitimacy
of this result is brought about by the fact that this case
obtains only when the quasiparticle has negative norm.

Kith the other sign of the norm, the quasiparticle in
the quasiparticle nucleon state of ~4(k) =(4p'+k')'~'
does not have an associated single-particle contribution
to which it can be related. It is our program to analyze
the dynamical system and discover what superposition
of particle and quasiparticle plus nucleon will be
stationary (i.e., map "in" to "out" with only an
over-all phase change) and have positive norm. To
carry out this program in the remaining two-by-two
subspace, we define the scattering operator R:

with
R—=NS,

fi 0)
0

It is this operator which generates the transformation
of the scattering from the "in" wave function to the
"out" wave function. This phase shift is the observable
consequence of scattering, and we will require that this



COMPLEX —ENERGY NE GATI VE —METRIC THEORIES

theory must generate an observable physical state with
positive norm and unimodular phase shifts. This
sentence describes both the conditions of physical states
(positive norm and unimodular phase shif t), and
potential strengths admissible in interpretable theories
(such that the model possesses a physical state). It
can be shown that positive-norm eigenchannels of the
scattering operator possess a real phase shift. In other
words, we will analyze the two possible decoupled
eigenchannels and define the physical state as that
eigenchannel which possess a unimodular phase shift
and positive norm as a one-channel process. This
program is philosophically more complicated than it
appears on the surface. Ke emphasize that the m~ single-
particle sector is the physical vr& state only when it
does not appear with a nucleon. The physical m. &-plus-

nucleon state is the scattering eigenchannel that
possesses a unitary scattering matrix and positive norm.
In other words, the higher sectors of the scattering
matrix are not formed from simple direct products of
the lower-sector particle states; but, when quasi-
particle states appear in the S matrix, the channel must
be diagonalized further and the resulting physical
states decoupled.

We now investigate in our simple case what conditions
will obtain an interpretable theory. These conditions
are directly related to the non-Hermitian terms of the
Hamiltonian, and these are the oG-diagonal elements.

In the Appendix we investigate the conditions under
which a two-by-two matrix possesses unimodular eigen-
values. In terms of our new R matrix, these conditions
can be applied directly. The reality condition follows
directly from the form of R. The other conditions
become

i
8 (k')

i

'dk'

co] (k) (di(k )+zE

The case of & positive, and therefore A' dominating
A4, obviously satisfies the criteria. The case of
negative is satisfied for broad classes of potential
strengths. Physically, the results for $= —I can be
interpreted directly by noting that they reduce to the
statement that diagonal elements must dominate.
Theories characterized by production or decay (i.e.,
strong o6-diagonal elements into negative-metric
channels) will violate unitarity. Theories characterized
by strong elastic processes of either metric will have
unimodular eigenphases and be satisfactory. In the
case of this model, the many virtual channels and any
direct elastic potentials could be used to enable the
eigenphases to become unimodular.

The norm of the channel that is open below the
production threshold is positive. This channel connects
smoothly to the positive-norm eigenchannel above
threshold for production. The same condition that
assured us that the eigenphases were real implies that
they are distinct. This ensures that the norms of these
two eigenchannels are steady independently of the
energy. This enables us to make a unique identification
of the physical scattering state.

VII. CONCLUSIONS

In this paper we have attempted to produce a model
that is sufficiently complex to be interesting but still
exactly solvable. In this model we have produced an
amplitude that contains the properties of a possible
"good" theory by the requirements of I.ee and Wick in
a simple sector, but which in higher sectors has all the
usual difficulties of negative-metric theories. This
problem is compounded by the interpretation problem
for the complex-energy states that we incorporated to
cure the sickness caused by the negative metric.
[+&. We feel that this model is suKciently realistic to allow
us to draw the following inferences:

(i) The scattering matrix in. a theory involving an
indefinite metric is, in general, pseudounitary even if
we arrange to have all stable particle states to be of
positive squared length.

(ii) We must therefore deal with a scattering matrix
involving transitions to negative-norm states, and
solve the dynamical problems of identifying the proper
physical states and of dehning physical-particle
operators.

