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Previous treatments on high-energy scattering in quantum electrodynamics are extended to diffractive
inelastic processes. Ke explore the model in which the diffractive excitation proceeds through the exchange
of vector mesons. Six inelastic impact factors are explicitly calculated in the lowest order: (1) scalar to
scalar, (2) pseudoscalar to pseudoscalar, (3) vector to vector, (4) axial vector to axial vector, (5) scalar to
axial vector, and (6) pseudoscalar to axial vector. For all six of these impact factors, the masses of the
incoming and outgoing particles may be different; and for the last two impact factors, the spins and the
parities of the incoming and outgoing particles may be different. The nonvanishing of the impact factors
demonstrates that mass, spin, and parity can change during a diffractive process. We also conclude that C
(charge conjugation quantum number), 5 (strangeness), I (isotopic spin), 8 (baryon number), and G
parity, etc., must remain the same during a diffractive process. Some general properties of the impact factor
are also discussed.

C. INTRODUCTION

ECENTLY, a study" was made of all two-body
elastic scattering processes in quantum electro-

dynamics at high energies. Out of this study a picture
of diGraction scattering for elastic processes has
emerged. We shall now extend these considerations to
two-body inelastic processes at high energies. To be
more specific, we shall give here a model of diffractive
excitation, "' which accounts for near-constant cross
section and small angular width for certain two-body,
high-energy inelastic processes.

Since the constancy of the cross section at high
energies implies the proportionality of the amplitude to
s, the square of the center-of-mass energy, the relevant
diagrams must be the ones in which vector mesons are
exchanged. For the inelastic process a+9 ~ tt'+b', the
scattering amplitude for such exchanges can be con-
veniently expressed in terms of the impact factors 8
and 8".We shall calculate explicitly the impact factor
in the lowest order. In order to avoid a discussion on the
isotopic spin, we shall concentrate on the class of
impact factors 8 ', where a and u' are neutral'mesons.
The method used here is a direct extension' of the one
developed in IV, which al1ows us to calculate the
impact factor 8' '

directly, without specifying what the
other participating particles b and b' are.
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4 The investigation can be carried through in a similar way if
this fermion Geld is replaced by a scalar Geld which couples to the
vector meason A„ through a conserved current. The qualitative
behavior of the impact factor is not expected to differ.

2. MODEL OF DIFFRACTIVE EXCITATION

For the scattering process tt+ b ~ ts'+ ts', let us denote

and

r1=2 a' a =2

r2 2 Q 6

rs= 2(Ps+Ps ),

(2.1)

(2.2)

(2.3)

where p is the momentum of particle G, etc. In this
notation the standard energy invariants are given by

s= (rs+re)',

~= 4r12,

(2.4)

(2 5)

I= (rs —rs)'. (2.6)

r22+rt2=-,'(M, '+M', '),
2+rt2 2(M22+My2) (2 8)

It is sometimes helpful to know the components of
r~, r2, and r3 in the center-of-mass system. Let us choose
the s axis to be parallel to r2, then these components are

r2 t to+ (4to) '(M', '+M', '—2't), co, 0$,

rs

Ice+�(4c&)

'(Mss+Ms. 2——,'t), —to, Oj,

(2.9)

(2.10)

r ~ L(geo) 1( M 2+M 2+M 2 M 2)

(8~)—1(M 2+M22 M, 2 Ms, 2) rt~j (2 11)

where co=
~
r2~. From (2.11), we have

4b 1j ~
2—~~& 2 (2.12)

The masses of u, u', b, and b' will be denoted by
M„M, , Ms, and M&, respectively. From (2.1)—(2.3),
we get

rr rs=r(M, '—M, ') rt re=a(M22 Ms 2) —(2.7)
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FIG. I. Lowest-order diagrams for difkaction scattering.

We shall explore the model in which the exchanged
vector mesons (A„) are coupled to a fermion field4 Q)
through the interaction gpss„PA„. The external mesons
also couple to this fermion Geld, and the di6ractive
excitation of a to u' proceeds through the following
steps: (1) A fermion and an antifermion are created by
the incoming meson a; (2) these two particles are
scattered by exchanging vector mesons with the other
group of particles in collision; (3) they then annihilate
to form the outgoing particle a'. The diffractive excita-
tion of b to b' occurs similarly.

