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Previous treatments on high-energy scattering in quantum electrodynamics are extended to diffractive
inelastic processes. We explore the model in which the diffractive excitation proceeds through the exchange
of vector mesons. Six inelastic impact factors are explicitly calculated in the lowest order: (1) scalar to
scalar, (2) pseudoscalar to pseudoscalar, (3) vector to vector, (4) axial vector to axial vector, (5) scalar to
axial vector, and (6) pseudoscalar to axial vector. For all six of these impact factors, the masses of the
incoming and outgoing particles may be different; and for the last two impact factors, the spins and the
parities of the incoming and outgoing particles may be different. The nonvanishing of the impact factors
demonstrates that mass, spin, and parity can change during a diffractive process. We also conclude that C
(charge conjugation quantum number), S (strangeness), I (isotopic spin), B (baryon number), and G
parity, etc., must remain the same during a diffractive process. Some general properties of the impact factor

are also discussed.

1. INTRODUCTION

ECENTLY, a study!? was made of all two-body
elastic scattering processes in quantum electro-
dynamics at high energies. Out of this study a picture
of diffraction scattering for elastic processes has
emerged. We shall now extend these considerations to
two-body inelastic processes at high energies. To be
more specific, we shall give here a model of “diffractive
excitation,””® which accounts for near-constant cross
section and small angular width for certain two-body,
high-energy inelastic processes.

Since the constancy of the cross section at high
energies implies the proportionality of the amplitude to
s, the square of the center-of-mass energy, the relevant
diagrams must be the ones in which vector mesons are
exchanged. For the inelastic process a+b— o'+, the
scattering amplitude for such exchanges can be con-
veniently expressed in terms of the impact factors g+’
and 9%, We shall calculate explicitly the impact factor
in the lowest order. In order to avoid a discussion on the
isotopic spin, we shall concentrate on the class of
impact factors 92¢’, where a and o’ are neutral mesons.
The method used here is a direct extension? of the one
developed in IV, which allows us to calculate the
impact factor ge¢’ directly, without specifying what the
other participating particles & and &’ are.
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2. MODEL OF DIFFRACTIVE EXCITATION

For the scattering process a+b — o'+, let us denote

11=3(par—pa)=3(ps—pv), (2.1)
r=%(patpa), (2.2)

and
rs=3(ps+pv), (2.3)

where p, is the momentum of particle @, etc. In this
notation the standard energy invariants are given by

s=(ro+13)2, (2.4)

t= 47’12 y (25)
and

u=(ro—rs)?. (2.6)

The masses of @, @', b, and &’ will be denoted by
Moy Moy My, and My, respectively. From (2.1)-(2.3),
we get '

riry=1(M.2—M,.%,
and

ro? 712=%(Ma2+Ma'2) )
r?ri?=3(M*+My?).

It is sometimes helpful to know the components of
71, 72, and 73 in the center-of-mass system. Let us choose
the z axis to be parallel to rs; then these components are

7’1'73=%(Mb2—Mbr2) (2.7)

(2.8)

ro~ Lo+ (dw) (M 24+ M 2 —3t), 0, 0], 2.9
ra~[owt (do) WM 2 4+M 2 —3i), —w, 0], (2.10)
ri~[Bw)y (=M 24 MM o —M %),
Bw) (M 2HM2—M 2 —My?), 1], (2.11)
where w= |r2|. From (2.11), we have
ri=1i~ —rg, (2.12)
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Fi1G. 1. Lowest-order diagrams for diffraction scattering.

We shall explore the model in which the exchanged
vector mesons (A4,) are coupled to a fermion field* (¥)
through the interaction gy,#A4,. The external mesons
also couple to this fermion field, and the diffractive
excitation of @ to @’ proceeds through the following
steps: (1) A fermion and an antifermion are created by
the incoming meson @; (2) these two particles are
scattered by exchanging vector mesons with the other
group of particles in collision; (3) they then annihilate
to form the outgoing particle ¢’. The diffractive excita-
tion of b to &’ occurs similarly.

The impact factor 9¢¢’ will be explicitly calculated in
this model, where ¢ and o’ may be scalar mesons,
pseudoscalar mesons, vector mesons, or axial-vector
mesons, which will be abbreviated by S, P, V, and 4,
respectively.

