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Covariant Approach to Kinematic Constraint Relations for Helicity Amplitutles*
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With the aid of a covariant spin formalism, the kinematic constraint equations for helicity amplitudes
are studied in a systematic way for all mass con6gurations, including the case of zero-mass particles. The
complete set of constraints at thresholds and pseudothresholds is given in a form convenient for calculation;
that is, the coeKcients of the helicity amplitudes are simple numerical ones (as opposed, for instance, to
D functions). For nonzero-mass particles, the reduction of the constraints in terms of total spin amplitudes
is shown to follow. Amplitudes with diferent values of total spin are not related at thresholds or pseudo-
thresholds.

I. INTRODUCTION not seem to exist a simple explicit expression for the
function d ~ '(tsar) g.

We mention here a few approaches that have been
used in the past. With an intermediate step based on
spinor amplitudes, the helicity amplitudes can be ex-
panded in terms of invariant amplitudes free of kine-
matic singularities and constraints4; all the singularities
are contained in the coefFicients of the expansion. In
principle, the problem of finding the kinematic singu-
larities is easily understood, but in practice the method
is quite tedious. The constraint equations may then be
found by transforming to transversity amplitudes" and
studying the kinematic properties of the latter. This is
most easily done using the crossing matrix for trans-
versity amplitudes, which implies that we must know
the crossing matrix for the helicity amplitudes.

Other approaches have been based on the crossing
matrix for the helicity amplitudes, ' but crossing alone
does not provide enough information; one must also
have some knowledge of the kinematic structure of the
helicity amplitudes. Trueman' has given an approach
independent of spinor amplitudes (and therefore in-
variant amplitudes) and of crossing. It is assumed the
kinematic singularities arise because of the singular
definitions of the helicity states. He does not, however,
give the general form of the constraint equations, and
his prescription for finding them in the case of arbitrary
spin is, albeit straightforward, rather tedious. '4 We
emphasize that our method is also independent of spinor
amplitudes and of crossing.

In Sec. II, the essential features of the covariant ap-
proach are reviewed and the basic assumptions stated.
Section III contains the derivation of constraint rela-
tions for the general mass con6guration, i.e., the case
m~&m~Wmg+m~, m~Qm~, m~Wm~, and masses
being nonzero. All other cases are treated in Sec. IV,
which also contains discussion and summary. We also
show in Sec. III that the constraint relations can be
reduced in the sense that a group representation can be
reduced. For instance, the constraint relations are com-
pletely reduced in terms of the transversity amplitudes

'ANY papers have appeared in the literature dur-
~ ing the past few years dealing with the kinematic

properties of helicity amplitudes. ' ' The nature of the
singular behavior of these amplitudes at special values
of s and t (i.e., thresholds, pseudothresholds, and
boundaries of the physical region) are now well under-
stood. Nevertheless, from either a pedagogical or a
practical standpoint, these earlier treatments have been,
in our opinion, somewhat complicated and often incom-
plete. One of our purposes here is to present a simpler
approach based. on a covariant description of the scat-
tering process. Within this framework the treatment of
massless particles poses no additional difficulty, in con-
trast to conventional treatments. ' ' The method used
is based on the covariant spin formalism developed by
Feldman and Matthews, " King and Feldman, " and
King.

A second purpose is to give the threshold and pseudo-
threshold constraint equations for the helicity ampli-
tudes in a form which is convenient to calculate for
particles of arbitrary spin. Since any phenomenological
model of the scattering process ought to satisfy all
kinematic constraints, these constraint relations with
simple numerical coefficients may prove more practical
than the relations given previously' in terms of the rota-
tion matrix elements D '(-,'vr, s'7r, —~~a.) Lthere does
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because each constraint relation contains only one
transversity amplitude. However, the helicity ampli-
tudes have the advantage of a simpler partial-wave
expansion. Our criterion for reduction is to retain all
the advantages of helicity amplitudes. It will be shown
that the amplitudes which emerge from our method of
partial reduction are the "total spin" amplitudes used
by Freedman and Wang" and by Franklin. ' Since the
total spin amplitudes are linear combinations of helicity
amplitudes with the same values of initial and 6nal
total spin projections, they enjoy all the properties of
the helicity amplitudes that depend only on total spin
projections; this includes the structure of kinematic
singularities and partial-wave expansions.

The Appendix contains some useful information on
the rotation functions and the proof for a lemma used
in Secs. III and IV.

Class I:
(a) Pp)0,
Class II:
Class III:
Class IV:

E'2=m2&0,

(b) Pp&0,
I"=m'&0,
jp2 —0

P =0

The particle states may be specified in terms of the
eigenvalues of the Casimir operators I",8", the three-
momentum P, and some generator of the little group of
transformations which leaves the four-momentum
P„-invariant. '~ For each class the little group has a
different structure.

