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Coherence of the Radiation from the Suyerradiant State
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Coherence properties of the single-mode electromagnetic radiation emitted by a system of identical
two-level atoms which is initially in the superradiant state are determined approximately. The approxima-
tion is valid only for short times when the state of the atomic system does not differ appreciably from the
superradiant state. The electromagnetic field radiated spontaneously possesses full coherence in the sense
of Glauber s definition, its density operator having the form of that for the ideal laser radiation. This coher-
ence disappears when, because of external radiation, stimulated and spontaneous emission both take place.

I. INTRODUCTION

'HE purpose of this paper is to study the coherence
properties of the quantized electromagnetic field

emitted by a system of identical atoms or molecules in
the highly correlated state, called the superradiant state
by Dicke. ' Following Dicke, many authors have referred
to this radiation as a coherent spontaneous radiation
since its intensity is proportional to E', E being the
number of oscillators. On the other hand, Senitzky'
claimed on the basis of perturbation theory that this
radiation is incoherent because the expectation value
of the radiation field emitted in the superradiant state
vanishes. Today, owing to Glauber's' work, a complete
theory of coherence for a quantized electromagnetic
Geld is available. This enables us to decide the type
of coherence of the spontaneous and the stimulated
radiation from the superradiant state. It seems to us
that the problem is worth studying since radiation of
this type has been generated and observed experi-
mentally in several regions of the electromagnetic
spectrum, from radio frequencies in the early experi-
ments of Hahn4 on nuclear paramagnetic spin resonance
to optical frequencies in the photon echo experiments. '
Coherence properties of the observed radiation have not
yet been measured but such measurements are feasible
with modern photoelectric coincidence-counting tech-
niques. ' These measurements would provide additional
information on the structure of the radiating system.

II. MODEL

Ke study a simplified model of Ã identical two-level
atoms coupled in the dipole approximation with a single
mode of the electromagnetic Geld. The motion of the
atoms is neglected and they are treated as distinguish-
able (space wave functions do not overlap). We assume

' R. H. Dic)M, Phys. Rev. 93, 99 (1954).' 1. R. Senitzky, Phys. Rev. 111,3 (1958).' R. J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963).
e E. L. Hahn, Phys. Rev. 77, 297 (1950);80, 580 (1950).
5

¹ A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev.
Letters 13, 56'I (1964); j. D. Abella, N. A. Kurnit, and S. R.
Hartmann, Phys. Rev. 141, 391 (1966).' Such measurement were started by R. Hanbury Brown and
R. Q. Twiss (Proc. Roy. Soc. (London) A242, 300 (1957)g and
they were used by F. Davidson and L. Mandel LPhys. Letters
27A, 579 (1968)g to determine the six-point correlation function.
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that the level spacing for each atom is equal to the mode
frequency (It= 1). In this paper, we treat only the case
when the radiation wavelength is large compared to
the linear dimensions of the radiating system, but an
extension to the small-wavelength region can be made
with the use of Dicke's' method. The Hamiltonian of the
system with the neglect of nonresonant terms has the
for II1

H=Hp+Hri
Hp=coG 8+ppRs,

III= —z*aE+—ga~R,

where tt is the effective (complex) coupling constant.
For the reader's convenience we list below the relevant
properties of the R operators and of unperturbed states
of the atomic system:

LRp, Rgf =+Rg, LRp,R ] =2Rp,

Rs=—Res+-', (R~ +R R+),

RpIr m) =P R,sIr m)=mIr m),

R.'I r,m) =r(r+1) Ir,m) &

R~I r,m) =g R,~ I r,m)
j=l

=Lr(r+1) —m(ma1) jt"
I r)ma1&.

III. COHERENCE OF SPONTANEOUS RADIATION

At the initial moment (t=O) the atomic system is
assumed to be in the superradiant state

I
r= ~sX, m=0)

and the electromagnetic field in the vacuum state. The
time evolution of the state vector of the total system is
described by the unitary operator U(t):

I4(t))=&(t)I4(o)&= *'
I o)lo) (3)

All information concerning the state of the electro-
magnetic field at time E is contained in the reduced
density operator p(t),

p(t)=—Tr~{I4(t))Q(t) I),
' The form of the Hamiltonian and the notation are taken from

the paper by M. Tavis and F. W. Cummings I Phys. Rev. 170,
379 (1968)).
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where Tr~ denotes the trace with respect to atomic
states only. It is convenient to represent this density
operator in the diagonal representation' in terms of
coherent states

I
n):

pletely unspecifmd:

2"

p (t) =— d qr [ t
I
z [

re'~) (t [ x [
re' "

I
.

