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a strong energy dependence of the cross section. The
experimental data are not resolved highly enough with
respect to energy to show this trend. However, the effect
is clearly evident both in experiment and in theory for
reaction (2). More data on these reactions would be use-
ful to decide this point. In conclusion, we can say that

the two-meson-exchange contributions merit further
study for processes where one-meson exchange is
forbidden,
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By using a previously developed dispersion technique, we investigate the Chew-Frautschi and the Imn-
versus-s plots for the cascade resonances. The eight resonances are found to lie on three nearly linear plots
on both graphs as was found to be the case previously for the baryon Ã~ and 6& sequences. Of the two types
of resonances, probable and doubtful, all of the former are fitted (with no gaps on the trajectories} and none
of the latter is needed. Severe self-consistency requirements are well satisfied by the two plots.

I. INTRODUCTION

ECAUSE of the improving experimental situations,
more interest has developed recently in the Imo. -

versus-s plot for resonances. ' ' The Chew-Frautschi
(Retr-versus-s) plot has, of course, received attention
for much longer. While most work has centered on the
meson trajectories, one paper in particular' has done
a study of the two best-established baryon sequences:
the X„and Aq.

This work reached a conclusion that the Imo, -versus-s
curves for the resonances were consistent with linearity
and had a slope of 0.135 BeV '. The Chew-Frautschi
plots were nearly linear, being only very slightly
distorted by the dispersion integral used to calculate
the Reo.-versus-s curve from Imn. Some stringent
self-consistency requirements are satis6ed by these
plots, and this lends confidence to the results.

There are a number of reasons for wishing to extend
this technique to other baryon resonances. The most
immediate is, of course, to enable one to classify the
particle resonances themselves and offer suggestions for
their appropriate spins and parities, most of which are
still undetermined.

However, there are two other reasons for such
investigations. While the baryon widths (and hence the
imaginary part of n) definitely rise in essentially linear
fashion, the meson widths may well rise and then fall
sharply, thus forming a peaked Imo. -versus-s curve. ' 4

' R. Spector, Phys. Letters 25B, 551 (1967).
2 S. Mandelstam, Phys. Rev. 166, 1539 (1968).
'P. Collins, R. Johnson, and E. Squires, Phys. Letters 26B,

223 (1968).' G. Epstein and P. Kaus, Phys. Rev. 166, 1633 (1968).
5 R. Aaron and M. T. Vaughn, Phys. Rev. 165, 1722 (1968).' R. Spector, Phys. Rev. 173, 1761 (1968).

In fact, the latest experimental evidence on high-spin
meson resonances indicates they are very narrow. 7

While this does not preclude linear plots (see Ref. 1),
it is more compatible with a peaked plot of Imo. versus s.
If the meson widths do give rise to such peaked curves,
it is of great interest to gather more evidence on bayon
curves and see if they peak (like the mesons) or are
linear (like the 1V~ and Aq). A difference in baryon and
meson behavior would be very puzzling.

Recently, Ball and Zachariasen' have suggested the
interesting possibility that the trajectory function n(f)
is complex for t '..0. One of the experimental conse-
quences of this is that the Imo. -versus-s plot of res-
onances should be a linear plot near the Imn threshold.
Any plot such as we do below is therefore a partial
substantiation of the Ball-Zachariasen conjecture.

In the next section we briefly review the technique
as developed in Ref. 1 and apply it to a recent compila-
tion of data on the cascade resonances. In the last
section we discuss the results of the plots.
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with r& and r& real. (We assume that the trajectories
are functions of s, not Qs.) A very important threshold

' E. J. Squires (private communication).
8 J. S. Ball and F. Zachariasen, Phys. Rev. Letters 23, 346

(1969).

IL TECHNIQUE AND CALCULATION

In Ref. 1 it was shown that for linearly rising Imn
curves we could write
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TmLE II. Parameters of the fits.
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Putting Imn(s) =X(s—s,), we may write Eq. (1) as

Rem(s) =o ~+o 2s ——(s—so)ln
s —sp

(5)
2' —sp3/2—

where some terms from the integral have been absorbed
into the first two terms. We can now see the self-
consistency circle. The value of Imn(s) for a resonance
depends, from Eq. (4), on its value of Rem'(s). But this
depends on X, from Eq. (5). But X is the slope of the
Imn(s) curve, which cannot be determined until Imo. (s)
is known for the resonances. In addition, once a curve is
plotted for Imn, the value of sp can be determined. This
then requires Reu(s&) to be 0 or 1. If we must alter r2
in Eq. (5) to achieve this (the third term vanishes a,t
s=s,), then this affects Ren'(s), which affects Imn(s),
which changes sp.