The impact factor 8 '
will be explicitly calculated in

this model, where a and a' may be scalar mesons,
pseudoscalar mesons, vector mesons, or axial-vector
mesons, which will be abbreviated by 5, I', V, and A,
respectively.

3. IMPACT FACTORS FOR
INELASTIC PROCESSES

In this section we evaluate explicitly six of the
inelastic impact factors. More precisely, we shall calcu-
late 8 8~~, 8 ~, 6"~, 8 ", and 8 in the lowest
order of perturbation. For this purpose we shall general-
ize slightly the method' outlined in IV to deal with the
situation in which r~ has longitudinal components. Let
us decompose the longitudinal components of a four-
vector q into q+rs+q rs, then

d'q (rs rs)dq+dq dye.

Following IV, we write

In (3.3), f, (f;) is the coupling constant of a (a') to the
fermion field iP, m is the mass of the fermion, and the
explicit form of Ej '

will be given later for all of the
cases discussed.

Similarly, d2
' is contributed by the diagram of Fig.

1(b) and is equal to

ds "=lim 2s 'g'f f (2a) ' d'p

dqMs 'H —p —', q+ ', rs ',rt)' —-rN'$-'—

XL(—p+-s, q+-', rs+-;rt)' —m') '

Xr (—p+-', q
——', —', )'—rN'j-'

XL(—p —',q ——',r,+-;.,)'—m')-t, (3.4)

where E2' '
will be explicitly given later for all cases.

Carrying out the integration over q, (3.3) becomes

gt«'=lim —2is 'g'f f;(2s) 4

X d4P Xt "(—2Prs)-tL(rs+P) s—rtss$-t

XL(p —rt)' —~'j 'Hp+rt)' —~'3 ' (3 5)

yea' —y «'+s' «' (3.2) Next we put p=p+rs+p rs+p„ then

where dt«' is contributed by the diagram of Fig. 1(a),
and is explicitly given by

p' p+p s+p+'rs'-p~, (3.6)

4s-tg'f. f. (2~)-' d'p
where a term p 'rs' is neglected, as the longitudinal
components of p is dominantly in the direction of rs.
We also have

X dq~, -'L(rs+p)'-m'j-'L(p-rt)'-~'3-'

XL(P+q)' —msj-'L(P+rt)' —m'g '. (33)

(peart)' —'/I' p+p s+p+'rs'
(y,ar„)' r/s'a—',p~Pf.'—cV.')-(3.7)—

s An even simpler method is given in H. Cheng and T. T. Wn, (p+r )s ~2 sp (1+p )Phys. Rev. Letters 23, 6/0 (1969). See also H. Cheng and T.T.
Wu (to be published). +(1+p )'rs' —yes —rN' (3 8)
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(3 5) becomestegratlon over pCarrying Now

l)s+ (I —k~)
—(kl+~ I )

k (k++z)s+ '
31g)

1+k+) y2( k —';r2+ gyl), ,+k )(M,,2—M, ') ~(k Irl)' —m' —4 2 +

(2 )
—Bs dPI« =lll11 g f~

g ~00

get froIQintegration overCarrying out t e ln
3.1~)

y/2

...( 2p„,)-l(1+p+)X dP+

(1+p+)Ma')+(1+P )rII] +m +

dlg+lim» "~
~00

,+p (1+P+)M } (3.9)x(['-('+p"" '

(I k ')Ma'gX[(k,+k+rll) +m

(3.19)~ m -(l-k+')M"rll m 4

Puttlllg P+

xL( ~

and pl= kl 2qputting ~+

dP KI"g2f f., (2w)

(1—p)M '3x[(p.+p ")'+
1

dp, dp X~'g2f f,, (2')
(3.10),+ ~ p(1 p)M~x [(p

I( 2pr, )-'pNI ' .

x(p -'ll +(l —P)'"~ + p(1 —p)M')
2

(3.11)
w}1ere

—1p(1 P)Ma )x([ —'-&' (' p)

t f the calculation~~. To simp i gNext we turn to 82
we put

— ESSESFOR INE" pROCFR~( yION S

then (3.4) becomes
k= p+-', q; (3.12)

ua'X2- ='~~'=lim (—s 'N2-).
(3.20)

