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Application of a Relativistic Resonance Formula to the e+e—~ pe+~- Experiment*
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The present data for the reaction e+e ~2r+m. are analyzed with the aid of a general effective-range
resonance formula for the p meson. It is concluded that (a) m, = 769&3 MeV and I', = 109&10 MeV pro-
vide a reasonable explanation of the present experimental points; (b) the full width at half-maximum
regardless of the peak height should give an excellent estimate of the p width; (c) it is hard to escape
( F (m, ') ~'= m, '/I', '; (d) the effects of final-state interactions on resonance shape ought to be investigated.

D(s) =1—s—st) p(s')ds' p(s)—z-

(s' —sp)s(s' —s) s—sp
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p(s') =P C;sp, (s')fl(s' f,), 0(s—) =1, s)0

" "
KRK we present an analysis of the pion factor as

-- - ~ measured in the e+e ~m+x experiments of
Qrsay and Novosibirsk, ' using a formula derived from
a natural relativistic generalization of the Breit-Wigner
formula for the p meson. 2 This relativistic resonance
formula, when tested against the 7rE —+7i-xE data,
appears to be quite satisfactory, ' although we will have
more to say on this subject later. For our purposes here,
we need only the following expressions:

Then T '=E '—E defines an analytic E matrix
which should be easier to approximate. At a reso-
nance, T becomes pure imaginary, which means
K '~ (Kp ')(sg —s), with Kp)0so that wehaveapole
on the second sheet. Eo is the matrix of coupling con-
stants to the resonance: (Kp);, =k;k;. Thus,

T=Kp(sn s RKp—) '—=Kp/Psg s Tr(R—K—p)),

or T=Kp//D(s) with A(s) =s~ —s—Tr(RKp). In order
to make Re(Tr(RKp)g vanish as (s—sa)' when s —+ ss,
we subtract it twice at the mass of the resonance. This
formula, like all effective-range formulas, usually has
a pole on the real axis for s(0, i.e., D(sp) = 0 for sp(0.
This pole must be removed to get the form factor. It
can be shown that

S—Sp
=0, s(0. (3) A(s)=(s —sp)~ 1— LZ C'p (s')f)(s' —&*)l

r. s =—
" p;(s')ds'

+possible subtractions.
- s —s—ze'e
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C;, p;, and t; are given in Table I;i is the channel index.
A short discussion of the derivation of (1)—(3) will

be given here; for a more complete discussion, see
Ref. 2.

BrieQy then, for the 1 partial wave, we write the T
matrix, related to S matrix by S=1—2spT, as T '
=E' '—ip, where we have introduced the E' matrix; p
is the matrix of relativistic phase-space factors:

p =p'(s)8' fj(s "f ). —

As defined, E' is not analytic, because p contains 0
functions. We assume T is analytic because all currently
acceptable theories have this property. Suppose we now
define R;;(s)=r;(s)8;;, where

(s' —s,)'(s' —s —4)7ds'),

where C; are proportional to the k;, and we display the
zero at s= so explicitly rather than that at s=sg. Thus,
D(s) =D(s)/(s —sp) which leads to Eqs. (1)—(3) if we
elect to normalize F (0)= 1. Observe that D corresponds
to the D function in the ED ' method with the left-hand
cut replaced by a pole at s=so. Like the usual simple
pole approximation at s=sg, D(s)=sa s selrrFg —for-
s=sz, but its behavior away from that point is not
the same. It seems plausible that Eq. (2) ought to be
better than the usual simple pole approximation,
because it has more of the properties of the correct D
function than the latter. For example, one significant
property Eq. (2) possesses is that the integral in D
gives the analytic continuation of the decay widths of
the resonance into the various channels. That such an
analytic continuation is needed, in general, was ob-
served some time ago, 4 in the calculation of the mass
shift to a nuclear state due to the opening and closing
of a channel as the position of the channel threshold

oves. For these reasons, we will use Eq. (1) with the
three channels that seem most significant 7rx, m-cu,

4 J. B.Khrman, Phys. Rev. 81, 412 (1951);R. G. Thomas, ibid.
88, 1109 (1952); for a modern discussion, see S. C. Frautschi,
Phys Letters 8, 141.(1964).
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TABLE I. The relevant data for insertion into Eqs. (1)-(3).We have used the values and conventions of Ref. 2 except for a permu-
tation of channels. The (+—) refers to the helicities of the nucleons. The integral over channel 3 has been cut o6 sharply at 200m '.