"D. Z. Freedman and J.M. Wang, Phys. Rev. 160, 1560 (1967).
6 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959)."E.P. Wigner, Ann. Math. 40, 149 (1939).

II. COVARIANT SPIN FORMALISM

Trueman' has shown how the kinematic singularities
of the helicity amplitudes arise from the singular de6ni-
tions of the helicity states. We take a similar approach
using a covariant description of the two-body process,
in which the single-particle states implicit in the scat-
tering amplitudes are eigenstates of covariant spin
operators. For particles of nonzero mass, these ampli-
tudes may be the covariant helicity amplitudes dis-
cussed in Refs. 7, 11, and 12, or the transversity
amplitudes introduced by Kotanski. " The kinematic
singularities of the covariant helicity amplitudes (which
become the usual Jacob and Wick" helicity amplitudes
in appropriate center-of-mass frames) have previously
been discussed from this point of view. ~ In this section
we review the arguments and extend them to include
particles of zero mass.

We recall that the states for a single particle form
a basis for an irreducible representation of the Poincare
group. These irreducible representations are divided
into four different classes of eigenvalues of I",where I'
is the four-momentum of the particle:

Physical particles of nonzero mass are classi6ed by
I(a). In the "standard" frame p= (m, 0,0,0), the little
group is the rotation group generated by J&, J2, and J3.
To de6ne the little group for an arbitrary frame, Feld-
man and Matthews" have made use of the fact that two-
particle states are products of single-particle states, and
have given a covariant description of the little-group
generators for single-particle states in terms of the mo-
menta of both particles. In their covariant description,
the single-particle states are eigenstates of the following
complete set of commuting operators:

(pr(~))s (p(~))s p(~) p/ H)p(i)p (2.1)

J.p(&)= (JO)+J(s)).pO) (2.2)

that is, the total spin projection is taken along the axis
in the direction p&. Similarly, the 6nal state is an eigen-
state of

J.p (s)= (J(s)+J(4)) .p (s) (2.3)

or the total spin is projected in the direction of pt: &.

Thus, the 5 matrix for the reaction involves a rotation
of the spin axis through an angle 8, which is known as

where (f) and (j) denote particles i and j, respectively,
and p~'1 is the four-momentum of the second particle.
Choices of (j) corresponding to two different particles
partaking in the reaction give rise to the s- or t-channel
covariant helicities, which we will de6ne and discuss
shortly. In the appropriate reference frames, the co-
variant helicities reduce to conventional helicities. If,
instead of P„U& in (2.1), we use the vector e„„q,P;"Pq"Pg',
where j, k, and 7 refer to the other three particles in the
process, we are led to the transversity operator.

Since 8'„&'&E~'»= 0 8" &'~ has only three independent
components. The s-channel and t-channel covariant
helicity and the transversity operators correspond to
three independent ways of specifying the spin of a par-
ticle with mass. Because the de6nitions of these covari-
ant spin operators involve the momenta of other par-
ticles, these operators become ill-de6ned at certain values
of the Mandelstam invariants s and t, independent
of the frame of reference. For the covariant helicities,
these values correspond to thresholds and pseudo-
thresholds of the s and t channels of the reaction, as we
shall see presently. Physically we can understand this
by remembering that at a threshold (or pseudothresh-
old), two particles are at rest relative to each other, so
that the spin component of one along the direction of
momentum of the second is not de6ned.

Further kinematic singularities are present in the
covariant helicity amplitudes, namely, at those values
of s and t corresponding to the boundary of the physical
region. These arise because the total spin projections in
the initial and Gnal states are along different axes. To
see this most simply, let us consider the over-all center-
of-mass system of the reaction 1+2 ~3+4. The initial
state is an eigenstate of
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A+B ~C+D (s channel),
pci PB pc pD

(2.5)

D+B~ C+A (t channel) .
The variables s and t are defined by

A B |" D

t= (P~ Pc)'= (P~ Pn)'. — —

(2.6)

' See, e. g., S. Gasiorowicz, Elemeltary Particle Physics ('John
Wiley (k Sons, Inc. , New York, 1967), p. 72.' One might expect to be able to use the four-momentum of
some other particle in the process to specify the projection of
8'„; for instance, X= —O'I'P('»/P„P&'». However, using the
Poincare algebra, one may show that X reduces to the helicity
J P in any frame of reference.

the center-of-mass scattering angle. This little-group
operation enables us to write the little-group decomposi-
tion, or partial-wave expansion, of the scattering ampli-
tude in terms of the rotation functions (E),„t(8). The
singularities at forward and backward scattering are
explicitly- shown and can be factored out of the scatter-
ing amplitude.

