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The relation between the algebra of current densities and the Rnite- or in6nite-component wave equa-
tions is critically investigated. It is found that, at any arbitrary momentum, the charge-current density
commutation relations can be satisfied by the solutions of the wave equation, but only in a trivial sense,
viz. , if Jo(0) is taken to be unity, in which case the content of the current commutators is essentially 1 ~

I„(h)= I„(h), i.e., empty. Furthermore, it is shown explicitly in an example that, starting from the covariant
wave equation, this condition Ip(0) =1 can be satisfied only if it is made true by definition. The precise
connection between the current algebra and in6nite-component wave equations is discussed by the intro-
duction of translation operators in momentum space.

I. INTRODUCTION

A NUMBER of authors have discussed the realiza-
tion of the current-algebra commutation rela-

tions" on the Hilbert space of the complete set of
solutions of a wave equation. ' Presumably the general
program of the current-algebra techniques requires a
complete set of all strong particle states including
many-particle states of the real world, i.e., an unknown
complete set of solutions of an unknown strong-inter-
action Hamiltonian. In order to simplify the problem,
the inhnite-momentum limit of the matrix elements of
the commutator was introduced, in which case there
is a chance that only one-particle states might con-
tribute. ' The problem then reduces to finding a com-
plete set of one-particle states on which the algebra of
current commutators is represented. For this set of one-
particle states the solutions of a wave equation have
been used. This is then a c-number approximation to
the realization of the current algebra. In this way, the
current-algebra approach would be connected to
another approach where the infinite-component wave
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equations are used to obtain a concrete set of states of
strongly interacting particles and where the matrix
elements of the associated currents are used to obtain
weak, electromagnetic, and strong form factors. ' '
Now the solutions of the wave equation are c-number
wave functions describing the various (excited) states
of the system which is thought to be composite (first-
quantized theory). For processes where only particles
and resonant states are involved (i.e., where there is no
pair production of nucleons, for example), we can use
the model provided by the wave equation and the
currents which result from the wave equation.

We want, therefore, to study the inverse question to
the saturation of current algebra, namely, the validity
of the current algebra in the Hilbert space given by
the solutions of a wave equation, or a dynamical group
(rest frame and boosted states). More specifically, the
question is: What are the commutation relations of
currents for a given wave equation? From a practical
point of view, the given model already contains all
matrix elements of the currents, no sum rules are needed,
and the current algebra cannot bring anything new. The
problem is to state precisely the exact cortrtectiort betvtieert

the mare egmatiorts artd the current algebra. We study this
problem critically and Gnd that only the charge-current
density algebra can be satisfied at arbitrary momentum,
and this in a trivial sense, when Jp(0) is unity. In this
result the currents are taken to be tensor operators
with respect to the internal quantum numbers, which
is a little more general than the factorization approach
and the standard octet form of the currents. Given a
model based on a wave equation, all the coirimutation
relations can be explicitly evaluated.

II. COMPARISON OF THE TWO METHODS

Table I shows the framework of the two approaches
and where the postulates are made. In the second

~For references see the review articles of A. O. Barut, in
Iectnres in Theoretical Physics (Gordon and Breach, Science
Publishers, Inc. , New York, 1968), Vol. XB, p. 377; Acta Phys.
Acad. Sci. Hung. 26, 1 (1969).

'A. O. Barut, D. Corrigan, and H. Kleinert, Phys. Rev. 167,
1527 {1968).
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CURRENT —ALGEBRA COM MUTATION RELATIONS

TAnLE I. Comparison of methods based (a) on current algebra and (b) on wave equations of dynamical groups.

(A) Complete set of states of strong
interactions

(3) Explicit form of currents

(C) Weak and electromagnetic transition
amplitudes

(D) Commutation relations of currents

(E) Comparison with experiments

Current algebra

not specified (unknown)

not specified (unknown)

matrix elements of currents

specified (postulated), e.g. ,
LJ o ( )x,i "(y)j=~f"i"(x)e'(» y)—

via sum rules obtained from matrix
elements of (D)

Models based on wave equations
or dynamical groups

specified by the solutions of the
(postulated) wave equation

conserved currents specified from the
wave equation

matrix elements of currents'

to be evaluated from the explicit form of
currents given above (8) (in general,
different from current algebra)

directly via the matrix elements in (C)

a From a practical point, of view, one can quite well use an incomplete c-number field theory in which (A) and (B) are not completely specified, but in
which well-defined postulated vertex functions take the place of (C). (D) now means a relation between vertex functions, which may be checked to see if
it holds or not.

approach, we have in mind, besides the usual finite-
dimensional wave equations, also the infinite-dimen-
sional equations such as the Majorana equation
(I'J'P„x)/=0, it—s generalization (arri'"P„+rrsP„' —x) ~

/=0, or the O(4,2) equation (nri'&P„+usP„P"
+nsP„PI'S+PS+y))=0, and others of the same type.

