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Density Matrices in the Many-Body Problem: Connection with Scattering Theory

P. GLUCK
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The energy per particle in a many-particle system, both for bosons and fermions, is discussed using a
perturbation method and some results on reduced density matrices obtained previously. The theory is tested
for hard-sphere, Lennard-Jones, and nonsingular potentials; it exhibits clearly the difficulties in going to
higher-order approximations and gives results which correspond to those obtained by other methods.

1. PERTURBATION THEORY

sining= j,(r)R t(r) u(r) r'dr,

where I=kt —ks is the difference of initial wave vectors,
j&(r) is the Bessel function of order 1, Rt(r) is the solu-
tion of the radial equation, and u(r) is the scattering
potential. A close relation between the partial-wave
formalism and the usual energy-perturbation theory is
easily established. The latter is the result of iterating
the identity for the wave function

where the operator Q is the difference in the pair and
single-particle contribution to the potential energy, eo
is the eigenfunction of the single particle, and I„is that
of the full Hamiltonian. Consider the unperturbed wave
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'
~~ENSITY—MATRIX methods have proved a

powerful tool for studying both quantitative and
qualitative aspects of the many-body problem, particu-
larly in calculations of ground-state and correlation
energies. ' Variation principles using density matrices
have been recently developed and applied to several
models; restrictions on functions corresponding to A-
representable density matrices discussed" and pertur-
bation theories employed. ' ' .

Here we would like to exhibit the connection between
energy perturbation theory and the partial-wave for-
malism, to apply some results of the density-matrix
approach of Ref. 4, and to generalize from a solution of
the two-particle problem to the calculation of the energy
per particle of a many-body system.

Let us briefiy recall the result of the partial-wave
analysis of two-particle scattering. The phase shifts are
given by'

function of two particles,

h2$2

+4~ Z (2l+1)
L=O

oo

j &(srKr)Rt(r)N(r)r'dr. (3)
V

Equation (3) is derived by using

li'relative= 2 A tRt( )~t(c |) y

L=O
(4)

where the A~ are coeKcients, together with the orthog-
onal property of Legendre polynomials. If the wave
functions have specified symmetry properties, then
P(21+1) is replaced by

(A Z +& 2 &(2t'+1),
I, even l odd

with A+&= 1, and A and 8 are determined by sym-
metry considerations. For example A=1, 8=0 for a
spin-zero Bose gas, A = ~, 8=—„' for a spin--,' Fermi gas,
etc.

Equation (3) may now be iterated in two different
ways. One can approximate Rt(r) in Eq. (3) by jt(r),
which is similar to the Born approximation. This in
fact is the erst step in ordinary perturbation theory and
suffers from divergence difhculties when the interaction
issingularattheoriginu(r)~)r ' "asr +0. Thesecond-
method, which avoids divergencies, consists of taking
the faster-converging Taylor expansion for E~,

Rt(K', r) =Rt(K, r)
+ t (8/BK) Rt(K', r)g(K' K)+ . ,—(5)

' ll the reduced mass tc=s'm is used, then Ep= (h'/2 ts) (nK)',
with E'=4k'.

= g2«R (&I+&2)g2&iK r
0

Transforming away the center-of-mass motion by a
Lorentz transformation, the eigenvalue is Ee= (h'/2rtt)
)&(2srk)'. ' The exact wave function can be similarly
factorized:

—~2m i(ki'+lr2') ~ 2, I,
~

~

y 'relative y

with
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poo(K) I4-i.i'-I 'd'E p20(K) d'K =1~pio'(r),

p d'K=l&(& —1)+-'.Lp (0) p (o)J.

where E'= E+ . Such an iteration, based on the un-
perturbed energy given by E, is an improvement over
the perturbation of the unperturbed wave function ji(r).
For a two-particle system the procedure is tautological
since it relies on knowing El explicitly, but once the
latter is known the problem is solved. Before generaliz-
ing to a many-particle system, we note that the poten-
tial energy of the two-particle system can be given
explicitly in terms of the bl,

4h'
E„=— (A P +8 P )(21+1)sinai

l even l odd

+O(E' E) . —(6)

In the many-particle generalization of Eq. (6), the sum
over the products jlRl will clearly become the pair dis-
tribution function po(r). We shall return to this later.

Equation (6) is one of many possible formal approxi-
mate solutions to the two-body problem. How will
the introduction of an extra (E—2) particle affect the
picture? For extremely dilute systems the changes are
small (cf. Mayer gas theory), while for dense systems the
two-particle picture is qualitatively wrong. Regardless
of the density one may proceed as follows:

(i) Suppose the remaining particles are uncorrelated
and constitute a uniform "field" of uniform probability
density. Since the original pair could be any pair, one
need then only average over all possible pairs using
correct weighting factors for different possible values of
E.