Massless particles are contained in Class III, for
which p'=0. In the standard frame p=(ce,0,0,o)), the
little group is the noncompact group E(2), i.e., the
Euclidean group in two dimensions. All the irreducible
representations of this group are in6nite-dimensional
except for the trivial one-dimensional representation.
The physical massless particles correspond to this trivial
representation, for which 8"=0 and 8'& is proportional
to I'I"."Thus there is only one independent component
of 8'&, or only one independent way to specify the
particle spin. The little group reduces to the group of
transformations generated by the operator J3. In an
arbitrary reference frame, the little group consists of all
rotations about the axis y, and is generated by the
operator J P. In the trivial representation, J P is a
I orentz invariant, and can be considered as a Casimir
operator. The single-particle states may be speci6ed by
the eigenvalues of the complete set of operators

P, JP (2.4)

(W'=I"=0 in this representation). Since the rnornen-
tum of no other particle is present in this covariant de-
scription, " there is no reason to expect the covariant
spin operator to become ill-de6ned at thresholds or
pseudothresholds. We therefore assume that the mass-
less particle does not induce any corresponding singu-
larities in the scattering amplitude.

If the parity transformation is included among the
allowed transformations, we have a doubling of states.
Since J is even and P is odd under parity, the helicity
changes sign under inversion.

First we shall discuss the covariant helicity ampli-
tudes for particles of nonzero mass. We consider the
two-body scattering of particles of arbitrary mass and
spin, and de6ne the s- and t-channel processes and cor-
responding momenta as

For brevity, we limit the discussion to the case of un-

equal masses and the threshold and pseudothreshold of
the initial state only. The method is easily extended to
the other mass cases and 6nal-state threshold and
pseudothreshold, using the equations of Ref. 7. The
results are summarized in Sec. IV.

The scattering process may be described by s-channel
covariant helicity amplitudes f,e,&'(s, t), or, as a second
choice, by t-channel covariant helicity amplitudes

f,e,s'(s, t) '"T.he single-particle states implicit in these
scattering amplitudes are eigenstates of the s- or /-

channel covariant helicity operators, respectively. For
the s-channel process, the s-channel covariant helicity
operators corresponding to particles A and 8 are de-
fined by the relations~ "

In the s-channel center of mass these operators reduce
to the familiar helicity operator.

Similarly, the t-channel covariant helicity operators
for particles 2 and 8 are de6ned by

2W„(n)PD"
(2.9)

a(t,A, C) a(t, B,D)

2W„(&)pcv

Although we are de6ning these spin operators for the
s-channel process, they reduce, in fact, in the t-channel
center of mass to helicity operators.

The transformations between the eigenstates of the
two sets of operators are given by"

f'(p(.)») =Z d) ) "(X )4'(p( ) ~') (2 10)

where A. and A.
' are eigenvalues of the operators I"(„)'

and F(„)', respectively, and r=A or B. The angle X&

is the angle between —pB and —yg in the rest frame of
particle A (y~=0), while X~ is the angle between —p~
and yD in the rest frame of particle B (p& = 0).We always
consider the coordinate axes to be such that 0&X,&x.
In terms of the invariants s and t, the angles X„are given

by the relations

—(s+mg' —mt)') (t+mg' —mo') —2m~'M
cos~g =—

l) (s,A,B)6(l,A,C)
(2.11a)

COSXB =
(s+mtr' —mg') (t+mt)' —mt) s) —2m')'M

h(s, A,B)h(t,B,D)
(2.11b)

2W (")pn& 2W ' 'p "
J'a'= (2 7)

a(s, A,B) 6(s,A,B)
where

A(s, A, B)= {[s—(mz+ m&) ')$s (m&—m&)—'j}'t' (2.8.)
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where
j!/I = mo' m—~'+mj)' m—r)

zero-mass results are summarized in Sec. IV, along with
(2 12) the other mass cases.

2m~@(s,t) j'/'
sln+g =—

A(s, A, B)A(t, A,C)

and

slnXg = 2m' D((s, t)g'/2

a(s,AB, )S(t,B,D)

x(s, t) =st(Q; m;2 s t—)—
s(me—2 mr)'—)(mg2 mo2—)

—t(mz' —me') (mo' —mr)' )

(2.13a) III. CONSTRAINT RELATIONS

Our general method is to study the behavior of the
d(X)'s in (2.15) and (2.16) as the threshold and pseudo-

(2.13b) threshold values are approached. For simplicity, we
6rst treat the general case, i.e., the case where no
equalities exist among the following quantities: m&,

m~, mg, m~, m~&nz~, m~&m~, and zero. All special
cases will be summarized in Sec. IV.