(3.21)
(2s)—' d4k dqMg "'=lim 2s 'g'f, f ~

1 1 2 ~2 —1X[(—k+-,'rs —',rl) —m

'
ator of (3.20) is equal tonotice that the denominator o

ith Prl replaced bythat in (3.10 wl

2 m2 —1—k+ +-'r +-'rl)' —mx[(
m2 —&x[(-k+q —."—,"— Thus (3.2,. ) (3.10), and (3.20) give

(3.22)

Now gi (2s ) ' dp4 dP) 'f.f"—X[(—k —-',r,+-', rl —m -'.

q q r3+q~,
thus

'r -,'rl)' —m' 2q (r-2 r4)(-',—k~(—k+ q+-', r2+-,'rl —m —k~

+[(l—+) ——
—m'+-„' (-,' —k+) (M;—
'—m2 2q (y2 y4)( ——,

''rl —m —-' —k+)

—m'+-,' Q+k~) (M.
where

k= k+r2+k r3+kl.

er, we obtain from.t the integration over q, weCarrying out t e in

aa'«' —js—I 2f f,(2~)
—4

'r '—m''—m' -'[(—k ——,'r, +-,'r, )'—m

'—-' —k+')M +m'j '.X[(k4—414
—k+rII) '—

4
—+

' m'-P(1-P)M. '3-I(&I'"[(P.+Prll)'+m-
—rII ' m' —P(1—P)M. $~ p )

—Z,g«' (p4+Q) '+m' —p(1 —p)M

p(1 p)M-" 1--). (3.23)x[(p. Q)

d X ~~' explicitly orWe shall next calculat eK1 'an
six s ecific cases.

A. Scalar to Scalar

respectively, we

rl m)ra(P+q+m)rp(P —rl m

x(p+. + )j- p'
—8(p r3)(r2 ra)(p' —rl —m

lar artie es
'

1 with massesd a' are both sca pWhen a an a

b the interactions lPlPfermion Geld IP by t e in
have
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respectively, where y5= yg &y&y3, we have

—8(p. rs)(rs rs)(p'+rq' —m')

in E~ exactly cancels a term

(3.26)

Nsss Trk( P——s'q ', r—s+—',r&+-m)

Xrs( P+—,'q —',-rs —-,'r&+—m)( P+—,'q+ ',-rs+-,'rs+-m)

Xrs(—P —sq+ srs —-rs+m)3
-8(p rs) '(rg' —rs'+ 4m') —8(rs. rs) '(p' —-„'q')

+16(p rs)(rs rs)(rs P+-', rs q). (3.25)

There are cancellations of terms in (3.24) with terms
in (3.25) in the same way as in III. Speci6cally, a term

NP~= Trttys(P+r&+m)rs(P+q+m)rs(P rs—+m)
Xys(P+rs+m)g-8(p rs)'(rs' —rs')

—8(P.rs)(rs. rs)(Ps —res —ms) (3.33)
and

Ns' =TrLvs( —P—kq —srs+krs+m)
Xrs( —P+ sq —srs —srs+m)ps
X( p+ q+—rs+— ri+—m)—

X rs( —P —-,'q+-', rs —
—s,rs+m) j

8(p rs) '(rg' —rs') —8(rs. rs) '(p' ——,'q' —2m')

+16(p rs)(rs r,)(r, p+ —'r, q). (3.34)

2("s' ') L4(1 2 ™)+rs+"'+&j Because of the cancellation of (3.26) with (3.27), NP~
+8(rs. rs)(p ys)(2ys P —ri q) (3.27) and Ns~ can be replaced by

in 27288. Thus E~88 and F288 can be replaced by

8(P rs)s(4ms —rss+rss)116(P rs)(rs rs)res (3.28) and
8(p rs)'(r~' —rs')+16(p rs)(rs rs)rs' (3.35)

8(p. rs)'(rq' —rs')+2(rs rs)'(2q +4m'+rs'+rs')
+16(P rs)(rs rs)(rq q), (3.36)8(p rs) '(rs' —rs'+4m') —2(rs. rs) '(4m' —rs' —rs' —2g')

respectively. From (3.11) and (3.35), we get
respectively. From (3.11) and (3.28), and remembering
that (P rs) —(1—P)(rs rs), we get g &PP 2(1—P)P—(y&2 yss) 4Prls