III. EVALUATION OF CURRENT COMMUTATORS
FOR WAVE EQUATIONS

We consider a c-number theory. There are, in general,

infinitely many mass states for a given momentum.
We shall evaluate explicitly the commutation relations
of currents. We erst set forth the kinematical frame-
work.

States

The complete set of states obtained from the wave
equation is of the form

I p„) I o), where p„are the eigen-
values of the total momentum E'„and 0- is a set of spinor
indices, in general of in6nite range. We denote the
normalized so-called boosted states by~

where e™are the representations of the pure Lorentz
transformations acting on the spinor space

I
o g&—=e'&™Io)=g~ D (g) Io'). We shall take a general

framework and admit timelike, lightlike, and spacelike
momenta as well. The nature of the 0- indices depends
on whether p„ is timelike, lightlike, or spacelike; for
example, in the Majorana equation, for p„ timelike,

Io) is an eigenstate of I"s, for P„spacelike, Io) can. be
taken to be an eigenstate of I"3.For simplicity we restrict
ourselves to the case of a discrete mass spectrum.

Operators

We have two kinds of operators: the algebraic ones,
ike e'& M and 1 „, which act only on the a- indices, and

7 In general, the physical states contain, besides the boosting
operation, another, the so-called tilting operation (see Ref. 5) of
the form e"~. In this case what we are going to say in the follow-
ing is valid for these tilted states.

the momentum-dependent operators which act on

I p), according to P„Ip; o (&=p„Ip; o g&.

Important Remark

There is no mass-shell condition on the p„because we
are considering a system which can have many mass
states, discrete or continuous. That is why both p„
and ( labels are needed in the labeling of states

I p; op&.
Moreover, p„can even be lightlike or spacelike; the
range of 0- is then determined accordingly. Thus we
have the complete four-dimensional Minkowski space
as the range of p„ in (1).The label g is related to p„by
p„=rw(cosh

I gI, g sinh
I g I ).

Momentum Translation Operator T(k)

In the full Minkowski space of the momentum, we
define the following operator (more precisely, operator-
valued distribution):

(2)

where f(p'p) expresses the restrictions on the possible
values of k. These operators have the same properties
as the translation operators in x space; in fact, T(k)
together with the Lorentz group defines a group iso-
morphic to the Poincare group whose invariants are
the t-channel mass and spin. This operator is useful in
the proper dehnition of the current, as we shall see.

Physical Interpretation of the Matrix
Elements of Currents

If S(k), J, s(k), J „q"(k), , are specified operators
acting on the Hilbert space X of states (1), the ampli-
tude for a transition with momentum transfer k„
under a scalar, electromagnetic, weak, , interaction,
for example, is proportional to their matrix elements,
e.g. ,

(3)
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Normalization of States

At zero momentum transfer, k„=0, we shall write the
orthonormality conditions with respect to the metric
Jp(0). From (5) we have erst, with jp(Pp) = jp(PQ, Pp),

&P'; '4'IJo(0)IP; (&
=

& Y I jo(po) I &)f(p'P)~"'(P' —P)

Now the spinor part can be evaluated from the erst
part of Eq. (5) using the states (1).By a proper choice
of E„we set, for g'= (,

( '(I j.(po) l.(&=&(PQ)&-"—=&Q(&)&"' (6)

For timelike momentum, for example, E(pp)=cosh(
=p p/m. A factor 1V(pp) transforming like the zero com-
ponent of a vector is clearly necessary from convariance
(see remark in Sec. IV). With this normalization the
spinor part can now be evaluated for arbitrary g'Ag.
In the Appendix we show how to de6ne another current
operator J„(k) whose 0 component is the charge, for
which we have

&P'; YIJ,(o) IP; g&=s"'(I'—u)s--xo(g) (7)

An expression of this form is necessary for comparison
with the current algebra, which has a certain non-
covariant character. The orthogonality relation (5)
is in agreement with the condition of current conserva-
tion which, in operator form, reads

and which gives
LJ„(k),f' j=0, (Sa)

(p' —p).(p'; 'Cl J.(k) I p ~g&=o

and in spinor space

(Sb)

(P'—P).& 'Cl j.(p', P) I
&)=0 P'=P+k (S )

Rule for Matrix Elements of P„

For realistic wave equations with increasing mass
spectrum, the current operator in general consists of
algebraic and momentum-dependent parts. We write
a typical current operator linear in the momenta as

J„'"'=a„T(k)+b{P„,T(k)),

where a„and g are algebraic operators acting on the
spinor indices 0-.