Channel Particles Masses

m —1
sn~ =6.72
tlZ =5.61

Thresholds
Q

4.0 0
180.6 0
43./ 21.2

Coupling
constants'

CI =0.90
C2=3.0
C3=0.60

Functions p;

[(s—t,)'/16s]'"
[(s—to) /4]'"
[(s—to)'(s —No)' J"/16s

a These are varied in order to fit the data. The approximate values shown are those expected from other considerations: C1=0.90 corresponds to a
100-125 MeV width, depending on so and D'(mp~), C2 is inferred from universal p coupling and vector-meson dominance of the electromagnetic form factor,
and Cs comes from the co ~ 3m decay width. See Ref. 2 for more details.

mpI p

Cispi (m, ') 1 BD
D'(s) =

m'+ [so[ ReD'(m, ') Bs
(6)

Plotted against E=gs, D(0)/D(s) peaks for 8=m„
and has a full width at half-maximum approximately
equal to I"p. These facts lead us to a quantitative test
that can be applied to the e+e ~ ~+~ data in order to
see if Eqs. (1)—(3) can reasonably explain them. For
we see that

D(0) ' m, '
[F.(m s) [s=

m s ReD'(m ') r '

%tv(+ —), when we attempt to fit the data. These
three channels were quite adequate in accounting for
the p meson in m.E~~zX, where it was found that'

I', = 152&18 MeV and m, = 768&2 MeV. (4)

I-et us now consider the mm problem in the 1 partial
wave. In Table I, we see estimated values for the C;.
With values such as these, ReD(s) turns out to be
approximately linear. %e dehne mp' and Fp as follows:

ReD(mp') =0,

but, nevertheless, even in these cases we find that a
very good estimate of I'„ the p-meson decay width or
inverse lifetime, is the full width at half-maximum in
the form factor, regardless of the height of the peak.
This suggests the desirability of obtaining very accurate
data points around the half-maximum on each side of
the peak as a way to measure the p width precisely and
rather independently of the exact dynamics reQected,
for example, in the thresholds and coupling constants
which enter into Eq. (2).

APPLICATION OF EQS. (1)-(3) To
EXPERIMENTAL DATA

In Fig. 1, one sees the results of fitting Eq. (1) to the
present experimental da, ta (see the Appendix for

60-

When ReD(s) is approximately linear, because
D(so) = 1 and ReD(m, ') = 0, we find that

D(0)/D(so) =m„'/(m, '+ [so[)
$0-

ReD'(mps) = 1/(mp'+ [so[).

We do expect D(s) to be roughly linear, and thus we
expect the following relation to be true:

[F (m, ') ['=m, '/P, '.
Comparing Eq. (8) against experiment, we see that

it is consistent at this point, but only because of the
large error bars. This is particularly true of the Novo-
sibirsk points. It will be interesting to see how Eq. (8)
fares in the future as the experimental results are
sharpened.

For example, it may turn out the D is sufliciently
nonlinear so that Eq. (8) will not hold. For example, if
we set gp++ gp 0, or if we take g, =1.5, we get
suflicient nonlinearity to affect Eq. (7), quite sub-
stantially in the latter case. Neither of these examples
is particularly realistic in the present scheme of things,
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FIG. 1. The curve was Gtted using Eqs. (1)-(3) (see Appendix
for details) with four parameters, obtaining so=(380&8)m o,

CI = 1.15&0.01, C2 ——3.0&0.05, C3 ——(0.45&0.20)ns '. The
was 25; see text for discussion.
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details). It is quite reassuring to see that the mp~ and
pe% coupling constants are consistent with the values
we expect from other sources of information. ' Although
the X' obtained is not, so good (S%%uq confidence level),
observe that the Novosibirsk point at 855 MeV and the
Orsay point at 886 MeV are in disagreement, and alone
contribute a X' of 10. Furthermore, the Orsay point
at 940 MeV contributes another 6. These large contri-
butions indicate either an experimental or theoretical
problem to be resolved in the future. From Eqs. (4)
and (3), we obtain

mal=5. 49~0.02 m = 769~3 MeV,

I'p=0. 778~0.04m = 109~6 MeV.