=4P'rg' —(1—P)P(M s+M ') (3 37)
&s88= 2(1,—P)P(4ms —ys +ys )—4Py&s

—P(1 P)(8ms ~ 2 ~,2)+4Psr 2 (3 30) From (3.21) and (3.36), we get

97,sas= 2(s —P) s(r, s r s+4ms)
+-', (4m' —rs' —rp+2q, ')+4(-,' —p) (q, r~)

—P(1 P)(8ms ~ 2 ~,2)+4Q2 (3 31)
which is indeed equal to the right-hand side of (3.37)
with pr& replaced by Q.

Substituting (3.37) and (3.38) into (3.23), and carry-
iiig out the integration over p~, we getwhere Q is given by (3.22). By (3.30) and (3.31), %saba

is equal to K&sa after Pr& is replaced by Q.
If we carry out the integration over ys in (3.23) by

Feynman parametrization, we get from (3.23), (3.30),
and (3.31) that

1 1

(r, ,q ) = ,'g f.f..(2 ) '-d dp—

From (3.21) and (3.29), and remembering that +s = 2(p s)'(y&' ys')

(p rs) (k rs) (s —p)(rsrs), we have ——,'L—2q&s+4ms+-', (M,s+3I s)j+4(-',—P)(r& sl,)
=4Q' —(1—P)P(cV.s+M.'), (3.38)

&"(,sl) =-:C'f.f"(2 ) ' d dP

X{$P(1 P) Pf s+~, 2 8ms) 4Psrlsj

X (4P'n(1 n) r s+ms —P(1 P)— —

XCcV sn+3E '(1—n)$) '

—Preceding term with Prs-+ Q). (3.32)

X{jP(1—P) (M,s+3II,') —4P'rss j
X(4P n(1 —n)r, '+m' —P(1—P)

XL3II,sn+3I, '(1—n) $) '

—preceding term with pr~-+ Q) . (3.39)

C. Vector to Vector

There are three polarization directions for a vector
particle or an axial-vector particle. Two of them are

%hen a and a' are both pseudoscalar with masses transverse, and one of them is longitudinal. The com-
which may or may not be equal, and couple to the ponents of the longitudinal polarization vectors will be
fermion Geld P by the interactions fysiPp, and Pygkp. .. explicitly given.
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In the center-of-mass system, p and p, are

P,=r2 —ri~[«e+(8(g) —'(3M '+M '—M«'+M«' —t),
«e —(81e) '(M '+M«' —M '—M«') —1'11j,

p, .=r2+ri [«0+(8(e) '(M, 2+3M '+M«2 —M«' —3),
M+(81') '(M '+M«' M' ——M«') r11$.

The components in (3.40) are large when «e is large. In
order to avoid complications from these large com-
ponents we shall invoke gauge invariance and subtract
M, 'p, from (3.40) to obtain the polarization vector

M, (210) '[—1, 1, 0$. (3.41)

Similarly, the longitudinal polarization vector for a'
will be taken to be

The longitudinal polarization vector for particle a in
the Feynman gauge is given by «,.1, M;(2«e) '[—1, 1, 0$; (3.42)

M —1[M (8~)—1(M 2+M 2 M 2 M 2+ ()

~+ (8(g)
—1(3M 2+M, 2 M«2+M b'2) rlx] ~

When u and e' are both vector particles with masses
which may or may not be equal, and couple to the

(3.40) current of the fermion field, we have

Ei =Tr[y e,(ri+p+m)r2(p+q+rN)ra( ri+p—+nz)y e (&2+p+222)g 8(p rs)'[4(p'. )(p e ')
+2(p «)(p «")+2(p".")(p.«")—(«. «")(ri' —r2')1

+8(p r«)(r2 r2)[2(ri e,)(p e, ) —2(p e,)(ri. e, )+(e, «,.)(p' —ri —222)j (3.43)

+2 =Tib «.( p . 2q—2—r2+2—r,+m) r,( p+ ', q—', r,-,'—ri+ m—)—v «;( p+ ,'q—+,'r2+-11-+222)