It has been noted by Edmonds" and more recently
by Kotanski" that a d matrix can be diagonalized by
a unitary matrix Dj(222r, —,'m. , —222r), 22 i.e.,

+/V (m~'mn2 me—'me ) . (2.14)

We see from Eqs. (2.7) that Fj(' and FJ)' are badly
defined at the threshold s=(mal+me)2 and pseudo-
threshold s= (m~ —me) '. The covariant helicity
amplitudes f,q, /,

' are singular at these values of s. Intro-
ducing a new set of amplitudes f,q, (,"(s,t) in which the
states for particles C and D remain unchanged but the
states for A and 8 are now eigenstates of F~' and F~',
we 6nd we can write

f~d. (,'(s)t) = P d". (X„)d, , (Xe)f.gg. (,."(s)t). (2.15)
a'5'

The singularities at s= (m~&m/)) are now isolated in
the d functions, and f,q;/;" is regular at these points.

In the case that particle A has zero mass (m~ = 0), the
threshold and pseudothreshold coincide at s= m~2. The
covariant helicity for particle A, which now becomes
helicity in every frame, is still well-dered at s=m&,
and it is only necessary to transform away from the
eigenstates of Ii&' to the eigenstates of, say, F&'. Thus,
we can write the s-channel amplitude as

f,z, (,'(s)t) =P d/ ( ~(X//)Bgj~b '(s)t) ) (2.16)

where B,g ~
"is regular at s=vs~'. The particle states

for A, C, and D in the amplitude B,~,~
"are s-channel

center-of-mass helicity states, while the state for particle
8 is an eigenstate of Ii~' with eigenvalue O'. Note that
(2.16) can also be obtained by letting mz ~ 0 in Eqs.
(2.11) and (2.15), keeping in mind that only two values
of a (and a') are allowed.

Equations (2.15) and (2.16) are convenient starting
points for the derivation of the various constraints.
The unequal-mass case is discussed in Sec. III, while the

'0 In all cases, we shall assume that the threshold or pseudo-
threshold is approached in such a way that the square roots
appearing in the denominators of cosX@, cosX~, etc., are real and
positive. Also we assume that we have already analytically con-
tinued these functions to a axed large positive value of t (there-
fore outside of s-channel physical region). Finally, we shall always
take s'~' to be positive and tQe functions cosxA, cosx~, etc., to be
real.

j()t) —g —i(m' —m)))/2g, „)g „)e )m"x —
(3'1)

where
'(m=mdm'm (22r) ~ (3.2)

These relations are particularly convenient for studying
the asymptotic behavior of d(x). If e 'x —+ &0( (this
corresponds to cosX -+ & ~ and sinX ~&i~), then
the leading term of d(X) is gotten by setting m"= j in
(3.1):

d, „j(x)
iX~goo

e i (m' m) ))/2(e—ix)j—(2j—) (2 2j—
(3 4)

L(j+m') (j m')!(j—+m) (j m) ~)"—'

where we have used

(2j).
(j+m')!(j—m')!

—1/t 2

(3 5)

which follows immediately from Eq. (A16) of the Ap-
pendix. If e'x -+ & ~ (cosX -+ & (x) and sinX ~ a i (x) ),
the leading term is given by setting m '= j in (3.3):

d ~ j(x)
giX ~goo

ei (m' m) ))/2(eix)—j(2j) !2—2j
X ——(3 6)

L(j+m')!(j—m')!(j+m)!(j—m)!$' '

With the aid of the relations (3.1) and (3.3), we may
convert Eq. (2.15) to a form suitable for deriving the
constraint relations. Before doing this, we study the

"A R. Edmonds, Angular 3IIomentum in Quantum Mechanics
(Princeton University Press, Princeton, N. J., 1957).

'~ We remind the reader that the de6nition of the d functions in
Edmonds (Ref. 21) divers from that of Rose (Ref. 23) by a sign
of the argument. We follow the convention of the latter.

Because the d ~ &'s are real, the complex conjugate of
(3.1) is also true:

j(X) p ei (m' m) ))/2t(— , „j/)2 „jeim"X (3 3)
m"
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behavior of Xg and X~ near threshold and pseudothresh-
old. Because sinx~, ~ and cosX~ ~ have branch point
singularities at threshold and pseudothreshold, their
relative phases become crucial. By direct computation,
we see that

sin(XA&XB)

2[mA(t+mB' —mn2) WmB(t+mA' —me'))

[s—(mAWmB) 2)D(t, A, C)t! (t,B,D)

can be easily inverted to give

,SAt},SBe—i(a—b} a/ f2a
a, b

e i(—a'xA b'—xB)g, , (3 16)

Near pseudothreshold, we use (3.1) or (3.3) for both
d(XA) and (E(XB) depending on the value of e. A relation
similar to the above is obtained:

,8A+, 8ggeie(a+b)m/2 g saa' bb' J caab
a, b

cos(XA~ Xs)
X[&((s,t))'" (3 7)

with
eie(a'XA+O'XB)g&, , (3 17)

—2[mA(t+mB2 —mn2) %mB(t+mA2 —me2)) 2

[s—(mAWms) 2)6(t,A, C)A(t, B,D)

(t+mA' me2) (t+—ms' mn2) W—4mAmst

D(t, A, C)a(t, B,D)
(3 8)

It follows that e'("A+"» (e'(xA xB&) has ne&ther a pole
nor a zero at threshold (pseudothreshold). This deter-
mines the relative behavior of eixA and eix&. However,
e'("" x» (e*(""+"B&)is expected to have either a pole or
a zero at threshold (pseudothreshold) depending on the
value of t. For large and positive values of t, 4 we see
that

a', b'

ei(a'+b')a(2/), , „sAg, b„ssf s, b, ai (3 1g)

which is regular at s= (mA+mB) 2.