(iii) We must construct states that have properties
dictated by the R matrix in that sector. The dynamical
problem is the selection of those states with a uni-
modular phase shift. In order to accomplish this result,
one must construct states of unobservable constituent
particles. Particle physicists may find a similarity
between this situation and the quark picture in which
multiquark and quark-antiquark states are identi6ed
without being able to identify quark states.

While these are the main results of our study, the
model itself may be of interest since it illustrates much
of the kinematics of production amplitudes. This
model may provide a valuable tool for the investigation
of the structures that arise when production channels
are present. In a very real sense, it has all the features
that unitarity in the production region can provide.

APPENDIX

In this appendix we describe the conditions under
which a two-by-two matrix will have unimodular
eigenvalues. The necessary conditions are established
directly. We designate the two eigenvalues X& and X2.
If X& and X2 are unimodular, they can bc written
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X l =e'~e'x and III &
——e'~e 'x with real 0 and X. It then

follows directly th« l&t)~,
l
=1, I»+~sf&2,

() i+)ts)/()tiXs)'t is a real number.
The su%.ciency is more dificult to establish. If

1, then )tt ——e"ts and )~s=e"ts '. If ()tt+)ts)/
P.res)'t' is a real number, ts is either real or unimodular.
This follows directly from

ldetR
f
=1,

ftrR
f
&2,

(A2)

(A3)

These conditions can be restated directly in terms of
the usual matrix operations. Calling the matrix R, we
have as our conditions

(),+)t,)/()t, ),)»s =&+1/t (A1) a,nd

and, if tt =pete, the imaginary part of tt+1/ts is (p —1/p)
&&sin8. The case ts real N1 violates

f Xt+)~s
f
(2.

trR trR

Q(detR) Q(detR) j (A4)
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An attempt to construct a theory that links the macroscopic and microscopic properties of matter is
presented. This is done using a space of more than four dimensions. Equations for microscopic-particIe fields
are investigated in a Axed six-dimensional metric space. The topology of the space is solely responsible for
the quantization of mass and charge. The metric contains terms which transform like the Yang-Mills 8 /geld.
These terms appear appropriately in all particle equations. Without the 8 Geld, the symmetry group of the
theory is P XSU(2) /Z(2). The presence of the 8 field lowers this symmetry. Particle mass spectra are pre-
sented for six-dimensional scalar, spinor, and vector fields, and a coupling-constant ratio is predicted. The
later part of the paper deals with the cosmological implications of the microscopic model presented in the
erst part of the paper. It is shown that Einstein s equations for the metric are consistent if a massless cosmo-
logical vector Geld is introduced. A critique of previous higher-dimensional field theories along with a
summary of the results of an eight-dimensional theory is given. Since all symmetries dealt with result as
approximations to the equations of the model, the no-go theorems are not applicable. Nevertheless, the
six- and eight-dimensional models contain the shadows of the PXSV(2)/Z(2) and P XSV(3)/Z(3) sym-
metries in all particle-field representations.

L DTTRODUCTroN

''N this paper we shaH report on the results of an
~ ~ attempt to construct a theory that links together
the cosmological and elementary-particle properties of
matter. The idea that a connection should exist be-
tween these two properties is, of course, not new.
Mach's principle' suggests that the local inertial pro-
perties of matter depend upon the cosmological dis-

tribution of distant matter. In his PNndumenIIcl Theory,
Eddington' attempted to relate the so-caHed cosmologi-
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cal numbers to parameters characterizing the then-
known elementary particles. Perhaps the best example
of such a "unified" theory is Einstein's general theory
of relativity. In this theory, the same dynamical laws
that govern the local gravitational interactions of
matter also govern the cosmological structure of the
universe. Since the advent of general relativity, numer-
ous proposals have been put forth to include other
interactions (e.g., electromagnetic, rnesonic) into a
unified theory with varying degrees of success.

One can of course always include these nongravita-
tional interactions within the framework of general
relativity. Their inclusion, however, does not in
general a8ect the cosmological consequences of the
theory. Only by unifying the space-time and internal
properties of matter in some nontrivial way can one
hope to obtain a theory that would allow us to deduce
properties of the cosmos from a knowledge of ele-
mentary-particle interactions and vice versa. The