From (2) and (4) we obtain

&P'; '&'I J.(k) I P
= &.'~'I Lo.+ (P'+P).bjI-~& &P'I T(k) IP &

= &~'('I j.(p', P) l~(&f(p'P)~"'(P' —P—k) (5)

Here j„(P',P) is the current operator in the spinor
space depending now on c-number eigenvalues p' and

p of I'„. Terms of higher order in E„can be handled
similarly. The form factors are determined by the
matrix elements of j„(p',p).

The current used in (6) is a conserved current and (7)
implies that the probability density of all states is
normalized to 1. In the case when J„' is proportional
to J„,all states

I
o.

& have the same unit charge. Equation
(Sc) can be used to obtain the mass spectrum. ' '

Z I-&&&-&Ij.(P.,P.) =&.(~),

and for the states
I p; o-()

d'P IP (&& &;PIJo(0)

. (2-)' A'. (r)

(9a)

(9b)

Internal Quantum Numbers

The wave equation is hrst written down with 6xed
internal quantum numbers. We now take the coeKcients
in the wave equation to be tensor operators with respect
to the internal quantum numbers. This means that the
current is also a tensor operator in the internal quantum
numbers, so we may consider in the usual way a set of
current operators J„(k), where n is an internal group
index, e.g. , SU(3) or SU(3)X

SU�(3).

Evaluation of Current Commutatoxs

We are now in a position to evaluate explicitly a
commutator

C„o(k,k') = fJQ (k),J„o(k')j
in our Hilbert space. Using the completeness (9b), we
find

dp 1—{&P',-'&'I J..(k)J.(0) IP,-~&
(2Qr)Q Ep

x&p,-~l J.'(k') IP",-"~"&-&P,-VIJ.~(k ) I p, -&&

x&P,~(l Jo(o)Jo (k) IP",~"(")), (1o)

where 0- now includes the internal quantum numbers of
the states. If kl"=0 and

JQ (0)JQ(0) = Jp (0) i.e., Jo(0)= 1, (11)

then, using the Wigner-Eckart theorem for the internal
indices assuming the intermediate states belong to an
octet, we obtain

LJQ"(O),J„o(k))=if o"J„"(k). (12)

The existence of a physically meaningful operator with
the properties (11) has still to be shown (see below).
Given a current with Jp(0) satisfying (11), one can, of
course, calculate all other commutators. In the simple
case in which one has, in addition to (11),

LJQ(k),J„(k')j=0, (13)

Completeness

We assume that the spinor states log& satisfy the
following completeness relations:
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e.g. , when J„(k)=J„(0)T(k), one finds even

Examyle I

which is consistent with (9b) only if Jo(0)=—1, and we
arrive at the same conclusion.

LJO (k) J~ (k )~= f" J~ (k+k ) (14) ", . 'We now come back to the question of the existence of

f k f h f (4) f h h h
a physically meaningful Jo(0)= 1. This problem is not
simply solvable. We study two models, however.

J„(k)= -', (J„(0),T(k)},
we again derive Eq. (14).

We remark for clarity that the condition (11) now
implies that together with Eq. (7) the following equa-
tion has to be simultaneously satisfied:

&p' '5'I p (&=~"'(p—p'»".&o(&).

Hence we see that the condition Jo(0)=1 cannot be
simply achieved by a normalization of the states,
unless the scalar product is suitably defined (see
Example I).

In the case where there are states with lightlike and
spacelike rnomenta, the condition Jo(0)=1 must hold
simultaneously for all such states in order for the current
algebra to be valid. We shall come back later to the
question of the existence of a physically meaningful
Jo(o)

So far we have started from the covariant wave
equation and determined what are the commutation
relations of the current in the Hilbert space X of the
complete set of solutions. Conversely, let us start from
the matrix elements of the postulated current commuta-
tors of current algebra in some Hilbert space 3C'. We
label the states in this Hilbert space X' by momentum,
a set of quantum numbers E labeling one-particle states,
and relative quantum numbers X for many-particle
states. A particular matrix element is then given by

~i (2~)' p'/m

xl &pe I J.™(k)
I p~~&&pe~i J„e(k)

I
p-x-&

—&p'IV'I J„e(k')
I pÃx&&PM I

Jo (k) I
p"E"&]

=if "&P'Iq'I J:(k+k') lP"&") (17)

and we ask if we can identify the states
I pÃX & occurring

here with the states (1) of the Hilbert space K obtained
from the wave equation, for then we shall have a
representation of the current algebra. Clearly, we must
6rst make an approximation and put X=0 in the inter-
mediate states (~ -momentum limit, for example).
Then we put k=0 and use the completeness (9b),
after the SU(3) parts of the matrix elements have been
taken out. We see then that Eq. (17) is indeed satisfied,
and this was the observation made in Ref. 3(b).