At this point our constraint relations (3.16) and (3.17)
are equivalent to those of Ref. 4 because the transfor-
mations involved are precisely those which bring the
spin basis of particles A and 8 from helicity to trans-
versity. The equivalence between the two approaches
mentioned in Sec. I is demonstrated. To simplify these
constraint equations we need more detailed knowledge
of the 6's, which is provided by the following lemma
proved in the Appendix:

Lemm(t: If we define F /(n) by

e ""A xB)~s—(mA+mB)' near threshold, (3 9)
~ .=—(-1)-"(2j)!

X[(g+n2)!(j m)!(—j+n)!(j—n)!) '('F '(n),
so that

e '""~ e'"B~ [s—(mA+mB)')'(' near threshold. (3.10)

Similarly,

then, for 2j=integer and m, n= j, j—I, . . ., —j,
(i) F '(n) =F„i(m), i.e., F &'(n) is symmetric inm andn;

(ii) F /(n) is a polynomial in n of order j m—
e*''(""+'B'~s—(mA —m )'

so that
near pseudothreshold,

We first set (2'=SA, O'= SB in Eqs. (3.16) and (3.17)
and use the lemma, along with Eqs. (3.10) and (3.12),
to obtain

eiexA aa eiexB aa [s (mA m )2)1/2

near pseudothreshold, (3.12)

where e is the sign of ms~ —m~, i.e.,

P e i(a b)a(2f —sg——1

a, b

cc [s—(mA+mB)2)(sA+s»( (3.19)

eie!,a+ b) m /2 g sx —1
J cdab ab

a, b.=(mB m)/(AmB—m, I
. — (3.13)

where
~ [s (mA me)2)(sA+—sB)(2 —(3 20)

We are now ready to derive the constraint equations.
Near threshold we substitute (3.1) for 'd(XA) and (3.3)
for d(XB) into (2.15), getting

fcdabs g t~ ~~ ei'(a —b)~//2e —i(a "XA.—b "XZ)g „SA1crab Pp g- aa"
all bitt

&- —= [(S + )!(S —)'(S +f) (S —f)')'" (321)

Next we set a'=S~ —1, O'=S~, and And

g (be i(a b)a/2f sg———1

where
X»b Bgas" b", (3.14) ~[s—(mA+mB)')( '+ " "", (3.22)

g A „b„—P e (' b') /2g—, '„S—A
at 2.I

Xt} b b" Bf.d. b "(s,t), (3.15)

Q geia(a+b)a/2f ax —1

(mA mB)2)(sA+sB—1}(2 (3 23)

where equations (3.19) and (3.20) have been used to
and is regular at s= (mA&mB) .The 6 matrices in (3.14) eliminate terms in the sum which do not contain. a factor
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of c.The generalization of this procedure is very simple.
For a'=Sd m, —Fs„s"(a) is a polynomial in a of
order m. Only the term with the highest power of u need
be retained in the sum. All lower-power terms can be
eliminated by using constraint relations having lower
m values. The general constraint equations are

total spin amplitudes at threshold,

f.d(s),)'"")—=Z. (sd, a; ss, &—aI s, l()f.d —x (3.31)

and the total pseudospin amplitudes at pseudothreshold,

f.d(s))'("'—=Zs (sd, a; ss, &—aIs, &)

at threshold,

gmge~ie(a+ b) m'/2 g 8J cdab

' I ( d+ )!( d —a)!(Ss+b)!(Ss—b)!]''

l) me—iX /2sf „s(th)
~

I
s—(md+ms)'](s-") {2

I (S+l )!(S-~)!1"'
near threshold, (3.33)

~
I
s—(md —ms) 2](s&+ss- —) /2 (3 25)

ambse i (s—b)s—{2f s

)(( j)sg af d
— ~s (3 32)

s &
I (Sd +a)!(Sz—a)!(Ss+b)!(Ss—b) )]'{'

The argument based on the lemma can be applied again,
~

I
s (m&+ms)'] "+ " ' (3 24) to yield constraint relations in a very compact form:

at pseudothreshold, with m=O, 1, 2. . .(2'); n=0, 1,
2 .(2SS); and e= (ms —m~)/Ims —m~I.

