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Constructing particles out of quarks (via infinite-component fields), we show that ii an "elementary"
particle has integral spin, baryon number 8 &0, and a symmetric spin-isospin wave function, then its
electromagnetic charge form factor vanishes.

INTRODUCTION
' 'N this paper we present a simple argument, based on
- - quarks, showing that if an "elementary" particle has
integral spin, baryon number 840, and a symmetric
spin-isospin wave function, then it has a vanishing
electromagnetic charge form factor. The particle, there-
fore, would not be detectable via its charge vertex. Thus
we obtain insight into the question of why integral spin
implies 8= 0 for any given elementary particle.

We show explicitly that if an elementary particle is
made up of an even number of symrnetrized quarks (i.e.,
if it has integral spin, 8=2/3, 4/3, or 6/3, etc., and
a symmetric spin-isospin wave function), then the elec-
tromagnetic charge form factor of the particle vanishes.
The Inodel used is the infinite-component Geld model of
Cocho et al. '

In Sec. I we set up the problem and review the inGnite-
component field formalism. The representations are dis-
cussed, and the symbols deGned. In Sec. II we deGne
and discuss the functions entering into a calculation of
the electromagnetic charge form factor of a particle. In
Sec. III we show that the electromagnetic charge form
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factor vanishes identically whenever the strongly inter-
acting particle is made up of an even number of quarks.

I. ELECTROMAGNETIC FORM FACTORS AND
INFINITE-COMPONENT FIELDS

In this section, we discuss the framework for calculat-
ing electromagnetic form factors via inGnite-component
Gelds. The vertex we wish to consider is shown in Fig.
I:a strongly interacting particle interacts with a photon.
The strongly interacting particle is represented by a
wave function in momentum space, and we wish to
compute the electromagnetic charge form factor associ-
ated with the process of Fig. 1.

Ordinarily, one would represent a strongly interacting
particle with spin Jby a wave function that transformed
according to spin J. In the inGnite-component Geld

FIG. 1. Electromagnetic vertex. The solid
lines represent the strongly interacting
particle.

' A summary of work using infinite-component 6elds in connec-
tion with form factors is listed in C. Fronsdal, Phys. Rev. 182, 1564
(1969).
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formalism, which is the formalism used in the present
paper, the wave function is more general and contains
many diferent spins instead of just one spin. To repre-
sent a specific particle with a given spin J, one then just
takes the appropriate projection of the more general
wave function.

The concept of spin J is next generalized to a particle
transforming according to an irreducible representation
of SU(n). The general wave function will now contain
many representations of SU(n). To represent a given
particle, one takes the appropriate'projection of this gen-
eral wave function.

One choice for the more general wave function is
a wave function with X dotted (upper) spinor indices
and Ã+k undotted (lower) spinor indices'.

+1k"'k+N+k

This wave function represents a particle of momentum

p; it contains many representations of SU(n), where
n=2k. The 56 representation of SU(6), for example,
would correspond to a certain projection of this wave
function that is completely symmetric in both upper and
lower indices, with k set equal to 6/2= 3.

For a complete discussion of the representations one
can use, the reader is referred to a report by Fronsdal. '
A diferent representation one might try is, for example, '

The projection of (1) corresponding to our completely
symmetrized state of k quarks turns out to be"

ct1.' "k +N+k

Spak PaN 4aN+I ''' aN+k(P) r (4)

where m is the mass of the strongly interacting particle,
P is its momentum, and f „+,, ... , N+, (P) is a wave func-
tion with k indices and corresponding to momentum p.
p.e is a 2kX2k matrix def'tned as

P-'=(Po —y ~)~'~ '

where (ps, y) is the four-momentum of the strongly in-
teracting particle, o is the set of 2&2 Pauli spin
matrices, and a and b run from 1 to k. The symbol 5
stands for symmetrization in the indices o,&, ,n~+~.

Now the charge part of the electromagnetic vertex of
Fig. 1 is given, in Born approximation, by

(P+P').
vertex= tpe e

' "' N+'(P )
25$

XQ4-, -.'N, a' " '"(P),

where p= (ps, y) and p'= (p's, y') are the four-momenta
of the incoming and outgoing strongly interacting par-
ticle, respectively, and Q is the charge operator. Using
Eq. (4), we can reduce this expression:

~ ~ ir1 ~ ~ ~ &M ~I ~ ~ ~ ~1 ~ ' ' ~M(Ab (2)

Still another approachk Dor integral spin and without
SU(n) j is to use a wave function with four-vector in-
dices, instead of spinor indices as in (1) and (2):

+I "' +N+k

X~ Spak ' 'PaN PaN+y, ",aN+a(p) )

~, -. ." -""-(p)

ea" uN ~ (3) m %Seal, , ak(p )p
' ak+I. 1 .p aN+k

In this paper we shall use the choice (1). The actual
representation used is that projection of (1) which
corresponds to a completely symmetrized (in spin and
isospin) state of k quarks. Thus for k=3, we would be
dealing with the 56 representation of SU(6), which
contains the E*(1236) decuplet and the nucleon octet.
If there were a spin-1 particle made up of two quar4
(no antiquarks; i.e., the particle would have 8=-s'),
this particle would be included in our considerations. In
other words, we are including all "elementary" particles
made of k quarks, with the quarks symmetrized in
spin-isospin variables. We shall proceed to show that if
the number k of quarks is even, then the charge vertex of
Fig. 1 vanishes. The vanishing of this vertex of Fig. 1 is
consistent with the experimental fact that there are no
observed elementary particles made up of an even
number of quarks. That is, there are no experimental
elementary particles with baryon number 13=2/3, 4/3,
6/3, etc. Thus our result is consistent with the fact that
for elementary particles with integral'spin, '8= 0.]