Xr«( —p ——',q+-', r2 —-'2ri+m)] 8(p r )2'f[(2p+q) e,j[(2p —q) e, j (p;—.e,)(p, e;)+(e, «,.)(r2' —ri')}
+2(r2 r2)'f4(e, e, )(P' „'q'—-m')——[(2P—q) e,j[(2P+q) e;]+(P, «,)(P., e, )}—8(P re)(r2 re)

&&[—2(ri e,)(P e;)+2(P «,)(ri e, )—(r2 e )(q e;)+(q e,)(r2 e, )+(e,e, )(2r2 P+ri q)]. (3.44)

Due to the cancellations mentioned in Sec. 3 A, X~~~ and N2~~ can be replaced by

8(P re) [4(P ~ e )(P ~ e )+2(P ~ «)(P ~ e )+2(P 'e )(P ~ e ) (e 'e )(ri r2 )j
+16(P r2)(r2 re)[(ri e,)(P e;) (P e—,)(ri e,.) —(e, e, )ri'j (3.45)

and

8(p.r2)'([(2p+q) «.j[(2p—
q) «. ]—(p,' e.)(p. el)+(e, e, )(r2' —r, ')}

+2(r2 r2)'f —(e, e, )(r2'-+ri'+2q') —[(2p—q). «,j[(2p+q) e,.j+(p, «,)(p, «, )}
—8(P r2)(r2 r2)[—2(ri e,)(P.e, )+2(P e,)(ri e, )—(r2. e,)(q «;)+(q e,)(r2 e;)+2(e, e, )(ri q)j, (3.46)

respectively.
From (3.11) and (3.45), we get

2P(1 P)L4(pi' es)(p&' e~') 4P(1 P)(r2' eu)(r2' «a') —2P(r2' «) (rl' ee')

+2P(ri e,)(r2 e, )j+(e, e, )[P(1—P)(M, +M, )—4P ri j, (3.47)
and from (3.21) and (3.46), we get

K2 =2P(1—P)[4(p1 r. )(p1 e, ) —4P(1—P)(r2 e,)(r2 e, )—(q e,)(q. e, )
—(r2 e,)(ri.e;)+(ri «,)(r2. e, )+(ri e,)(ri e, )+(1—2P)(q e,)(r2 «, )

—(1—2P)(r2 e,)(q e, )j+(e, e, )[P(1—P)(M,2+M ') —4Q«j. (3.48)

When e and e ~ are both transverse, we have
(r2 e.)= —(ri e,) and (r2 e, )=(ri e..) Thus w. e get

When ~ is transverse and e, is longitudinal, we have

Xxvv ———4p'(1 p) (1 2—p)M, .(—ri c,) (3.52)
& "=SP(1—P)l (p'")(p'e") —P'(~ '-)(~1 e")j

(e .«,)[P(1 P)(M 2+M, 2) 4P21 2$ (3 49) rL2 ——4p(1 —p)(1—2p)M (Q e ). (3.53)

When e, is longitudinal and e ~ is transverse, we have
and

SP(1 P)L(P 'e )(P '« ') (Q'«)(Q e ')j
—(e e .)[P(1—P)(M '+M..') —4Q'j. (3.50) Kivv=4p'(1 —p)(1—2P)M. (11 e, ) (3.54)

x2vv= —4p(1 —p)(1—2P)M.(Q e..) . (3.55)
andWhen e, and e, are both longitudinal, we have

(r2 e.)= —M., (r2 e..)= —M... and (P, «.)=(P1 e .)
=(ri e,)= (ri e, )=(e, e, )=0. Thus we"get

K,vv ~2vv SP'(1 P)'M M
Substituting (3.49)—(3.55) into (3.23), introducing a

(3.51) Feynman parameter n, and carrying out the interaction
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over py~ we get,
1 1

e vv(r l, q,) = ——,'g'f, f. (2w)
—' dn dP

0 0

Xj~1L4Psn(1 —n)rl2+ms P(1 P)~ 2

Xn —P(1—P)3E.'(1—n)]-'
—gsL4n(1 —n)Qs+ms P(1 —P)~ s

X —P(1—P)~. '(1—)]-'} (3.56)

In (3.56), Al and As are, for transverse to transverse,

and
~ AA —cia vv 8 sP(1 P)( . ,)

Xs""=Ksvv —8m'p(1 —p)(e, e,.) .