The reduction of the constraint equations follows if
we substitute into (3.16) and (3.17) the following slight
variation of the Clebsch-Gordan series" ":

,Sgg, Sg

—( 1)SB b'g, sA+—, SB

= (—1)ss ' Qs (Sg, a; Ss, b
I S, a b)—6, ).—.+i, s.

X(S, a'+O'ISz, a', Ssb'). (3.26)

We also make the substitution 6= a —X, O'= X' —a', and
make use of the orthogonality property of the Clebsch-
Gordan coefficients to bring the constraint relations
(3.16) and (3.17) to the form

P) g)„,se-" ~2+ '(s~, a;ss)l, als x)f d-
= e'"'"SGsd s), , (3 27)

gg~)) e—"" ~'P. (Sd, a;Ss, ~ aIS,~)e'" f„.—. ),

—ei)'xsG „, (3 2g)
where

G,dsz =—Q (Sxa', Ss, a' —X'ISX')

y ( 1)ss—) '+s'e is'(x~+xs)g . . . (3—2{))

G'sds), —=Q (Sd, a'; Ss, a' —X'IS,V)

pm~ —iV~12 f a(ps)J cd(SX)
cc LS (mA ms)2]{S—m)/2

L(S+l()!(S—l()!])12

near pseudothreshold, (3.34)

where m=O, 1, . . . , 2S; S=Sd+Ss, Sd+Ss —1, . . .,
I Sd —Ss I; and e= (ms m)d/—I ms md

I

—.

IV. SUMMARY OF RESULTS

In the following, we list all the constraint relations
for initial and 6nal thresholds and pseudothresholds for
all mass cases not discussed in Sec. III.

The final-state threshold and pseudothreshold be-
havior of the covariant helicity amplitudes in the case
of unequal masses is obtained in a manner completely
analogous to that of Sec. III. The s- and t-channel
covariant helicity operators for particles C and D have
been defined in Refs. 7 and 12. The amPlitudes fsds{,'
behave as [s—(ma+mr))'] (s&+s»1' and

t s (mo mD)'] —(se+SD—)"
near the anal-state threshold and pseudothreshold, re-
spectively, and we find the constraint relations

Cmdsei(s d)s/2f d &—s

"L(S.+c) (S.—) (Sn+d)'(S~ —d) ]"'
I
s —(me+ mr)) 2](sc+sa——) ~2 (4 1

near threshold,

a' &mdn&se'(c+d) ~/2 fJ cdab

(3 30) ., d t (Sc+c)!(So—c)!(S~+d)!(SD d)!]'{'—
and G,d, ), (G',d, ), ) is regular at threshold (pseudo-
threshold) because e'(""+"» (e'("&—"») is. We now see
hat the constraint relations are reduced in terms of the near pseudothreshold, where e' is the sign of me —ms~, or

e'= (m, —mD)/Im, —mD I, (4.3)
~ M. E. Rose, Elementary Theory of Angzdar SIomenrum (John

Wiley R Sons, Inc. , Near York, 1957). and m=O, 1.. .(2So); n=O, 1.. . (2S2)). The reduction
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of these amplitudes may be carried out to yield

/AmSe)en 2f(S' ) bs(th)

Es —(m, +mD) ]2( s'-")/'
L(5+ ) (5 —) ]"' (44)

near threshold, and

/Amc ie'sec—/2f, s(pa)

aq PS —(mC —mi))'](S™)/'
((5 +p) (S p)']' ' (4 5)

near pseudothreshold, with

f(S'a)ab =P—c (Sce Ce SDe /2 C ~5 e/A)fc c—a ab e (4 6)

f(S').b'"'—=2 (—1)" '(SC, c, SD/A c)5,/A)—

&&f"-.. . (4 'f)

and m= 0, 1. . .(25'); S'=Sc+SD, Sc+SD—1.. .
~
Sc—SD ~. It is possible, of course, to define amplitudes

characterized by the total spin or pseudospin in the
initial and final states and to combine the results of
Eqs. (3.33), (3.34), (4.4), and (4.5). Total spin ampli-
tudes of this sort have been defined by Franklin, ' who
has derived (3.33), (3.34), (4.4), and (4.5) for m= 0, 1
with a different method. '

For the case mA ——ms, but (mA&mB)'W(mc~mD)',
the threshold constraints are the same as for the
unequal-mass case. The pseudothreshold in the initial
state is now at s=0, and the behaviors of X~ and X~
depend on the relative magnitudes of the masses of
particles C and D, with the result that

ambn& ie'(—c+b)ec/2f
& bs

a, b L(SA+a)!(SA—a)!(SB+b)!(SB—b)!]"'
aq (s)(sAjsB m n)—/2 —

(4 8)