3. IMPACT FACTORS FOR
INELASTIC PROCESSES

In this section we evaluate explicitly six of the
inelastic impact factors. More precisely, we shall calcu-
late 988, gPP gVV gd4 gPA and ¢S4 in the lowest
order of perturbation. For this purpose we shall general-
ize slightly the method® outlined in IV to deal with the
situation in which 7; has longitudinal components. Let
us decompose the longitudinal components of a four-
vector g into ¢y7,-+g_73; then

d*q~(ra-7s)dg:dg_dq.. (3.1)
Following IV, we write
Jaa' = glaa'_l_. g2aa’ R (3.2)

where 91%¢' is contributed by the diagram of Fig. 1(a),
and is explicitly given by

glaa' =181_1)2 4s‘1g2fafa'(21)“5/d4ﬁ

)

X/ dg- N1 [(rstp)*—mT L (p—r) = mT

XLp+9)*—m* T (p+r)*—m* . (3.3)

5 An even simpler method is given in H. Cheng and T. T. Wu,
Phys. Rev. Letters 23, 670 (1969). See also H. Cheng and T. T.
Wu (to be published).

In (3.3), fa (fa) is the coupling constant of a (a) to the
fermion field ¢, 7 is the mass of the fermion, and the
explicit form of N2¢" will be given later for all of the
cases discussed.

Similarly, 9,2’ is contributed by the diagram of Fig.
1(b) and is equal to

52““'=lir2 23—1g2fafa'(21r)—5/d4p
X/ dq-No*"[(—p—3q+ir2—3r)*—m T
X[(=p+3g+iratir)?—m?]?
X[(=pt+3g—3r2—3r1)?—m* ]
XU(—p—3q—3r2tir)*—m? T, (3.4)

where Nz will be explicitly given later for all cases.
Carrying out the integration over ¢_, (3.3) becomes

glaa' o P_{E _ ZiS—lngafa' (27'-)—4

X [[dtp N (= 2priy et pr—miT

XL(p—r)*=mTJ L (p+r)—mT 1. (3.5)
Next we put p=p,7e+p_r3+ p.; then

P~ pip-stpiir?—p.?, (3.6)

where a term p_%;? is neglected, as the longitudinal
components of p is dominantly in the direction of 7..
We also have

(pEr)*—mP~pip_s+p2rs?
—(pry)?—mi3p, (M 2—M,2)  (3.7)
and

(p+r2)*—mi~sp_(14p,)

+ (142 —p2—m?. (3.8)
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Carrying out the integration over p_, (3.5) becomes
912 =lim—g%f,fo (2m) 351 / dps

0
X / AP (—2prs) (14 p)
—1

XA{[pst+(1+p)rul+m*+p(1+p ) M2
X{[p— (A +p)ru P +m?+p (1 4+p )M 271 (3.9)
Putting p,= —(1—p), we obtain

1
9,90 = "‘ngafa’ (2#)—3/dplf dB 9,
0

X[ (put-Bru) 4 m*—p(1—B)M 21!
X[(pr—Bru)*+m?—B(1—B)M* ],
%1"'"" = hf»?o S_l(— 2{773)_.1[31\71““' .

(3.10)
(3.11)

where

Next we turn to 9,*¢. To simplify the calculation,
we put

k=p+3q; (3.12)
then (3.4) becomes
995 =1im 251g2fu fur (2m)~5 / %k / dg_N e’
X[(—k+3r2—3r1)*—m* ]
X[(—k+g+3ret3r1)?—m* ]
X[(—k+q—3r:—35r1)2—m*]?
X[(—k—%ro+3r)2—m?]L. (3.13)
Now
g~g-rstqu;
thus
(—k+gt+iratir)?—m?~2g_(r2-7s) (G —ky)
+ [(% —‘k+)7'2—k—1’3]2— (—krl‘ qu-%ru)z
_m2+7}(% —k+) (Ma’z_Maz) 3 (314)

(—ktg—3r2—3r1)°*—m?~2q_(r275)(—3—Fky)
+ E( -3 —k)r —k—"3]2— (—kl+ qu—3r1)?

—m 1 +Hh) (M2 —M2), (3.15)

where
k = k+7’2+ k_7’3+ kl .

