
ANALYSIS OF Say xE PARTIAL WAVE

phase-shift analyses for the 8» partial wave using Eq. k„whereas for the quasi-two-body D-wave wA channel,
(1) with the potential' we have no=m~+2 and
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u =m&+ 1 and p, is takens to be simply the momentum

' We use units m =1 and denote the nucleon mass by wz&.
The nature of the 6t is not sensitive to the detailed choice of

the asymptotic behavior of p.

where F~ and mq are the width and mass of the
d (1236). With the choice of 8 as a sum of poles, the
integral equations for 1V;; in (1) are easily reduced to
quadrature.
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A simple proof of a theorem derived recently by Dashen and %einstein on E'~3 form factors is presented.
With the further assumption that D(t) —= (n(S&, V&,'~E) is dominated by the 0+ e meson, a relation between e-
meson mass and fsr/f, t+(0) is obtained.

ECENTI Y Dashen and %einstein' have proved a where I'„), and Fz are dined by
theorem on the form factors in E&3 decay which

leads to the result
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where F+(t) and F (t) are the two form factors which
determine the hadronic part of the matrix elements

) ~=m. 'Ed lnF+(t)/dt], =o, (2)

and ~ denotes a parameter which characterizes the
simultaneous breaking of SU(3) and SU(3)XSU(3).
The purpose of this paper is to present a simple proof
of relation (1).With the further assumption that

D(t)=—(srld), V), 'lE)=(mrr' —m ')F (t)+tF (t) (3)

is dominated by a n(0+) meson, a relation between the
experimentally known number frr/f F+(0) and the
~-meson mass is obtained.

By using the current-algebra techniques, we have

k„= ii'„g+i I')„, (Sa)
k'+m '

i d'xe 's'*(ol T(B„A ' "(x)vs+"(0))lK'(P))

r„(Sb)
fe'+m '

=l F+(t)(p+&) +F-(t)(P—&) 3 (~ )

Using the current commutation relation

b(xo)l Ao' "(x),vq~" (0)$= Vq'+' (0)8 (x) (6a)

and the definition

k„I'„g=f I')—,+i d'x (olv, +'rim(p))=if p„ (6b)

Xe-" (ol&(xo)L&o' "V~'+"(0))l&o(p)), (4) we obiain from (4)

'R. Dashen and M. &einstein, Phys. Rev. Letters 22, 1337
(1969). —& I'. =f-LF+(t) (P+&) +F-(t)(P—&) 1—f~p . (&)



362 I' AYYAZU D DIN AND RIAZU D DIN

From I.orentz covariance, 'the most general form for or
F„q is mx' —m '

/ fx
Ko) =—,&++

I

— —
&)kf.F,(0)

+O("))+O() ') (15b)

I'„),=Fr(1)B„g+Fs(t)p„pg+F, (t)k„kg

+F4(t)p„kg+Fs(t) k„pg (8.)

Substituting (8) in (7), one obtains expressions for
whi h qu 1 t t (1)

.
f t th f t th t th

F+(&)+F-(&)=fxlf- —(1/f-) LFs(&) s (1—mx' —m-')
—m. 'F;(&)j (9)

or, for 5=m~' —m ',

F„(mxs m—')+F (mx' m—')
=f /f. +( -'/f-)', ( o )

where F =Fs(mx' m')+—Fs(mx' m'). —We rewrite
(10a) as

LF+(mx' —m ') —F~(0)j+F (mx' —m ')
+t'F+(0) fxlf-—j= (m-'/f-)F (lob)

Now F (t) and F+(0) fx/f —are obviously of order )
Lwhere X denotes the strength of SU(3)-syrnrnetry
breaking], while

F~ (mx' —m. ') =F~ (0)L1+X+ (mx' —m, ')/m, '+0 (X')j
=F,(0)P+O() )j.

Thus the left-hand side of (10a) is of order ),, so that F
must be of order X. Hence from (10a)

F+(mxs —m~s)+F (mx' —m ') = fx/f +m 'O(X) . (11)

l„et e' denote the strength of SV(2) XSU(2) breaking,
so that m s=O(e') and m, 'OP. ) =O(e'X). Thus from
(11) we obtain the result of Dashen and Weinstein':

1(fx f~) fx
d

fx) f.F, (O) i
is of order X'.

If we assume that D(1) is dominated by the (0+) Ir

meson so that

or

fx—+0(e') ) =
f.

m„F,(O)

m.s—(mx' —m ')
(17)

+O(e'X) .f.Fp(0) m s —(mx' —m.')

Taking fx/f F+(0) =1.28 from experiments, s

obtains, on neglecting terms of order (e'g) (this is
better than neglecting terms of order X', since e' is
believed to be smaller than X),

m„= 1021 MeV. (18)

D(1)—= (mx' —m.')F, (1)+1F (&)

=m„sD(0)/(m„s t), (16—)

where D(0) =(mx' —m, ')F~(0), we obtain from (16),
by taking 1=mx' m' and—relation (12),

On the other hand, if one assumes ~ to be the daughter
F+( x m )+F—(mx ~ ) =fx/f~+ (e ~) (12) of E*as in the Veneziano model, 4 so that

To derive relation (1), we make the expansions mg=m~+)

F+ (t)/F+ (0) =1+)+/m. '1+ (13a)

F (t)/F+(0) =$(0)+A+/m 't+ (13b)

where ((0) and A+ are of order X each. Taking
1=mx' —m ', we put expansions (13) in (12) to obtain

F+(0)L1+X~(mx' —m. ')/m, '+0 (X')+$ (0)+0(X')j
=fx/f +O(e') ) (14)

This gives Lnote that' F~(0) =1+0(X')j
L(mx' m. '))+lm-'—+5(0)1=fxlf-F+(o) 1—

+0(e9,)+0P.') (15a)

' M. Adenrollo and R. Gatto, Phys. Rev. Letters 15, 264 (1964).

one predicts from (17), neglecting small corrections of
order t.'X, that

fx/ f.F+ (0) =mx*'/m, '= 1.36, (19)

where we have used the relation m~+~ —m,2=m~' —m '.
The value (19) is in fair agreement with its experimental
value' 1.28~0.06.
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