In the case of elastic scattering, m~ = m~, m~ = m~,
the method of Sec. III must be modified in order to
derive the constraints. Since the initial and final thresh-
olds (and pseudothresholds) coincide, a transformation
to the t-channel covariant helicity operators for all four
particles must be made in order to remove the singu-
larities. This is equivalent to using the methods of Secs.
II and III as applied to the full crossing relation between
the s- and t-channel center-of-mass helicity amplitudes.
It turns out that the final result may also be obtained
by combining equations (3.24) L(3.25)) and (4.1) [(4.2)7
and then allowing ns~ —+ mg, m~ —+ mD. We obtain the
relations

amgnCpdqc i(a b c+d)—c/2f—
&
—

bs

abce( [(SA+a)!(SA—)a!(5 +Bf)!)(5 Bf)!(5e—+c)!(c5 cc)!(5D+d)!(SD d)!]"'—
ac [s (mA+mB)2](sA+sB+sc+sB m n n q)lq (4

—9—)——
near threshold, and

amgncqdqsie(a+b c e/)ecl2f —s—

b "L(SA+a) '(SA —a) '(SB+&).(SB—&) (SC+c) (SC—c) (SD+d) (SD —d) 1"'
cc Ps (mA ms)2](sA+sB+sc+sD m n n q)/ (4

—10—)——

near pseudothreshold, with q=mB —mA//~mB —mA ~, where m=0, 1 (25A); n=0, 1. . .(2SB); and p=0, 1,
(25c), q= 0, 1.. .(2SD).

For the case of equal-mass —to—equal-mass scattering, i.e., mz —m& =mz —m& = 0, the threshold equations are
given by (3.24) when mAWmc. At pseudothreshold, the method of Secs. II and III must be modified because s= 0
is now on the boundary of the physical region. The constraint relations at s= 0 have also been derived by other
methods' ' ' in the form

d" "(-'qr)db b"(-'qr)d" "('qr)d'" ('qr)f". b-' "(s) "- (4.11)

Application of the lemma of Sec. III yields two equations:

( 1)a+etambnc "d'f, ,—'
- "E(5 +a) '(5 —a) (5 +&) (5 —&) (5 +c).(5 —c) (5 +d)'(5 —d) ]"'

and
aq (s)(sA+sB+sc+sB m n & q)/2 (4 12)————

( 1)b+cambncqedqf e

""L(SA+a)!(SA —a) l(SB+&)!(SB—&)!(SC+c)!(SC c)!(SD+d)!(SD d) —]"'—
qq (S) (SA+SB+SC+SD en n p q)/2 (4 13)———
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with m+n+ p+/I& S~+Ss+So+Sr) E. quations (4.12)
and (4.13) are the complete set of constraints at s=0.

Finally, we include the case of zero-mass particles.
If m&=0, we may apply the method of Sec. III to obtain
the result' "

bmgib /2 g ~eJ cdab
~ Ps m—s]2&ss m)/' (4.14)

L(Ss+b)!(Ss—b)!j"'

near s= m~', where m= 0, 1, . . ., 2S~. If m~= 0, we get

when m+n(0. To see this in detail, we use the identity

F(a,b;c; z)

r(c)r(b —a)
(—s) F(a, 1 —c+a; 1 b+—a; 1/s)

r(b) r(c—a)

r (c)I'(a —b)
(—s) '

r(a)r(c —b)

&&F(b, 1 c+b;—1 a+b; 1—/s) (AS)

to transform (A1) into a more convenient form:
ane— jn/ nf2d ~n

2](Sg n) /2 (—4 13)
((S +.a) /(S a) /ji/2 mn'(P)

2j ~( 2j y-'/'
=(—1)

'

11eal s= 1s~ ) and 'pl= 0, 1) ~ . ~ ) 25'.
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APPENDIX

The d function is defined in terms of a hypergeometric
function by

//(j+m) l(j n) Iq /

d-'(p) =I —.
k(j —m)!(j+n)!i (m —n)!

&&(cos-,'p) +"(—sin-'p)

&&F(—j+m, j+m+1; m n+1; sin'(2P—)). (A1)

The notation of Rose is used here. It is generally
stated" "that the above definition applies only to cases
when

y ( CO&Sp) m+(nSjn& p) 2j—m n—
)&F( j+m, ——j+n; 2j; csc2(~p)—)

—2j—2 —2j—2 )+( 1)—j—m—i
& —j—m —1 —j—n —1i

g (COS p) m+n( Sin ip)—2j-2—m—n

)&F(j +m+1, j+n+1; 2j+2; csc'PP)). (A6)

The second term above can be obtained simply from the
first one by replacing j—+ —j—1. Calling the first term
d „j"&,we see that it is symmetric in m, n except for
the factor (—1)j, which makes it satisfy (A4). By
using the relation

P(a,b; c; s) = (1—s) 'F(c—a, c b; c; s), (A7—)

one can find that (A3) is also satisfied. The same is, of
course, also true for d „j'(p); consequently, (A1) de-
fines d „&'(p) without the restrictions (A2).

