Phase of the Large-Angle Scattering Amplitude and Van Hove's Uncorrelated Jet Model, G. D. Kaiser [Phys. Rev. 183, 1506 (1969)]. In the s-u plane at fixed $A = (t^2 - c^2)/(s - u)^2$ ($0 < c < 4m^2$, c being a real constant that was inadvertently set equal to zero), the scattering amplitude has a branch point in the upper half-plane, preventing the use of the Phragmen-Lindelöf theorems. Equation (2.7) is therefore only one possible way of satisfying Eq. (2.4). It should have been made clear that the assumption (2.11) can only be relaxed for the special class of functions g(s,A) that satisfy Eqs. (2.14) and (2.15).

Reaction $\pi^-p \to \pi^-\pi^0p$ at 8 GeV/c, S. J. Barish, W. Selove, N. N. Biswas, N. M. Cason, P. B. Johnson, V. P. Kenney, J. A. Poirier, W. D. Shephard, and H. Yuta [Phys. Rev. 184, 1375 (1969)]. A number of points in Figs. 3 and 4 disappeared during the printing process, including all of the points in Fig. 3 corresponding to backward production angles (i.e., along the upper boundary of the allowed region). The correct Figs. 3 and 4 are reproduced below.

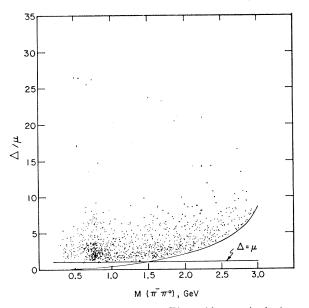


Fig. 3. Chew-Low plot for $\pi^-\pi^0$. The solid curve is the lower kinematic boundary of the plot.

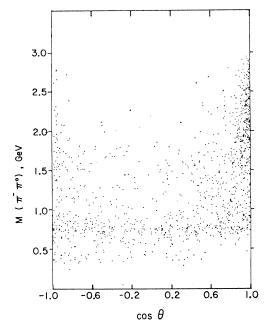


Fig. 4. Scatter plot of $\cos\theta$ versus $M(\pi^-\pi^0)$.

Sum Rules, the $SU(2) \otimes SU(2)$ Charge Algebra, and Scattering Lengths for $\pi + \pi \to \pi + \pi$, J. Yellin [Phys. Rev. 182, 1482 (1969)]. The following misprints should be corrected:

Page	Line	Should read	
1484	(3.9)	K, τ not $K+\tau$	
1484	2nd of Sec. III B	(2.4) not (2.5)	
1485	3rd above (3.11)	$\tau = 0$ not $z_s = 0$	
1485	(3.11)	delete \times	
1485	1st above (5.1)	(3.7) not (3.8)	

The usual convention for forward and backward scattering has been reversed. Correct as follows:

1483	(2.3e)	$-z_u$
	(2.3f)	$-z_s$
1484	(3.9)	$+P_1(z_s)$ (twice)
1485	(3.11)	$+\frac{1}{2}D_1^s$
	(3.11)	$+\frac{1}{2}\sum^{\omega}$
4406	(5.0)	J=1
1486	(5.8)	$-P_1(z_s)$ (twice)
1486	1st above (5.9)	- Z ₈
1486	1st below (5.8)	forward not backward

For clarity, add to the line following (3.9) "..., and where in the last equality we have taken $\tau = 0$."

3rd below (5.7) ...take
$$U = N = 2...$$

4th below (5.10) ...right (cut off at m_{ρ}^2), ...