(3.61)

(3.62)

Thus we have for longitudinal to longitudinal,
logitudinal to transverse, and transverse to longitudinal,

(3.63)

where Xlvv and Esvv are given by (3.43) and (3.44),
respectively. From (3.11), (3.21), (3.59), and (3.60),
we get

Al —— 32—n(1 n)—P'(1 P)—(rl e~)(rl e. )
+("")(4p" 'D-8p(1-p)
X(l —)']—P(1—P)(~'+~- )& (357)

and

~AA —~ FF

g~"(rl, ql) = IVV(rl, qr);

(3.64)

(3.65)

&.= -32 (1- )P(1-P)(Q ")(Q'.)
+(.'.)&4Q'L1-8P(1-P)(!—)']

—P(1—P)(M.s+ M ..s)j. (3.58)

For longitudinal to longitudinal, transverse to longi-
tudinal, and longitudinal to transverse, A~ and A2 are
equal to K~~~ and K2~~, respectively, with the explicit
expressions given by. (3.51)—(3.55).

D. Axial Vector to Axial Vector

When a and u' are both axial-vector particles with
masses which may or may not be equal, and couple to
the fermion field by iPysy„fp„, we have

1Vl""—— Tr[psp'e —(r,+P+m)rs(P+q'+m)
Xre( rl+p—+m)yn' e"(rs+p+m)]

~l« —32ms(P rs) s(e, .e, ) (3.59)

while for transverse to transverse, we have

ctAA(rl, ql) yVV(rl, ql) — ms(e e,)gef f,&
—2

X dn dPP(1 —P)
0 0

X(L4P'n(1 —n) r, 'ym' —P(1—P)M.s

Xn —P(1—P)3II (1—n)] '

—L4n(1 —n) Qs+ms —P(1—P) tV.s

-P(1-P)~. '(1- )]-'). (366)

E. Pseudoscalar to Axial Vector

&Vs""=—Trgysy e.(—P ,'q —,'rs+ ,'rl+m)—-—-
Xrs( —P+ ,'q ——,'rs ——,'rl+-m)

Xvsv e;( P+ ,'q+ ', re+ ,'r—l+m)---
Xrs( P ,'q+ ', rs —,'—r,+—m—)]-E-&vv-
—32m (p'rs) (e 'e )+8m (rs'rs) (e 'e ) (3.60)

Consider the ilnpact factor 8"A, where the pseudo-
scalar particle and the axial-vector particle couple to
the fermion field by p5 and iyg;, respectively. Note
that C=1 for both the pseudoscalar particle and the
axial-vector particle. ' We shall follow the notations of
I. Then we have

Nl "=iTr)ys(p+rl+m)r, (p+q+m)rs(p rl+m)y, y;(p+—rs+m)]
—2(P rs)i Tr/(P+rl+m)rs(P rl+m)y;(P+rs —m)]-

= —16(P ) (( p) '—L(p+ ). ] (3.67)

and

&, "=iTrf~, ( p —,'q ,'r,+ ', »+—m) rs(—p—+—;q-—,'» ——,'»+—m)-—
Xy&y;( P+ ,'q+ ,'r,+,'rl+—m)r-s( P-,'q-+ ,'rs ,'rl+—m—)]--——

iL(—2P —r&)rs] TrL( —P+ ', q —,'rs ——',rl —m)y-, (—P+ ,'q+ ', re+-', rl+m)rs-( —P-—-,'q+ ,'rs ——,'rl+m)]-
—i/( —2P+r&)rs] TrL( —P+ ,'q ——,'rs ——,'rl —m)y,-(—P+ ,'q+srs+ —', rl+m)rs-( —P ——,'q ——',rs+ ,'rl+m)]-

= —4imL( —2P —rs) rs][(—2P+re) rs]rst —2imL( —2P+ re) .rs]'(q —rl), +2imL( —2P —rs) rs]'((+ rl), (3.68).
' See, for instance, P, Roman, Theory oj' Etementary Particles (North-Holland Publishing Co., Amsterdam, 1960), p. 28S.
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From (3.11), we get

Xz = —4iPm[jg«g, + (1—P)«2;],

and from (3.21), we get

(3.69)

where Q~ is the component of Q in the direction of r~,
with Q given by (3.22).