Carrying out the integration over ¢, we obtain from
(3.13)

998 =i5~1g2f , f o (2) 4 / dky / dkydk_ lim Ny’

X[(~k+3r—in) —m [~k —dratdr) = m?T
XL(— =)= G k)Mt hmt T (3.16)
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Now
(—k+3ra—3r)*—mP~k_(ky—3)s+ (G —ky)rs?
—(kit-310)*—m*—3G—k) (Mo =M, (3.17)
(—k—irot3r)2—m*~k_(kyt3)s+ Gtk s’
—(ki—3r)2—m2—1G+k ) (M2—M,2). (3.18)

Carrying out the integration over k_, we get from
(3.16)

1/2
9909 = —g2f for(2m)~3 f dk, f dky. lim Nooe's—2
—1/2

8—>00

X[(kit-kyry) 2 +m?— (G =k )M 1
X[(ki—qu—kyr1)?+m?*— (G —kHM ]t (3.19)

Putting &k, =%—8, and p.=k,—3q,, we have

1
52“"’=g2fufa'(27l')_3/dm/ dB m2au’
0

X{[putia+G—B)rul+m*—p(1—B) M2}
X{[pr—30:— G —Brul+m*—p(1—B) M2},
(3.20)
(3.21)

where
. 7
N =lim (— —2 429"),
§—>00

We notice that the denominator of (3.20) is equal to
that in (3.10) with Br; replaced by

Q=3+ G—Bru.
Thus (3.2), (3.10), and (3.20) give

(3.22)

1
g9 (r1,qu) = _g2fafa'(2"r)~3/dp"/ B
0

X {902 [(putBru)>+m?—B(1—B) M 1!

XL(pa—Bru)*+m*—B(1—B)M o * ]!

— 9%’ [ (pr+Q)2+m?—B(1 —B) M 2] !
X[(pr— Q) +m2—B(1—B)M oI} .

We shall next calculate 9t;%¢" and 9% explicitly for
six specific cases.

(3.23)

A. Scalar to Scalar

When ¢ and &’ are both scalar particles with masses
which may or may not be equal, and couple to the
fermion field ¢ by the interactions Yy¥¢. and ¢y¥¢a,
respectively, we have

N S8=Tr[(p+n+m)rs(p+q-+m)rs(p—ri-+m)

X P+ rot-m)1~8(p-r5)2(dm* —ry*+11?)
—8(p-73)(ra-73) (p2—r2—m?) (3.24)
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and

NoSS=Ti[ (—p—3q—3r:tiritm)
Xr3(—p+3g—3r2—3r1t-m)(—p+3g+iretiritm)
Xrs(—p—1q+ir2—3r1tm) ]
~8(p-1s)X(r1*—ro?+4m?) —8(r2-75)*(p*—1¢?)

+16(p-75)(r2-75)(r2- p+371-9).
There are cancellations of terms in (3.24) with terms
in (3.25) in the same way as in III. Specifically, a term

—S(p'i’s)(rz‘73)(ﬁ2+712—m2) (326)
in V158 exactly cancels a term
_2(72 . 73) 2[4@2 _m2)+ ro2+ 712+92]
+8(r2-73)(p-73) 2ra-p—r1-q)  (3.27)
in N85, Thus N,58 and N255 can be replaced by
8(15'7’3)2(47%2—7‘22"}—7’12)*}— 16(?7’3) (7’2' 1’3)1’12 (328)
and
8(p )X (ri2—r24-4m?) —2(rs- 73) 2(dm2—rs— 12— 2¢%)
+16(ra-75) (p-73)(g 1), (3.29)
respectively. From (3.11) and (3.28), and remembering
that (p-rs)~—(1—B)(r2-r3), we get
N88=2(1—B)B(4m2—r2+ 712 —46r:2
=B(1—B)(8m*—M 2 —M ) +4B1:2.
From (3.21) and (3.29), and remembering that
(p-rs)~(k-rs)~(F—B)(rars), we have
NS8= —2(3—B)*(ri*— 2>+ 4m?)
+3(4m* —r?—r*+2¢.°)+4(G—B) (@ 1)
=B(1—B)(8m>—M 2 —M ,2)+4Q2, (3.31)

where Q is given by (3.22). By (3.30) and (3.31), 91,5¢
is equal to 9,55 after Br; is replaced by Q.