(ii) Suppose a third particle is detached from the
uncorrelated field. One would then have to solve a
three-body problem exactly and average in the same
way as above.

(iii) Suppose a fourth particle is detached. It would
then be necessary to solve a four-body problem. And so
forth.

Clearly, we can only discuss stage (i). The weighting
function is po(r), the Fourier-transformed. diagonal two-
particle density matrix. Before averaging, one must be
certain that there is no correlation in momentum space
affecting the probability of two particles having relative
momentum X.As long as the interaction is momentum-
independent, one can make this assumption (for spin-
dependent forces and magnetic forces, in general, one
cannot argue thus). In the absence of such an interac-
tion, only the change in kinetic energy due to correla-
tion will affect po(E).

The pair distribution for an interacting gas will
clearly be deined in a way analogous to the noninter-
acting case p2p.

Recall the connection between the Born approximation
for (5) and the usual 6rst-order perturbation theory. If
El ~ jl, we would have for a many-body system the
usual result, making use of the identity

sin(2+Kr)
2 g (@+1)jP(~Kr) =1~-

l 2xEr

Thus, averaging over poo(E) as in (7), we get for an
ideal Fermi gas,

poo(r) =1——,'pm (r).

The Hartree-Fock potential energy per particle is ob-
tained from the usual formula

E„= po(r)u(r)d'r,
2V

so we de6ne, following (6),

2(E—1)po(r)=2(A g +8 Q )(21+1)
l even l odd

oo

ji(+Kr)Ri(K&r) po(K)E'dK. (11)E p

For practical calculations we note that pi(E) and po(E)
also have a perturbation expansion for interacting sys-
tems (cf. I), and that Eq. (11) is de6ned in the same
iterative sense as Eqs. (3) and (5).

In the next section the method for various kinds of
interaction potential is illustrated.

tanbi = ji(mEu)/ni(mEa), (12)

with jl, nl being spherical Bessel and Neumann func-
tions. In the limit xEe«1 it is easy to verify that

tanbi=sinai=bi=(mEa)"+'/(2l+1)!!, (13)

so that the only contribution to terms of order g and g'
are due to S-wave scattering 80= —xE~+O(ao). We'
observe that the linear term in E will just cancel the
1/E dependence in (5), so that the average over all E
states is trivial. The only step necessary to obtain the
6rst-order energy per particle of the many-body system
is to match the normalization constant, which means
multiplying Eq. (5) by ocV. This can be verified by com-
paring Eqs. (5) and (2) with the usual formula for the

2. ENERGY PER PARTICLE

A. Hard-Sphere Gas

The hard-sphere system is a useful test of the for-
mulas of the approach outlined above since the phase
shifts can be easily calculated exactly. Thus assuming

u(r) = ~, r(a
=0, r&u

the phase shifts are'
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potential energy. The result, at low density, is

E„=(27rh'N/mV) aA+

with Whittaker's function as solution,

E.(r) = Ll (l-.)/1'(!)3(-,*~"')-'"
&&r ~ W&, v p(p'A~ r ) (19)

and with the asymptotic form

r( ——,') r(-,'—~) 1
Rp(r) = 1+ (~X"')"'—+0(1/r') . (20)

r(-,') r(-; —
&) r

X =mppa"/4', g'= my pa'/64k'

Since we are taking E=O, only boQO, and the first-
order Bose-gas energy is

i.e.,
&"=K'+4aA/m V+

ence, although the first-order correction can be found

without calculating E~(r) at all, higher-order corrections

need a more detailed approach. ' ' However, it can be
seen that in the Bose case there vill not be corrections
from the ground-state distributions ppp(E) or pp(k)

since these vanish identically except at E=O, k=O.
Hence all corrections to (14) for bosons (for all partial
waves) must also involve the expansion parameter W,
(cf. I), ~ (a'N/V)'~'. Hence we expect an extra term in

(14),

f'(-')&(-'- ) h'~' NE„"'=47r2'~' ~ »&a»4 -- (21)
1'(~)1'(p —n) m'" V

which is exactly Abe's result. ' It is not defined when
g=-s, the case of resonant scattering, when a bound
state is about to be formed. "Then

j. 5a'
&p(r) = —exp —— — —+

4 r

where A = 1 for bosons and 4 for fermions. These results
are well known (originally found by Lenzr).

We make some remarks concerning higher-order cal-
culations. It is clear that P, D, and higher-order partial
waves do not contribute until at least the order a', for

both bosons and fermions. If a term of order a' exists,
it must arise from a modification to the approximate Here A. and g are defined as
function R~(E,r) due to the correction just calculated,

E„„„.,= (2vrk'Na/mV)L1+n(a' N/V)"'+ 3. (16)

E„F„;——(7rpg'1Va/2m V)(1+p&pa+ ) . (17)

The expansion (16) is interesting in that it predicts the

failure of any attempt to expand the wave function, for
examp]. e, in simple powers of a. The correct parameter
arises from the convergent expansion of the momentum
distribution functions p(k) and pp(E). The deviations

from the ground-state contributions represent zero-

point oscillations (phonons). Thus Wp refers to phonon

interactions and a8'0 to phonon-particle interactions,
while a term of order lVO' represents phonon-phonon

interactions.