Lemma: If F j(n) is defined by

m+n& 0 and m —n& 0. (A2) +mn =dmn (22r)

In all other cases the symmetry relations of the d func-
tion should be used:

=(-1)'-"
~ . i

F '(.), (A8)j-mi j ni—
d..(p) =d-.—.(p),

d-'(p) = (-1)" "d-'(p) .
(i) P„j(n)= P„j(m);

(ii) F j(n) is a polynomial in n, of order j—m.We shall show that the definition (A1) in fact satisfies
relations (A3) and (A4); therefore, the restrictions (A2)
are unnecessary.

%'e see, for instance, that the hypergeometric func-
tion in (A1) has poles at negative integral values of
m —n. However, these poles are canceled by the zeros
of the factor 1/(m —n)! in the coeflicient, so that (A1)
remains finite when m(n. A similar thing happens

Proof: Statement (i) follows immediately from (A4).
By Setting P= 22r in (A6), We Obtain, fOr j—m a nOn-
negative integer,

F '(n)=2 jF(—j+m, j+n; —2j;2). (A—9)

The second term in (A6) does not contribute because of
a factor 1/Lr( —j+m)j'/' in the coefficient. We first

then, for 2j=integer a6d m, n= j,j—j, . . ., —j,~&A3&

(A4)
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give the proof for the case re&n. In this case

U —)U ——1) . U ——+1)
X (—2)"

(2j)(2j—1) (2j—r+1)

(j+m)!2-"
gl7 ~ ~ ~ ~

(2j)!
(A10)

so that statement (ii) is true. For m(n the proof is by
induction. We recall the relation between contiguous
hypergeometric functions

L2u —c—(a—b)sjF(a)+ (c—a)F(a —1)
+a(s—1)F(a+1)= 0, (A11)

where F(u) is shorthand for F(a,b; c; s).
This gives

F„J(n+1)= Pl/(j —n)j
&&L2mF &(n) —(j+n)F J(n —1)j. (A12)

This completes the proof.
Finally, we list some properties of 6 „&. From

and from (A3) and (A4), we deduce

(A14)

~„„=(—1) —.~ ...= (—1) +-a„, .'. (A15)

For n= j, j—1, we have

(A16)

be shown explicitly by expanding the hypergeometric
functions. The only terms that are not divisible by j—n
are the first term of F J(n) and the first and second terms
of F &(n —1). They give

( (j+m)(j n+—I))2m (—j+n)~ 1—

(j+n) (j—m)+m= (j—n) . (A13)

The induction proof is completed if the polynomial in
the above square bracket is divisible by j—n. This can

m 2j)
,, i' ———2 '— ~2jj j-m)

(A17)

PH YSICAL REVIEW D VOLUME 1, NUMBER 2 15 J ANUARY 1970

Two-Body Unitarity and the Asymptotic Duality Series
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The discontinuity of the Regge trajectory obtained recently from a duality series by Kikkawa, Sakita,
and Vjrasoro is investigated. The trajectory is shown to possess all the thresholds corresponding to two-
particle intermediate states, i.e., Regge recurrences or daughters. A correction to a linear trajectory is
also shown to arise by requiring the Born term (the Veneziano amplitude) to be modified to satisfy two-
body partial-wave unitarity near the leading pole in the J plane. This discontinuity is evaluated up to the
third two-particle threshold and found to be identical to that obtained from the duality series. Above
higher thresholds, such agreement is dependent on the function used to ensure factorization at internal
vertices in each term of the duality series.

i. INTRODUCTION

ECENTI,Y, Kikkawa, Sakita, and Virasoro'
(called KSV hereafter) have proposed a series

representation of the scattering amplitude in which each
term is crossing symmetric and possesses duality for all

internal lines in the sense that simultaneous poles in

"overlapping" variables are not permitted. However,
the series does not incorporate unitarity explicitly.
Fubini and Veneziano' have discovered how the general

~ K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev. 184,
1701 (1969).

~ S. Fubini and G. Veneziano, MIT Report No. GTP 81, 1969

Born term of the duality series factorizes, necessitating
a certain level structure. From this, KSV should be
modified to incorporate factorization of all levels at
internal vertices, a minimal requirement of unitarity.
Although this gives rise to divergent integrals, the dis-
continuities remain Gnite.

In this paper, we show that the asymptotic amplitude
obtained by KSV satisfies partial-wave unitarity with
two-particle intermediate states in the weak-coupling
limit, at least up to the third two-particle threshold. In
(unpublished); D. K. Campbell, D. I.Olive, and W. J.Zakrzewski,
University of Cambridge Report No. DAMTP 69/26, 1969
(unpublished).