Note that the curve in Fig. 1 satisfies Eq. (7) very
closely, despite the fact that D(s) deviates from
linearity, as reflected in the values D(0) =0.136
and ReD'(m ') =447&&10—'m ' Nevertheless, D(0)/
m, ~ ReD'(m, ~) = 1.01, which shows the insensitivity of
Eq. (7) to possible nonlinearity. [The linear predictions
for D(0) and D'(m ') are D(0) = 0.0732 and ReD'(m ')
=2.44X10 'm ' j

The above values indicate, of course, a problem, when
compared with those of Eq. (4). Inasmuch as the sample
of p's in the e+e ~vr+vr experiment are "cleaner"
than those in ~cV -+ ~irE, one is inclined to take Eq. (9)
more seriously.

This kind of difhculty is not new. Although the
success of the hypothesis that the p meson is universally
coupled to the isospin current has been great, we have,
in fact, a list of annoying discrepancies between theory
and experiment, some of which are as follows:

(1) The p-meson width never seems to be quite the
same from experiment to experiment. This effect
became so pronounced that at one point the Rosenfeld
tables' ceased giving a width for the p meson and even
now merely give 125&20 MeV, which would appear to
be fairly safe. In the author's opinion, the probable
cause for these differences is to be found in an accurate
many-body calculation for those states (m.vrlV, 7r7r~,

cV3~, E47r, etc.) where p mesons are seen, but re-
scattering effects, three-body effects, or final-state
interactions are significant. One would guess that these
effects broaden the peak.

(2) The nucleon isovector form factor appears to be
given by something like

1/(q'+m, ')'

' The residues at the p pole are the crucial thing. We find these
to be g,~~=2.06+0.03 and g, „=0.31&0.15, compared to the
expected 2.11 and 0.45. Both are in agreement with the expected
values. The value 2.11 for g,~~ is based on p dominance of the
nucleon isovector form factor and p universality; so, the agreement
here is better than we have a right to expect.

'Xaomi Barash-Schmidt, Angela Barbaro-Galteri, Leroy R.
Price, Arthur H. Rosenfeld, Paul Soding, Charles G. Wohl,
Matts Roos, and Gianni Conforto, Rev. Mod. Phys. 41, 109
(1969).

instead of
1/(q'+m ')

the latter being what p-meson dominance most naturally
suggests. This is even more puzzling when one discovers
in Eq. (2) that the IVY contribution is the most im-
portant single factor in producing the zero at s pip',
which is to say that the ÃX sta, te is the most important
factor in producing the p meson as a resonance. As al-
ready pointed out in Ref. , this seems to indica, te that
the p meson is best considered an le bound state rather
than a zw resonance. This is the same as saying that in a,

world made of nucleons, which do not bind to make
pions, the p meson would exist as a stable particle, but
that since we do have pions, it decays into them.

(3) There seems to be no p-meson production from
Sp EX. This is very mysterious and is the cause,

in a recent paper applying the Veneziano model to
pe ~ ~+7r m, ' for adding an ad hoc factor to eliminate
the p meson. If indeed the thesis of Ref. 8 is correct,
and the pe —+ x+~ m amplitude is essentially just the
vr —+~+sr vr amplitude with the initial m having a
mass of 2m~, then we cannot avoid seeing p mesons.
We do not see them; therefore, the annihilation ampli-
tude cannot be the m~ scattering amplitude with one
heavy 7r meson. Furthermore, things seem to be even
much more complicated than this, because any model
the author knows of says that there ought to be p
mesons produced. There are resonance bands at an
effective mass of mp in the pm —+m-+~ x Dalitz plot,
but they are uniformly populated, which is not what
one naively expects of a p meson. Perhaps again an
adequate understanding of three-body effects would
show that we have p mesons, but that our naive expec-
tations are significantly altered.