However, in writing down Eq. (17) the assumed com-
pleteness of the states

I pÃX& was

1 d p
IPm&&Pml =1,

(2~)' p'/m

Infinit Dime-rtsiortal Unitary SL(2,C) Equatiom

There are infinitely many mass values. The metric
(3') or (4) is positive definite and to guarantee an
increasing mass spectrum we may take the current (4)
with oi'=aFi' and b=P I. Clearly the current aF"T(k)
+P/P&, T(k)] is not equal to unity for all states for
fixed o. and p because the matrix elements of Fi and Pi
depend on the states. In practice, however, one only
uses the postulate that

& (IL F"+P(P+P')"jl '6& (19)

gives the form factors of the electromagnetic current.
Now, as in Ref. 6, one can normalize the states by a
number depending on the quantum numbers 0- of the
states, so that

& &IL F'+2PP'll '&&= (P'/ )~-" (20)

Thus the scalar product must be defined according to
(A7) and (16) as

&P ~l '~'P'&= (P'/~)~- ~"'(1'—u). (21)

IV. CONCLUSIONS

We have seen that both in the framework of the
infinite-component wave equations and that of the
current algebra, the Inatrix elements of currents are
identified with the physical vertex functions, and shown
that, starting from the covariant-wave-equation for-

The assumptions needed to pass from the commutators to the
simple product joj„are given in Ref. 3 (e.g., I.eutwyler).

Examyle II

Dirac Case (Quark Model)

Here too we have, not a well-defined operator J&(k),
but instead the postulate that

N(p) v "N(p')

describes a vertex. Since the current y& has the property
y'y'= 1, we find that in this case indeed j'(p, p) = 1, i.e.,
the vertex function is N(p)q'u(p'), whereas the normal-
ization is given by N(p)y'N(p) =p'/m and hence current
algebra,

io(pp') J (P'P")=N(p)v»(p') (irt/P")
x (P')7 (P")= (Ph'" (P")

holds. ' In other words, in our notation, we have by
delnition the scalar product (p I

p') =—&o.
I yo I

o )8&8i (y' —p)
and &Pl J(o) IP'&= &ol~olo»"'(p' —1i).
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malism, the charge-density algebra can be satisfied
only if Jo(0)=1. We can normalize the states so that
(I Jp

I
)=1, and make Jo(0) be the identity operator if

the scalar product is suitably dined. There is another
formal way (see FronsdaP) of saturating the current
algebra starting from the wave equation. Here one uses
a Lagrangian formalism, the corresponding conjugate
moment m to the fields y, and canonical commutation
relations between x and q. One can then define the
currents J„(k), more precisely its matrix elements-
the currents as operators are not defined —in such a
way that the current algebra is satisfied if one takes
positive- and rwga6ve-energy solutions of the wave
equation. In particular, the matrix elements of the
charge is given by the inner product, which is, of course,
equivalent to having Jo(0)= 1. However, the negative-

energy solutions do not lead to any physically inter-
pretable form factors.
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wave equation. The second kind of current is de6ned at
t=o

J„(k)= (2') ' d'x e'"'I (x)
1=0

and we find, similarly Lnote also that J'„(k)=J'dkDJ„(k) j,
(Pl J.(k) IP'&=(PII.(0)IP'»"'(li' —1+k) (A4)

From Eqs. (2) and (5), in the text, we determine

(plf. (o) I
p'&= & 'g'l~. (p'p) I g&f(p'p) (As)

and insert this in Eq. (A4),

(PI J.(k) IP'&= (~Yl i.(P'P) I~K&

Xf(P'P)~"'(li' —li+k) (A6)

The zero component of this equation at k= 0 Lin which
case we can choose f(p'p)=1j, combined with (6),
leads to the final result (7) in the text.

From the condition Jo(0)=1, we have observed the
relation (16) between the basis vectors. Thus, for a
consistent realization of Jo(0)=1, we must define (16)
in the spinor space, exactly like Eq. (A6), i.e.,

(P' '&'lP t&=(~'&'lio(p'P)
I

S»"'(1'—u+k). (A7)

With this definition the charge-current commutation
relations are always satisfied. If we now expand a
general element of the Hilbert space as

I

l

APPENDIX: TWO KINDS OF CURRENT
OPERATORS AND THE

SCALAR PRODUCT

Let I„(x) be the current operator in the x space. Its
Fourier transform is the erst kind of current operator:

d p 1—&(p~) I p,~&,
(2) X,

we find for the scalar product

(A8)

J„(k)= (2m) 4 d4x e'"*I„(x). (A1)

lx(P;) I2.
(2n-)'370

We have then

(p I
J„(k)

I

p')= (P II„(o)I
P'&s"'(P —P'+k). (A2)

We identify this with our Eq. (5) obtained from the

Finally, we define a T(k) similar to J„(k) such that

(p'I 2 (k) I p) =8"'(p' —y —k)f(p'p) (A10)

and J„(k)=a„T(k)+b{P„,T(k)}, with

T(1 )T(k') = T(k+1'), T'(0) =1. (A11)