271 Q

p(t) = d'n P(n, t) In)(n[ .

To compute the weight function P(n, t), we follow the
procedure described in the recent book by Klauder and
Sudarshan. ' Since we are interested only in the radia-
tion from the highly unstable' superradiant state, we
must conhne ourselves to times t much shorter than the
time 1/[~[r'". In this time interval, the state of the
atomic system does not differ appreciably from the
superradiant state and we can neglect R3 everywhere as
compared to E. As a consequence, we can neglect the
cormautator of R+ and R as compared with their
anticommutator. Since Ho and Hy commute and the
initial state [P(0)) is the eigenstate of Ho belonging to
the eigenvalue zero, we can write

[P(t))=exp(zt~atR +zt~*aR+) [f(0)).
On account of the approximate equality

The even-order correlation functions G&" "&(t) are

G&" "&(t)—=Tr(p(t) (at) "a"}= (t I Ill r)"
=[G& &(t)]- (»)

All mixed-order correlation functions G& "&(t), zm/zz,
vanish for all t, which is a straightforward consequence
of IIp being a constant of the motion. For m/e, we
have

G(m, n& (t) [1/(z&z N)&g]

&Q(t) I [Ho, (a")"a"]-[4(t)), (13)

and this vanishes on account of the relation Hp[lg(t))
= U(t)HO[/(0))=0. Thus the average field vanishes
for all t, but the radiation field emitted by the atomic
system in the superradiant state has the complete even-
order coherence.

[a'R,aR+]=—R' (6) IV. COHERENCE OF STIMULATED RADIATION

and with the use of the Baker-Hausdorff formula, we
obtain

[f(t))=exp( ——',tz[~[zrz) exp(it~atR )
Xexp(ig*aR+) If(0)). (7)

The coherent-state expectation value,

T(n, t)
—= (n [ p(t) [n),

of the density operator, as evaluated in the Appendix for
t&(1/

I
z[r't, is given by the formula

T(n, t) = exp( —t'I z['r') exp( —In[')Io(2t[~[ In[ r). (8)

Its Fourier transform T(s) is

T(s) =exp( ——,
' [s[')Jo(&2tla[r[s[).

The weight function P(n, t) is obtained as a Fourier
transform of the product T(s) exp(-', [s[')/zr and takes
on the form

P(n, t) = (1/2~ In[)~(lnl —t
I xlr) .

The electromagnetic field emitted by the atomic system
in the superradiant state has therefore the coherence
properties of the so-called ideal laser radiation whose
mean photon number is 6xed and whose phase is com-

' J. R. Klauder and E. C. G. Sudarahan, Fgadazaentots of
QNuntlm Optics (W. A. Benjamin, Inc. , New York, 1968), p. 178.

In reality, the instability of the superradiant state is mainly
due to the relaxation processes and inhomogeneities of the atomic
system.

p(t) =exp( ztooata) pz (—t) exp(zta&ata)
& (14)

pz(t) =Trz(exp( itHz) [f(0—))($(0) I exp(itHz)) (15)

and
(0))= lr, O)IP).

The weight function of pz(t) in the P representation can
be computed explicitly in our approximation (see the
Appendix). The expectation value T(n, t) or pz(t) is

T(n, t) = exp( —t'[ ['ra') exp( —
I
n —p [')

&(le(2t [lz I
r [n—p [), (16)

and this leads to the formula

p(P, t)=D(P e'-) (p,0) tD' (eP-)--
where p(0, t) is the density operator (11)for the vacuum

The electromagnetic field is now assumed to be
initially in the coherent state

I p) with the atomic system
again in the superradiant state, since we want to study
the coherence properties of the radiation stimulated by
the incoming external single-mode field of the resonant
frequency. We assume that t&(1/Ix[r'I' and that the
average number of photons in the external radiation is
at most of the order of r, which enables us to use the
approximate relation (6). The reduced density operator
for the electromagnetic field can be written in the form
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initial state and D(y) is the displacement operator for coherence present in the previous case is now destroyed
coherent states. The even-order correlation functions by the incoming radiation.
in this state are

ACKNOVf LEDGMENT

I (t IK[r)"I
pl'" ".

t=o &k)

Since Gt" "i(t))LGt' 'i(t)7" for rt)1, the even-order

The author is greatly indebted to Prof essor I.
Bialynicki-Birula for many valuable comments and
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APPENDIX

(1) Evaluation of Weight Function P(n, t) for Spontaneous Radiation

In the first step we evaluate T(n, t).