These difhculties indicate at least three significant
points that ought to be investigated in the world of
the p mesons, and there are others more fundamental,
e.g. , the original question raised in 1960 as to how the

p meson acquires a mass if it is a Yang-Mills field. So,
the p meson, historically the first of a new short-lived
breed of meson (so short-lived, in fact, that serious
questions were raised as to whether it deserved to be
called a particle at all), still remains both an interesting
and not very well understood member of our family of
particles.

COMPARISON OF THIS ANALYSIS
WITH OTHER WORK

There have been other analyses similar in nature to
that undertaken here. Those of Refs. 10 and 11 are

' C. Baltay, P. Franzini, N. Gelfand, G. Lutjens, J. Severiens,
J. Steinberger, D. Tycko, and D. Zanello, Phys. Rev. 140, B1039
(1965); N. Gelfand, ibid. 169, 1077 (1968); P. Anninos, L. Gray,
P. Hagerty, T. Kalogeropoulous, S. Zenone, R. Bizzari, G.
Ciapetti, M. Gaspero, I. Laasko, S. Lichtman, and G. C. Monetti,
Phys. Rev. Letters 20, 402 (1968).' C. Lovelace, Phys. Letters 28B, 264 (1968).

9 J. J. Sakurai, Ann. Phys. (X. Y.) 11, 1 (1960).
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contained in Eq. (1) in the following way: In Ref. 10,
our Eq. (2) was used with only the mar channel, and in
Ref. 11, our Eq. (2) was used with only the s.~ channe

f. 12hich a cutoG was placed in addition. In Re .
~ Fa great variety of formulas are presented. Their qs.

(12b) and (13) with an interaction radius R=1/m,
ought to agree very closely with the results here. And,
in fact, the curve presented here is right in the middle
of the various curves they calculated. They did not,
however use R= 1/m„ favoring R=O instead. Two
arguments can be presented for R= 1/m, :

(a) Nonrelativistic theory predicts R=interaction
radius = 1/m, .

(b) The relativistic theory of Ref. 2 and here gives
a phase shift close to that of the nonrelativistic formula
where R= 1/m, .

CONCLUSIONS

The analysis presented here suggests that

(a) P, = 109&10MeV, m„= 769&5 MeV. The error
bars are conservative estimates.

(b) A measurement of the full width at half-maximum
should provide a good estimate of the p-meson width,
regardless of the height of the peak.

(c) It is very unlikely to find anything much different
from

I
J'-(~.') I'= ~,s/r, s.

(d) Studies of final-state interactions in slV —+ s.~lV

and ÃN —+ 3m should be undertaken in order to under-
stand their effect on the observed resonance peaks in
these interactions.

The author would like to thank Professor J. J.

and Professor J. E. Augustin for communicating is

latest results prior to publication.

APPENDIX

Here we present in some detail the method and func-
tions for implementing in a numerical calculation
Eqs. (1)—(3) in the text.

In Table I, we see the necessary p functions (phase-
space functions), thresholds, masses, and approximate
values of the coupling constants.

As shown in Ref. 2, we need the following functions
~ ~

(we take this opportunity to correct a remaming error
in Ref. 2, which is the absence of an exponent of 2 on

the s—m ' in the fourth term of the equation for II3P

and on the s' —m, ' under the integral sign):

f(s, t,u, A) =P
8S

i
(s' —u)(s' —t)jt" s' —s

(0&u«) (A1)

f'(s, t,u,A) =
(s —t) (s—u)

L(A —t) (A.—u)g"' t't+u
+i —s if(s, t,u,A)

s—A 4 2 )
(A2)