Q. Lennard-Jones Potential

Consider the potential'

In the Fermi case, the ground-state distribution has

a different form and one would expect the next contri-
bution beyond (14) to contain only the Fermi parameter

kF, i.e.,

1
—+0~ — as r ~~ . (22)
r

This form is quite different from Eq. (19). This is con-
nected with the fact that for resonance scattering we
have 8~NO (l)0) and the scattering is not rnomentum-
independent. The form 1/r indicates that the 5-wave
function is pulled in by the attractive potential and
higher waves contribute to the asymptotic form of the
total wave function.

For a Fermi gas, the first-order energy can be calcu-
lated as in (20) but here, since it is not reasonable to
assume E=O, a better perturbation treatment of the

full radial equation is needed in which (20) may be
taken as the first approximation. This is under study, is
quite complicated, and will be reported later.

C. Nonsingular Potentials

Though not of great physical interest, nonsingular
potentials allow the derivation of simple results as illus-
tration of the method. Consider

u(r) =up[(a/r)" (a/r)' j—
In the case of zero-energy scattering, the radial equa-
tion is

Ng(r) = —d, r(a
r&a (23a)

1 d( dRp 2p,——
~

r' ——u(r)Rp(r) =0,
r' dr( dr
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Np(r) =d, r(a
=0, r&a. (23b)

As usual, at low density, we focus on 5-wave scattering
and do not consider bound states or resonant scattering

0 It can be shown that for 0&g (s there are no bound states,
while for y&-,' there is at least one bound state.
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with u~. The exterior and interior solutions of the radial
equation are matched by the logarithmic derivative
across a. Letting

7rK= (2pE/h') "' srKi = (2pd/h') '"
Eo'——E'~Ex' (24)

where & refers to N~ and N2, one gets

bp= tan 'L(K/Kp) tan7rKpa) Ksa—. (25)

More detailed analysis shows" that the phase shift bo

approaches a positive integral multiple of m-, the integer
being the number of 3=0 bound states. Here 80~0+
or 0 for N~ or 02. The no-bound-state restriction is ful-
6lled if Ega(1 and Ega/-'„ i.e.,

2pda'/h'(1 2@dc'/0'&-,'.
When either of these becomes an equality, one has reso-
nance scattering.

The potential energy is obtained, to first order in
powers of u, by noting that for bosons A=1 only the
asymptotic value of bs/K is significant, since other K s
do not contribute to ps(k) and pss(K) ~ Thus from (25),
for Ea«1, one gets

2m II,~)V tang KqaE„=- a- d+ for ui, (26a)
mV zEg

2s k'Ã( tanhs Kia)
E„= (a- id+ for us. (26b)

mU k sKi

In the limit of very weak interaction, E&a«1, the power
series for tan and tanh converge, and terms of O(a)
cancel for both u~ and N2. On the other hand, for a finite
and Ei ~~, (26b) reduces correctly to the hard-sphere
expression (14).

"N. I". Mott and W. Massey, Theory of Atomic Collisions
(Oxford University Press, New York, 1949).

The Fermi case is superficially similar in the limit
E~a&-', to the above, when terms linear in c cancel.
But if E~'&&E', so that Eo' E~ or iE», bo again con-
tains only a term linear in E so that the average over
ps(K) is trivial. The first-order results are as in (26),
with A =

4 and the additional condition E~'))E This
makes (26a) worthless for fermions except near reso-
nance, while (26b) is valid at low density Ka((1 with
a moderately "soft" repulsion or at higher densities with
consequently "harder" repulsions. To calculate the
energy where the above limiting conditions do not hold
true involves an exceedingly complex integration which
has not yet been carried out.

3. DISCUSSION

A combination of the partial-wave formalism of
scattering and the reduced-density-matrix formulation
of the many-body problem has been used to calculate
the energy per particle of Fermi and Bose systems with
various interactions and well-de6ned limits on the den-
sity, and some well-known results have been obtained.
It would have been interesting to include a discussion
of repulsive screened Coulomb and attractive Yukawa
interactions, but the phase shifts cannot be obtained by
analytical methods except in the Born approximation.
For progress one clearly must be prepared to use nu-
merical computing of the integrals that arise, but espe-
cially to use the many improvements over the Born ap-
proximation that are available, as well as, in the
formulation of Sec. 1(ii), the recent analyses of the
three-body problem. "
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