If we carry out the integration over p; in (3.23) by
Feynman parametrization, we get from (3.23), (3.30),
and (3.31) that

(3.25)

(3.30)

1 1
gss(rlaql) =%g2fafa’ (ZT)_zf da[ dﬁ
0 0

X{[ﬁ(l _B) (M02+Ma’2_8m2) —4,321'12]
X (48%(1 —a)r®+m?—B(1—p)
XM 2a+Ma2(1—a) P!

—preceding term with r;— Q}. (3.32)

B. Pseudoscalar to Pseudoscalar

When ¢ and ¢’ are both pseudoscalar with masses
which may or may not be equal, and couple to the
fermion field ¥ by the interactions Yysyps and ¥y sy¥da,
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respectively, where v5;=yoy1y2ys, we have

N1PP=Trlys(p+rit-m)rs(p+g+m)rs(p—ritm)
Xys(p+ratm) I~ 8(p-75)*(r12—rs?)

—8(p-73)(r2-73) (P2—r12—m?) (3.33)
and

N PP=Tr[ys(—p—3q—312+5r1+m)
Xrs(—=p+32g—3r2—311+m)vs
X(=p+3q+3rat-3r1+m)
Xri(—p—3g+n—tntm)]
~8(p-735)2(r12—r2) —8(ra-73) p*—1g2—2m?)

+16(p-7s)(ra-73)(ra- p+3r1-q).  (3.34)

Because of the cancellation of (3.26) with (3.27), N, F?
and NVoPP can be replaced by

8(17'7’3)2(7’12—7’22)+16(?‘7’3)(7’2'1’3)7’12 (335)
and
8(p-r3)2(r12-—r22)+2(72-1’3)2(2q2+4m2+1'12+r22)
+16(p-75)(ra-r3)(r1-q), (3.36)
respectively. From (3.11) and (3.35), we get
I PP=2(1—B)B(r12—r:?) —46r?
=481~ (1-B)B(M >+ M »%). (3.37)

From (3.21) and (3.36), we get
NPP= —2(8—3)(r1*—r2?)
—3[—2¢ 4 4m*+3 (M >+ M »*) J+4(G—B8) (11 q1)
=4Q*—~(1-pBM S +Ma?), (3.38)
which is indeed equal to the right-hand side of (3.37)
with g8r; replaced by Q.

Substituting (3.37) and (3.38) into (3.23), and carry-
irg out the integration over pi, we get

1 1
9°P(11,q1) =582 faf o (2m) 2 / da / g
0 0

X{[B(1—B) (M 2+M %) —451,%]

X (48%(1—a)r®+m*—p(1—p)

X[Mla+4-M o *(1—a) P
—preceding term with gr;— Q}. (3.39)

C. Vector to Vector

There are three polarization directions for a vector
particle or an axial-vector particle. Two of them are
transverse, and one of them is longitudinal. The com-
ponents of the longitudinal polarization vectors will be
explicitly given.
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In the center-of-mass system, p, and p, are
pa=r2—r1~[w+ (8w) 1(3M 2+ M o2 —M 2+ M 2—1),
w—8w) UM M2 —M o2 —My?), —11],
Par=retri~[od (8w) (M 2H-3M o2 4-M 2 —M 2 —1)
wt (8w) UM 2+M 2 —M 2 —M %), 11 ].

The longitudinal polarization vector for particle ¢ in
the Feynman gauge is given by

M o— (80) (M 24 M 2 —M 02— M y2+1)

wt (8)\BM 24 M o2 —M 2 +M ), —ri].  (3.40)
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The components in (3.40) are large when w is large. In
order to avoid complications from these large com-
ponents we shall invoke gauge invariance and subtract
M, 'p, from (3.40) to obtain the polarization vector

car~Mo(20)[—1, 1, 0]. (3.41)

Similarly, the longitudinal polarization vector for &’
will be taken to be

cwi~Mo(20)[—1, 1, 0]. (3.42)

When a and @’ are both vector particles with masses
which may or may not be equal, and couple to the
current of the fermion field, we have