%hen the polarization of the axial-vector particle is
transverse and perpendicular to the scattering plane,
we have

Kg "=—4imP(1 —P)«2,+2imP'(q —«g);

-2im(1 —P)'(q+«&);. (3.70)

When the polarization of the axial-vector particle is
longitudinal, we have

Kg~" X——2~" 4i——P(1 P)—

mrna

(3.71)

%hen the polarization of the axial-vector particle is
transverse and in the scattering plane, we have

(3.74)

atm~~ ——2im(1 —2p) F2, (3.75)

where q» is the component of q& in the direction
perpendicular to the scattering plane.

The impact factor 8"" is given by (3.23) together
with (3.71)—(3.75).

I". Scalar to Axial Vector

Xg~"=4iP(1 2P—)m~ rg
~

KP"= 4im—(1 2P)—Q, ,

(3.72) Consider now the impact factor 88~, where the scalar
particle and the axial-vector particle couple to the

(3.73) fermion 6eld by 1 and iffy;, respectively. Then we have

X& "——i Tr[(p+r&+m)r3(p+q+m)r3(p —r&+m)y, y, (p+r2+m)]
-2(«& p)i Tr[(p+r&+m)r3(p —r&+m)gnat;(p+r, +m)]
= 2(«3 p) ~m{Tr[r8(p—ri)ps';(p+ r2) ]+TI'[(p+rl) r3$5fj(p+ r2) ]+Tr[(p+ ri) r3(p —ri)y~y;])
=4(«3 p)mi Try, y;(2p+r2)r~r3

—16(«3 p)mi[(2p+«2) «g][rg, [ 8;2 (3.76)

='T'[( P ~q 2r~+~r~+m)r~( P+~q 2" ~r~+m)

XYgr, ( P+ q+ r2+ 'r—g+m—)rg( ——P ~—q+~r2 ~rg+m)]

2i[(—p ——,'«2) «I] Tr[( p+ ', q ',—rm 2-rg+—m)y—gy—r
X(—P+ ',q+ ', r2+ ', rg+-m)r-g( P-,'q+ ,'r2 ——,'r—j+—m)]-—

—2i[(—p+-,'«2). «&] Tr[( p+ ,'q ,'r2 ——', r&+-m—)y—g;—
X( P+ ',q+ ', r2—+,'r, +-m)r-8( P-',q ,'r2+—,'r—&

—m—)]--—
=»mL( P k«2) «8]—{Tr—[vsv (. p+lq+lr2+—rl)ri( p 'q+ r2 2rl)]

+Tr[( p+ ', q ,'r2,' —~)ps' -(q—+—r~)rsvp)

—2im[( —p+ ~ «2) «3]{Tr['r»;(—p+ 2q+ 2r&+ sr&) r3(—p —~q —
~ r2+ 2r&)]

+»r[( p+ :q l r.—:rb v—'(p -l r—)r]'—
= —2im[( —p ——,'«&) «3] Trfy&y; ( 2p r&) r3(q+—r&)—]

2'mL( I+2«2) '«3]»[V~VJ( 2p+») "3( q+r~)]
—4im[( —2p —«2) «3](—2p «3)[(q~~+ ~r~, ~)8,2

—8;g,~]
—4~m[( —2p+«2) «3](—2p «3)[(—q»+)r&~l)~r~+~r~q»] (3 77)

In deriving (3.76) and (3.77), we have made use of the

following relations:

Try5ABCD = —Try5BACD,

Try5AACD =0,

and, when C and D are both transverse vectors,

From (3.77) and (3.21), we get

&2s"——»m(1 —2P) (1—P) [(q&&+ Ir» I )&;&
—q»&;Q

—2im(1 —2P)P[(—q, q+
~
r~~

~ )8;2+qi~5;x]. (3.79)

Thus, if the polarization of the axial-vector particle is
transverse and in the scattering plane, we have

Try, r2rsCD- (rm «3) Trygy2CD.
Xg~~=0 (3.80)

From (3.76) and (3.11),we get

&~'"= —4m'(1 —2W Ir~. l»2.