Our technique is to fit a straight line through the
resonances and determine o ~ and o.2 in Eq. (5). We then
use Ren'(s) =o~ and plot the curve from Eq. (4).
Picking out X and sp we adjust 0.~ and o-2 to make
Ren(so) equal 0 or 1 and calculate the third term in

Eq. (5) using the best of a series of choices for s. We
then go back with the adjusted Ren(s) and recycle.
Since A. is small, the procedure converges in one, two,
or three cycles. Because of the general state of the
experimental data, we have not tried to do a best fit in

any statistical sense. Any small improvement that such
a fit would yield is not worth the considerable effort
in light of the present state of the data.

As can be seen from Fig. 1, the contribution of the
integral in Eq. (5) is quite small. The additional free
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FiG. 1. Chew-Frautschi plots (s in units of BeV') of the series
A, 8, and C of Table I as plotted from Eq. (5). The lines are
not straight, as may be seen by holding a straight edge against
them.

condition exists which requires

(2a)Ima(s) = (s —so)n' &'0&

Imn(s) = (s—so)a' '0&+'.
01

(2b)

Equation (2a) holds for positive-parity resonances of a

spinless pseudoscalar particle and a spin--,' particle,
while Eq. (2b) holds for negative-parity resonances. If
the Imn plots are to be linear, then at the energy for
which Imn is zero the Ren(s) curve must be unity or
zero for (2a) or (2b), respectively. This is a severe

constraint which was very well satisfied by the EY
and hq resonances.

In addition, we need the formula relating the experi-
mental width to Imn(s). This is

I'= (2 Ima Ren')/(n'~', (3)

rm~= ~ir Re~'.
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Fro. 2. Straight-line plots of Imn versus s (in BeV') which
determine sp from Imn(sp) =0.

The prime means derivative with respect to s and the
I' is the width in s, not in the mass. Since the worst

case (Imu'/Ren')'=0. 02, the approximation in Eq. (4)
is very good.
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parameter s is ineffective for other than very minor
alterations in the curves. Thus, eRectively there are
only two free parameters o-& and o.

& which must be varied
to 6t four points on the A and C curves and three on the
8 curve. Note that the requirement on Ren(so) is, in
e6ect, another point on the curve.

III. RESULTS AND DISCUSSION

In Table I we list all the cascade resonances used
along with the known experimental information, as
well as the assigned spin and parity based on Fig, 1.
These experimental data are preliminary and not to be
taken as final. However, for our purposes we do not
need to be concerned with any latter small changes in
the data, with the possible exception of the A~ or A3
width (see Ref. 9). Of course, most of these resonances
are only poorly determined and the errors, especially
on the widths, are not really hard figures. These seven
resonances (and the stable cascade) are the only ones
considered to be reasonably well established. There are a
number of other possible resonances which are probably
not resonances. We note that we have used zone of the
questionable resonances and aO of the probable res-
onances and have no gaps in our trajectories.

In Fig. 1, the Chew-Frautschi plot, we see that the
lines are nearly straight and two of them have slopes
of nearly unity. In Fig. 2 we find that straight lines
give a consistent fit. The parameters as determined by
self-consistency are given in Table II.

We have not used exchange degeneracy and have
three sequences beginning with 2+, &+, and & .

There is really little free play in adjusting these
curves. We give four examples of this, since the difficulty
of making these plots self-consistent is not immediately
obvious.

G. B. Yodh, in Proceedings of the International Conference
on Symmetries and Quark Models, Wayne State University,
1969 (unpublished). In addition, some minor later changes in
the figures were provided by Professor Yodh {private communica-
tion).

(i) For the A curve, we have Rem(sp) =1, since it
has positive parity. Rex(so) =0 is wildly inconsistent
because the value of so for this to be true would be
about 1.3 BeV. But this is below the stable cascade rest
mass and Imn(s) must go to zero at no lower than
this mass.

(ii) If we supposed the C resonances to have negative
parity, we would need Reu(so) =0 and so would be
about 1.1 BeV. But Imn(1. 1) =0 would require an
Imo. line which, passing through C~, would lie well
below the lowest end of the error bars of the C~ and C3
particles.

(iii) The Imn curve for the A's misses A2. If we alter
the line only slightly to pass through the bottom of the
A2 error bar and the top of the A3 error bar, we would
have so=1.9 and Ren(so)=0. 7. But if we assume,
consistent with this, that Imn(s) =X(s—so)'7, we find
that the Imn(s) curve comes in at a shallower angle
and so&0.7. The situation rapidly deteriorates from
the self-consistent point of view. '

(iv) At first glance, it might appear reasonable to
put A&, 8&, and C3 on the same trajectory. This would
form a reasonably smooth Chew-Frautschi plot, though
with a much more pronounced curvature than our lines
have. However, a look at Fig. 2 indicates that such a
grouping would cause a radical shift in the shape of
the Ime curve. One would have to abandon entirely the
idea of straight-line fits.

We conclude that the Imo. -versus-s curves for the
probable cascade resonances are consistent with being
linear and that spin-parity assignments as given in
Table I are likely.
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Up well away from sp& the Imn(so) curve may well develop
a little curvature, which may explain why the A curve misses A2.
Or possibly the experimental data are not suf5ciently accurate.