NV =Tr[y- ea(ritp+m)rs(p+g-+m)rs(—rit-p+m)y- eo (rot-p+m) I~8(p-72)[4(p- €a) (P €w)
+2(p €0) (Pa* ) F2(pw - €a) (b €a) = (€0 €) (11> =12 ]
+8(p73)(r2-73)[2(r1- €a) (P €ar) —2(p- €a) (71" €ar)+ (€0 €ar) (P2_7'12_m2):| (3.43)

and

No"V=Trly ea( —p—3q—3rrtiritm)rs(—p+3g—ire—irtm)y-ew (—p+3q+3ret511+m)
Xrs(—p—3q+3r2—311+m) J~8(p-7r3)2{[(2p+ @) - €L (20 —9) - €w 1= (o - €0) (Pa* €ar)+ (€a* €a) (r2? —117) }
+2(r2-75){4(ea- €0)) (P2 =302 —m?) —[(2p—q) - €a L (204 9) - € I+ (Pa €2) (Pur€ar) } —8(p-73)(r2-13)

X[:_z(rl' ea)(P' 6a’)+2(P ° Ea)(rl' ea’) _(72' fa)(Q' éu’)+(9' €a>(7’2' EG')+(eﬂea')(2r2'p+rl'q)]'

(3.44)

Due to the cancellations mentioned in Sec. 3 A, N1¥V and N,V" can be replaced by

S(P : 7'3)2[4(P “€4) (P 54’)""2(? “€q) (pa- 5a')+2(Pa' “€q) (P €ar) —(ea fa’)(712—722)]
+16(p-73)(ra 73)[(11- €a) (P €ar) — (P~ €a) (r1- €ar) — (€a- €ar)rr®]  (3.45)

and

8(p-73)*{[(2p+9) €adL(2p—9) - €wr 1= (P’ €0) (Pa+ €ar)+ (€a €a) (122 —11%)}
+2(rz-7s) 2 — (ea €ar) (ro? 472+ 2‘]2) - [(ZP*Q) . fa:“:(ZP‘*_ Q) . 5a’]+ (Pa : fa) (Pa’ea’)}
—8(p- 73) (ra- "3)[_2(71 “€q) (p- 5a’)+2(17’ €a) (71 ) —(r2- &) (Q' ea’)+ (¢- €a) (7a Ea’)+2(€a' Ea’)("l' 9)] ) (3.46)

respectively.
From (3.11) and (3.45), we get

N,"V=28(1—p) [4'(111' £q) (pv- ea) —48(1—8) (7'2 “€q) (72" €ar) —2B(ra- €a) ("1 “€qr)

and from (3.21) and (3.46), we get

NV = 28(1—B)[4(p1- £a) (Pu- 2a) —4B(1—B) (12" €a) (72 €r) — (¢ €) (¢ €w)

+28(r1-€a) (r2- €0) 1+ (ea- ) [B1—B) (M *+ M %) —46°11%],  (3.47)
—(r2 ) (r1- €w)+(r1- €a) (13- €0) + (r1- €0) (11 €0) + (1= 26) (¢ €a) (72 €
—(1=2B)(r2- €a)(¢- €a) I+ (€a* ) [B(1 —B) (M >+ M %) —4Q%].  (3.48)

When ¢, and e, are both transverse, we have
(72 €a)= —(r1-8,) and (72-€w)=(r1-€x). Thus we get
91"V =8B(1—B)(pr-a) (Pr-€ar) —B%(t1-0) (T1-207) ]

—(ta-2a)[BA—B) (M 2+ M ) —4611*]  (3.49)
and
9"V =88(1—B)[ (P a) (Pr-2ar) — (Q-20) (Q-£0) ]
— (e 2a)[BA—B) (M 2+ M »*) —4Q%].  (3.50)
When ¢, and e are both longitudinal, we have

(rarea)=—M,, (r2-ep)=—My, and (Pr-es)=(pr-€ar)
= (r1- €)= (r1- €)= (€a- €2) =0. Thus we'get

MV =N,"V=—882(1—B) M M, . (3.51)

When ¢, is transverse and e, is longitudinal, we have
IV =—462(1 —-B)(1 _2ﬁ)Mn'<rl'8a)

Ne"V=48(1—F) (1 —28)M +(Q-2a).

When ¢, is longitudinal and €, is transverse, we have

(3.52)
and

(3.53)

9V =48%(1—B)(1—~28) M o(11-22')
"V = —46(1—LB)(1—28) M o(Q - £4') .