Xms" = —2im(1 —2p) qg2. (3.81)

Note that apart from a minus sign, (3.80) and (3.81)
(3.78) are identical to (3.74) and (3.75).
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~sA ~sA —0 (3.84)

The impact factor ds" is given by (3.23) together
with (3.80)—(3.84).

4. DISCUSSION

A. Selection Rules

In the preceding section we have calculated six
inelastic impact factors. In all of the cases discussed,
the impact factor does not vanish when the masses of
the initial and the final particles are unequal. Thus the
mass can change during a diGractive process. In case E
of the preceding section, the spins of the incoming and
the outgoing particles are unequal, while in case I" of
the preceding section, both the spin and the parity of
the incoming and the outgoing particles are unequal.
Thus the spin and the parity can both change during a
diffractive process.

On the other hand, the charge conjugation quantum
number C cannot change in a diGractive process. This
is because our diffraction mechanism is through the
exchange of two vector mesons, which has C= I. This
further implies that charge, strangeness, isotopic spin,
baryon number, and 6 parity cannot change in a
diffractive process. More generally, 8 " vanishes only
if the system au' may not have the same quantum
numbers as those of a system of two vector mesons.

In all of the six cases considered in the preceding
section, the impact factor satisfies

d-'(rt, Art) =0. (4.1)

Equation (4.1) had already been established for the
photon impact factor in quantum electrodynamics. 2

We can also easily check that all of the impact factors
are even functions of q~.

In the forward direction r~=0, both d~~ and dAA

vanish for transverse to longitudinal and for longi-
tudinal to transverse. This will be shown to hold in all
perturbation orders. Denote any of these two impact
factors by 8 and write

(4.2)

where (e,)„ is the tsth component of the polarization
vector e„etc. Since in the forward direction r~~=0 we
have g& rg=q&. re=0, the most general form for 8» is

@or '4her++ysoysr+CgloI7sr p (4 3)

If the polarization of the axial vector is transverse
and perpendicular to the scattering plane, we have

Xts"= —4ntiP(1 —2P) ~
rt, ~, (3.82)

Ass" =4mi(1 —2P)Qt. (3.83)

Note that, apart from a minus sign, (3.82) and (3.83)
are identical to (3.72) and (3.73).

If the polarization of the axial-vector particle is
longitudinal, we have

where 3, 8, and C can be functions of q~' only, and are
therefore even functions of q~. There are no terms like
ys„q,„ in (4.3), as d„„must be an even function of q,. All
terms in (4.3) vanish af ter being multiplied by
(e~)„(e~ )„,if one of the polarization vectors is transverse
and the other one longitudinal. Similar arguments can
be used to show that 8 " and 8' " both vanish in the
forward direction r~~= 0 if the polarization of the axial-
vector particle is transverse. It is easy to check that the
impact factors in cases E and I' of the preceding section
indeed satisfy this condition. This means that the
helicity cannot change by one unit when r&& =0.
However, when impact factors higher in the hierarchy
are considered and multiparticle intermediate states
contribute to the diffractive process, '' this rule may
not be valid.

Although g vanishes at r~~=0 for all polarizations
of the axial-vector particle, this is not true of 8~".More
precisely, if the polarization of the axial-vector particle
is longitudinal, the impact factor d~~, as given by (3.23)
and (3.71), does not vanish at rts=0. We emphasize
that this statement holds independent of the mass ratio
for the pseudoscalar and the axial-vector particles. This
nonvanishing of 8 in the forward direction is in
disagreement with the droplet model. ' This disagree-
ment must be attributed to the assumption in the
droplet model that at high energies the elementary
interaction is spin-independent. In our view, at high
energies the simplifying features do not come from any
change in the elementary interaction, which remains
spin-dependent. Accordingly, the considerations of
Byers and I'rautschi' on the effect of mass change is of
no relevance here.

It is also interesting to note that g and g' both
vanish if the fermion mass m is equal to zero.

B. Reversed Processes

The diagrams for the impact factor 8 ' are the same
as those for d

' after r2 is replaced by —r2. Therefore

(4.4)

Thus, for example, X& and X2 are, respectively,
equal to the right-hand sides of (3.69) and (3.70) with
f2~—r2.
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