Hr(s, t) =P
(s' —t)' ds' (s—t)'

f(s, t,0,~)
L '(s' t)3"' —(s' —~o)'(~' —~) (~—so)'

r) (so—t)' (so—t)'
+ — f(s,,t,O, ~ )+ f'(s, ,t,O, oo), -(A3)

Bsp sp —s sp —s

Hs(S, t) =I'
(s' —t) (s') ds' (s —t)s

f(s, t,0, ~
Ls'(s' —t)]'t' (S'—So)'(s' —S) (S—So)'

Bsp sp —s sp —s

Hs(s, t,u, h.) =P
P(s' —t) (s' —u) g'" s'(s' —s )'(s' —s) -', (t—u)»o'

as() so(so —s) (~o &) (~o)

Rev. Letters 21, 244 (1968);G. J. Gounaris, Phys. Rev. 181, 2066 (1969)."G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lette s

atts Roos s,nd Jan Pisut, Nucl. Phys. 810, 563 (1969).

(A5)
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(note change in H~ as compared to Ref. 2). We further need

1 (t+u ) (t+u ) 1 1f"(s,t,u, h) = —s if'(s, t,u,A) —f(s, t,u, A) 1+i —s
i

+
(s t)(—s—u) ~ 2 I 4 2 ) s t —s—u

)(A—t)(A —u) j'I't 1
-+ + I, (Afi)

s —A ks —t s—u s —A)

where the primes of f indicate partial differentiation
with respect to s.

The reason we need f" is to be found when we
consider the singular points s=0 and s=sp. For these
points, we do the following:

(1) Define hi (s) = (s—t)'f (s,t, 0, po ).
Then,

Also,

h p(O, t,u,A) 1 8' hp(sp, t,u,h.)
H, (so, t, u, A) = — +-

sp 2 Qsp sp

t'u'f (O, t,u, h.)+,'Lp(s„o-)f"(s„t,u, A)
Sp

3

+2p'(s, ,0)f'(sp, t,u,h)

+p" (sp, 0)f(sp, t,u,A)), (A12)

2 2 1 2

p" (b,~) =p(b, ~) +
b —t b —I b —aThen,

Hi(», t) =
2 (~'!»o')hi(so)

=f(sp t 0 po )+ (sp —t) f'(so, t,0, po )
+p(sp t)'f" (—so, t, o, ") (A7) where

(2) Define hp(s) =s(s—t)f(s, t, O, oo).

Hp(0, t,u, A)

8 hp (x) el h p (so)

Bs (x—so) ~=p Bso sp

=p (O,so) f'(O, t,u,A)+p'(O, so)f(O, t,u, A.)

+p(sp 0)f (sp t u A)+p (sp 0)f(sp. t u,A), (A9).
where

and

(b —t)'(b —u)'
p(b, a) =- (A10)

Hp(sp, t) = 2 (8'/»pp)hp(sp)
= f(sp, t, O, oo)+ (2sp —t)f'(sp, t,O, ~)

+-', sp(so —t)f"(sp, t,O, ~) . (AS)

(3) Define h, (s) = (s—t)'(s —u)'f(s, t,u,h).

+ — — . (A13)
(b —u)' (b —t)' (b —u)'

LHi(s, t) and Hp(s, t) are well behaved at s=O.jThe need
for s=0 is clear because F (s) =D(0)/D(s). The need
for s=sp is less obvious, but occurs because it is good
to supply a minimizing routine with derivatives. One
parameter being so, we need BD/Bsp and find that

(8/8sp)L(s —sp)H;(s, t)j=H, (s,t) —2H, (sp, t),

so that H, (so, t) is required.
The formulas (A1)—(A13) were used to define the

function F (s) and its derivatives to the author' s
version of Davidon's variable metric" which provided
the results shown in Fig. 1 and discussed in the text.
ln Eqs. (A5), (A9), and (A12), h. was taken as 200m '.

2 2 1
p'(b, a) =p (b,~) +

b —t b —u b —a
(A11) "W. C. Davidon, Argonne National Laboratory Report No.

ANL 5990, 1959 (unpublished).