Substituting (3.49)-(3.55) into (3.23), introducing a
Feynman parameter «, and carrying out the interaction

(3.54)
and

(3.55)
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over pi, we get

1 1
VY (r0,02) = — g2 o fur 2m) / da [ a8
0 0

X{A 1[432(1(1 —a)r12+m2—6(1 —'6)Ma2
Xa—B(1—B) M (1—a) ]!
—Ao[4a(1—a)Q*+m*—B(1—B)M 2

Xa—B(1—F) M (1—a)T'}. (3.56)

In (3.56), 41 and A4, are, for transverse to transverse,

A1= —320(1—a)B(1—0)(r1-e4) (t1-€0)

4 (eq- £0r) {48%r2[1—86(1—B)

X (—e)T]—B(1—B)(M+Mu)  (3.57)
and
Aq= —3201(1 ‘01),3(1 _5) (Q 'Sa) (Q : sa’)

+(ea-22){4Q*[1-88(1—) (G —a)?]
—BA—=B)Y M 2+Mo?}. (3.58)

For longitudinal to longitudinal, transverse to longi-
tudinal, and longitudinal to transverse, 4; and 4, are

equal to 9;¥V and .V, respectively, with the explicit
expressions given by’ (3.51)-(3.55).

D. Axial Vector to Axial Vector

When ¢ and o’ are both axial-vector particles with
masses which may or may not be equal, and couple to
the fermion field by #Wrysy, ., we have

Nit4= —Trlysy- ea(rit-p+m)rs(p+q+m)
Xrs(=r14-p+m)ysy- ea (ratp+m)]
~ NV =32m2(p15)(eq- €ur)  (3.59)

and

Nopt4= —Trlysy-ea(—p—39—372F311+m)
Xry(—p+3g—3r2—371+m)
X'Yﬁ'Y'éa'(“ﬁ+%q+%fz+%71+m)
Xr3(—p—3q+3r2—5r1+m) ]~ NoVV

—32m2(p-73)¥(€a- €ar)+8m(r2-73)% (€0 €ar), (3.60)
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where N;¥V and N,VV are given by (3.43) and (3.44),
respectively. From (3.11), (3.21), (3.59), and (3.60),
we get
E)Z1AA=911VV—8WL2,3(1 —ﬂ)(e,,-ea') (361)
and
NoA4=91,VV —8m?B(1—)(€s- €a) . (3.62)
Thus we have for longitudinal to longitudinal,
logitudinal to transverse, and transverse to longitudinal,

‘JllAA = SL]VV 5 (363)

gz2AA= E)Z2VV’

(3.64)
and

944 (r,q.) =97V (r1,qu) ; (3.65)

while for transverse to transverse, we have

944 (r1,0) =977 (11,Qu) = —m*(eatar)§ fofarm™

1 1
X f da [ d8B(1—B)
0 0

X{[46%a(1—a)rs®+m*—B(1—B) M ;2
Xa—B(1—B)M . *(1—a) !
—[4a(1—a)Q*+m?—B(1—L)M 2

—B(1—B)M . 2(1—a) T}, (3.66)

E. Pseudoscalar to Axial Vector

Consider the impact factor 924, where the pseudo-
scalar particle and the axial-vector particle couple to
the fermion field by s and 7ysy;, respectively. Note
that C=1 for both the pseudoscalar particle and the
axial-vector particle.® We shall follow the notations of
I. Then we have

N1P4=i Tr[ys(p+rit-m)rs(p+g+m)r(p—rit-m)ysyi(p+ro+m)]
~ =2(p-rs)i Tr[ (p+rt-m)rs(p—rit-m)y;(p+12—m)]

= —16(p-ra)im{(rs p)roy—[(p+7s) -r21r1}

and

(3.67)

NoP4=1 Trlys(—p—3q—3retirtmrs(—p+3q—3r2—311+m)
Xysvi(—p+3q+iretintmr(—p—ig+irn—intm)]
~A[(=2p—r)rs] Te[(—p+3g—3r2—3r1—m)vi(—p+3g+irstirtmrs(—p—3g+ir—in+m)]
—il(=2p+r)rs] Trl(—p+3g—3ra—ini—m)v(=p+3g+iretintm)rs(—p—iq—3rstintm)]
= —dim[(=2p—r2) 75 ][(=2p+r2) -75]rej—2im[ (—2p+r2) s 1(g—r1)j+2im[ (—2p—r2) - rs P(g+71);. (3.68)