' C. Fronsdsl, Trieste Report No. IC/66/51 (unpublished).
4 C. Fronsdal, Phys. Rev. 156, 1653 (1967).

(P+P').
vertex —+ — ——m '~

X(Sgaa, ",aa(P')P~& aa+&. . .P'e aa+N)

Here

XQ(SP- e' P-N'N4-N, ,",-N;(P)) (5)

p.e=(p.-y )"~.' ~ d P'-'=(p'. +y' )"~.'.

II. DEFINITIONS

The charge part of the electromagnetic vertex of Fig.
1 has been written in Eq. (5). This expression is fairly
involved, but it can be written in a simpler form, '

This vertex has, in fact, been calculated for the case
of a proton LSU(6)j,' and the result is fairly simple. In
this paper we shall evaluate the vertex (5) for the case
of SU(n), where n=2k, and where k is even (i.e., the
number of quarks is even). We shall, in fact, show that
when k is even, the vertex (5) vanishes.
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namely,

(p+p').
vertex = ——P""" "(p')

2m

X[fs4"' 4"'+fit"' 4 i"" 'T s"'+
+fkT- "' T:"']$-, .-'-(.P), (6)

where T "'=no 'p "p'; ', and the f s are functions of

p p'. Cocho ei aL' then derive the result (the proof is
straightforward but very tedious) that

where (o=y+y '+2, and

y=~ '(P P'+[(P P')' —~']"').

This expression [Eq. (9)] has been derived for general
k '; it has also been previously derived for k= 1, 2, and
3.' ' The proof of Eq. (9) is rather messy and will not be
discussed here; see, instead, Refs. 1, 5, and 6.

We shall instead simply use Eq. (9) to show that
QN;+, ('&=0 when k is even. Now. unitarity and the

existence of a parity operator require S= —~3k. ' But
then Eq. (9) says that

where the Q functions are defined by

SQN(i) (y y I) 1 P (yN f y N+J) SQ,(i t)

'QN('~ =—'QN ——m—'N[5(pp'), ~' (pp')»]

d )i+i—1

"QN-.-+i"' =[(k+i—1)!?'—
I

d(0i

y
—k I2-i+j

y k/2+7' —j
(10)

Here
X4 " 8s ". (8)

y=~ '(P P'+[(P P')' ~']"').—
Thus we see that if we knew each function sQN;+;('&,

then we could straightforwardly find each f; by means
of Eq. (7). Equation (6) could then be used to compute
the complete charge vertex. In particular, if each
sQN;+;('& were to vanish, this would immediately
imply that the charge vertex of Fig. 1 vanishes. In the
following section we show that for k even, each sQN;+;('&
does indeed vanish identically. Thus the electromagnetic
charge form factor of Fig. 1 vanishes when the strongly
interacting elementary particle is composed of an even
number of symmetrized quarks.

where the function sQN;+, ('& is defined by Eq. (8).
Now, starting with the definition of Eq. (8), it is pos-

sible to derive a more simple expression for "QN;+, (':

( d &+i—1(y¹+s y
—

¹

—s

'QN ("=[(k+i—1)!] 'I —
I

—
) (9)

I d~ ( y-y-'

III. EVEN NUMBER OF QUARKS
IMPLIES VERTEX VANISHES

In this section we show that the charge part of the
electromagnetic vertex of Fig. 1 vanishes for k (the
number of quarks) even. As discussed in the preceding
section, it is su%.cient to show that

We restrict ourselves to k even. Then the quantity in
curly brackets in Eq. (10) can easily be shown to be
a polynomial incr ((d=y+y '+2), of order —,'k+i —j—1

(note that ~sk is an integer). But then (d/did) "+' ' acting
on this quantity must vanish, since i+i—1)—,k

+i—j—1. Thus, by Eq. (10),

sQN;+ ('&—=0 (k even) .

This result then trivially [via Eqs. (6) and (7)] implies
that the electromagnetic charge vertex of Fig. 1
vanishes, for k even.

Thus we have shown that in this model an "elemen-
tary" particle made of an even number of quarks does
not have any electromagnetic charge coupling; an ele-
mentary particle with integral spin, 8= 2/3, 4/3, 6/3,
or 8/3, etc. , and a symmetric spin-isospin wave function
in this model does not have any charge coupling to a
photon. In this fashion we obtain insight into the ques-
tion of why integral spin implies 8=0 for any given
elementary particle.
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