T(u, t) =2 &n[(tt~fit(t)&Q(t) [4~&ln&

=
I (n I 0) I

' exp (—t'
I

tt
I
'r') g (r 0

I
exp (—itr*tnR+)

I P~ &Q ~ I
exp (itttn*IL)

I
r 0)

=exp( —fu[ ) exp( t [i—t[ r )[f exp(i&tu*R-) [r 0&ll'

exp( —lnl') exp( —t I.I'r')C1+t'I&[srs[n['+(t'fit['r'fn[')'/(2!) + ~ ~ ~ 7

=exp( —[n[ ) exp( —t'
f
z

I
srs)Ie(2t

I
K Ir[u[).

In the above formula, the approximate (t((1/[it[ r'", r))1) relation

exp(itrtn*R ) I r, O) I r, O&+itrttt*r
I r, 1&+I

(itttu*r) —/2!7[ r, 2)+. —

is used. The Fourier transform T of T with respect to the real and imaginary part of n, n= (q+ip)/v2, is

1
T(xk) =— dp dg e'&*o "&ie *'&"'+&'iIe(u2t[tr[r(p'+q')'") exp( —t'ltt['r').

2'

(A2)

(A3)

Going over to radial integration variables p and p [ p= (p'+q')'", xp —kq= p(x'+k')'" siny7 and using parceval's
formula "

d y exp Lip(x +k ) t sin y7 =2srJo(p(x +k ) t )

we obtain"

T(x,k) =exp( —ts
I

tr
I
'r') dp pe:r'Ie(%2t

I
tt lrp) Je(p(x'+k')'t')

=exp[ —-'(x'+k')7Js(V2t
I

It Ir(x'+k')'t')

The weight function P(n, t) is given therefore by the following Fourier integral:

(A4)

P(n, t) =
27r2

In radial variables it reduces to

dx dk e '&*o ~'ice(&2t[ s fr(x'+k')'t'). (A5)

00

P(u ")= dp pIo(tl &Irp)Io([nip).
2X 0

This is the representation of the Dirac 5 function on the plane":

P (n, t) = (1/2~ ln I )~(ln I
—t

I
~

I r)

"G. N. Watson, A Treotsse ort the Theory of Bessel Futtetiows (University Press, Cambridge, 1922), Sec. 2.2.
"Reference 10, Sec. 13.31.
"Reference 10, Sec. 14.4.

(A6)

(A7)
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(2) Evaluation of Weight Puuntion for Stimulated Radiation

The function T(n, t) is now given by the formula

T(n, t) =exp( —t'I el'r') g l(nl Qgl exp(igtn*R ) exp(i~*tpR+) lr 0) lp) I'

=exp( —t
I
~I'r')

I (nip) I2(r,OI exp( —ildp"R ) exp( —irc*tnR+) exp(ixtn*R ) exp(i~*tpR+) I r,0&

=exp( —t'I~I'r') exp( In pl')ll expl: —i~*t(n —p)R+llr, 0&ll'

exp( —tml~l'r') exp( I—n —pl')Io(2tlKlrln —pl), (AS)

where we used the approximate commutativity of R+ and R and the smallness of t
I el r'". Shifting the integration

variables by P —+ P'=P+Po, q
—+ q'=q+go, where P= (go+iPo)/V2, we can reduce the Fourier integral for T(x,k)

to the previous form (A4):

T(x,k) = e'&~» ~&'~ expL ——'(x'+k') )J'o(%2t
I
~

I
r(x'+k')'") .

The Fourier integral for the weight function P(n, t) now has the form

(A9)

1
P(n, t) =

2%2
dh dk e-'i (~»&-"«-o»~Jo(v2tl ~lr(x' +k')' 't), (A10)

which gives after the integration the formula

P(n, t) = ~(ln —pl —tl ~lr) 1/(2~ In —pl).
The density operator pr(t) can be therefore represented as

(All)

t r(t) = d'nln+p&(n+pl~(lnl —tl~lr&/lnl. (A12)

The Anal expression for the complete density operator p(p, t) can be expressed in terms of the displacement operator
D(y) in the form

where

p(p, t) = exp( it&rata) pr(t) e—xp(itooata)

=D(P '"') (0,t)D '(P '"'),

2

p(0, t) =-
2Ã

(A13)

In order to evaluate the correlation functions G(" ")(t), we use the relation

D-'(v)(")- "D(~)=("+~*)-(+~)-.
For even-order correlation functions we obtain

2

G&" "'(t) =— dp(tl ~Ire '&+p*)"(tl ~Ire'&+p)"
2'

2x
re tn

(tl~lr)"+'«pliv(k —t)l(p*)" 'p" '
at=o kj (t

I
(tl, lr)»l pl2 —».

a=o
(A14)