6 See, for instance, P. Roman, T/eory of Elementary Particles (North-Holland Publishing Co., Amsterdam, 1960), p. 285.
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From (3.11), we get

3111)‘4: —4i,3m[ﬂf1f+ (1 —B)sz] B (369)
and from (3.21), we get
NoPA= —4imB(1—B)rsi+ 2imB2(g—r1);
—2im(1—B)*(q+r1);. (3.70)

When the polarization of the axial-vector particle is
longitudinal, we have

311*”1=312P4=4i,3(1 —ﬁ)thl (371)

When the polarization of the axial-vector particle is
transverse and in the scattering plane, we have

I PA=4i8(1—28)m| 11| (3.72)

and

NP A= —4im(1—26)01, (3.73)
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where Qy is the component of Q in the direction of ry,
with Q given by (3.22).

When the polarization of the axial-vector particle is
transverse and perpendicular to the scattering plane,
we have

911}’ A= 0,

NoPA=2im(1—26)q.2,

(3.74)
(3.75)

where ¢ is the component of q. in the direction
perpendicular to the scattering plane.

The impact factor 9P4 is given by (3.23) together
with (3.71)-(3.75).

F. Scalar to Axial Vector

Consider now the impact factor 954, where the scalar
particle and the axial-vector particle couple to the
fermion field by 1 and 4ysy;, respectively. Then we have

N1$4=i Tl (p+ rit-m)rs(p+q+m)rs(p—r1+m)ysy;(p-+rot-m) ]
~2(rs- p)i Tr[(p+rit-m)rs(p—rit-m)ysyi(p+retm) ]
= 2(rs- p)im{Tr[rs(p—11)ysvi(B+12) ]+ Tr[(p+r)rsysyi(p-+r2) I+ Tr[ (p+r)rs(d—r1)vsyi 1}

=4(rs p)mi Trysy;(2p+12)1173
~—16(rs- p)mi[ (2p+12)- 73] f I | 82

and

(3.76)

NoS4=i Tr[(=p—3g—intintmr(—p+ig—ir—irtm)
Xysyi(—p+ig+irtintmr(—p—ig+ir—intm)]

~24[(—p—3r9)-rs] Tr[(—p+3q—31r2—311-+m)ysv;

X(—p+ig+arstirtmr(—p—ig+in—irtm)]
—2[(=p+3r2) - rs] Trl(—p+3q—3r2—drit-m)vsv;
X(=p+ig+iretintmir(—p—ig—irotin—m)]
=2im[ (—p—372) - rs U Trysvi(—p+3q+iratir)ra(—p—3q+ir—ir) ]

+Tr[(—p+3g—5r2—3r)ysvi(g+r)rs]}

=2im[(—p+372) -1 Trlysvi(—p+3q+3r2+3r)rs(—p—3¢—372+371) ]

= -—Zim[( —p— %1’2) . 1’3] TI’[’Yé’Yj( "21’ - 1’1) 73(q+ T1)]

~+2 Tr[(—p+3g—3r:—3r)vsvi(p—3r)rs]}

—2im[ (—p+3r2)-rs] Trlysyi(—2p+r)rs(—g+11)]
~ —dim[ (—2p—r2) - rs](—2p-r3) [(qut | rui|)8j2—871912]

—dim[(—2p+r2) - 73](=2p-r8) [(—qut | 11| )80+ 85112 ].

In deriving (3.76) and (3.77), we have made use of the
following relations:

TrysABCD = —Try;BACD,
Try;AACD=0,

and, when C and D are both transverse vectors,
TI"Y572T30D’\’ (7’2 . 1’3) Tr'yrngD .
From (3.76) and (3.11), we get

IS 4= —4miB(1—26) | 11| 8j2. (3.78)

(3.77)

From (3.77) and (3.21), we get
NS4 =2im(1—28)(1—B)[(qu+ [ r1])8j2—qu281]
—2im(1-28)B[(—qu+ | ru|)dieFquedin]. (3.79)

Thus, if the polarization of the axial-vector particle is
transverse and in the scattering plane, we have

9115‘4:0, (380)
NyS4= —2im(1—28)qus. (3.81)

Note that apart from a minus sign, (3.80) and (3.81)
are identical to (3.74) and (3.75).
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If the polarization of the axial vector is transverse
and perpendicular to the scattering plane, we have

NS 4= —4miB(1—26)|ru], (3.82)
9125‘4—_-47%1:(1 —2,8)Q1. (383)

Note that, apart from a minus sign, (3.82) and (3.83)
are identical to (3.72) and (3.73).

If the polarization of the axial-vector particle is
longitudinal, we have

3(1‘54=E)‘625‘4=0. (384)

The impact factor 954 is given by (3.23) together
with (3.80)(3.84).

4. DISCUSSION
A. Selection Rules

In the preceding section we have calculated six
inelastic impact factors. In all of the cases discussed,
the impact factor does not vanish when the masses of
the initial and the final particles are unequal. Thus the
mass can change during a diffractive process. In case E
of the preceding section, the spins of the incoming and
the outgoing particles are unequal, while in case F of
the preceding section, both the spin and the parity of
the incoming and the outgoing particles are unequal.
Thus the spin and the parity can both change during a
diffractive process.

On the other hand, the charge conjugation quantum
number C cannot change in a diffractive process. This
is because our diffraction mechanism is through the
exchange of two vector mesons, which has C=1. This
further implies that charge, strangeness, isotopic spin,
baryon number, and G parity cannot change in a
diffractive process. More generally, 9" vanishes only
if the system ae¢’ may not have the same quantum
numbers as those of a system of two vector mesons.

In all of the six cases considered in the preceding
section, the impact factor satisfies

9o’ (ry, =11)=0. 4.1)

Equation (4.1) had already been established for the
photon impact factor in quantum electrodynamics.?
We can also easily check that all of the impact factors
are even functions of q,.

In the forward direction r;=0, both 7V and g44
vanish for transverse to longitudinal and for longi-
tudinal to transverse. This will be shown to hold in all
perturbation orders. Denote any of these two impact
factors by d and write

g= gpv(ea)n(ea')v 3 (4'2)

where (e;), is the uth component of the polarization
vector ¢, etc. Since in the forward direction ri;=0 we
have ¢i-73=¢i°73=0, the most general form for 9,, is

Iur= A8+ Brayra,+Cququ, (4.3)
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where 4, B, and C can be functions of q.2 only, and are
therefore even functions of q.. There are no terms like
79.q1y in (4.3), as 9, must be an even function of q,. All
terms in (4.3) vanish after being multiplied by
(e4)u(ear)s, if one of the polarization vectors is transverse
and the other one longitudinal. Similar arguments can
be used to show that 954 and 974 both vanish in the
forward direction r;;=0 if the polarization of the axial-
vector particle is transverse. It is easy to check that the
impact factors in cases E and F of the preceding section
indeed satisfy this condition. This means that the
helicity cannot change by one unit when ry,=0.
However, when impact factors higher in the hierarchy
are considered and multiparticle intermediate states
contribute to the diffractive process,’ this rule may
not be valid.

Although 954 vanishes at r;; =0 for all polarizations
of the axial-vector particle, this is not true of 974, More
precisely, if the polarization of the axial-vector particle
is longitudinal, the impact factor 974, as given by (3.23)
and (3.71), does not vanish at r,,=0. We emphasize
that this statement holds independent of the mass ratio
for the pseudoscalar and the axial-vector particles. This
nonvanishing of g4 in the forward direction is in
disagreement with the droplet model.® This disagree-
ment must be attributed to the assumption in the
droplet model that at high energies the elementary
interaction is spin-independent. In our view, at high
energies the simplifying features do not come from any
change in the elementary interaction, which remains
spin-dependent. Accordingly, the considerations of
Byers and Frautschi? on the effect of mass change is of
no relevance here.

It is also interesting to note that 954 and 9”4 both
vanish if the fermion mass m is equal to zero.

B. Reversed Processes

The diagrams for the impact factor g2¢’ are the same
as those for %'« after 7, is replaced by —r,. Therefore
goo'= 5",“(7’2 —>—1’2) . (44)

Thus, for example, 9,47 and 94T are, respectively,
equal to the right-hand sides of (3.69) and (3.70) with

Vo —>—7s3.
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