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towards the right, this now being the manifestation of a
reduced strength for the effective (V+bV) potential.
However, unlike the case of B.E., where the correction
is always represented by a small decrease over the NR
value, the corresponding quantity for a&~2 can now show
a more Ructuating variation depending on the particular
value being considered for X. In particular, for X=25.8n',
which gives B.E.=7.2 MeV, the value of a1~2 changes
from +0.36 F to —0.33 F as a result of the relativistic
correction.

To summarize, we have considered relativistic correc-
tions to certain three-body parameters in a rather
simple model which is realistic as far as the results
depend on the totally symmetric part of the three-body
wave function. There is only one kind of "deuteron, "

and hence only one adjustable strength parameter for
the two-body potential V. Only a limited aspect of the
relativistic correction to the three-body problem has
bee@. considered, viz. , one which bears on the Shirokov
correction bV to the potential, and which vanishes in
the two-body c.m. frame. This has the advantage of
yielding no correction to the two-body parameters, and
hence does not require any concomitant readjustments
in the parameters of V. The three-body effect of this
correction is unique, predicting about S%%uq decrease in
the "triton's" B.E., and a lateral shift of the a1~& curves
versus X to the right. This simple investigation leaves
open the broader and more involved aspects of relati-
vistic corrections which bear on the actual dynamics of
two- and three-body systems.
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We show that for elastic processes which have absorptive channels below the physical threshold, the
absorptive partial-wave amplitude a&(s) has the sign of (—1)' for s below the physical threshold, where / is
the orbital angular momentum. The result is valid for any stable particles of arbitrary spins. More generally,
for elastic partial wave transitions between states of defmite parity E=es~vs (where s& and ga are the in-
trinsic parities and ~= ~1), the sign of the absorptive amplitude below threshold is that of e.

INTRODUCTION

HE positivity of the absorptive part of the partial-
wave elastic amplitudes has been extensively

used, together with analyticity of the scattering ampli-
tude as a function of the energy and momentum trans-
fer, to derive a variety of bounds and inequalities for the
scattering amplitude and cross sections. This positivity
follows immediately from unitarity at physical values of
the energy. However, there are systems such as nucleon-
antinucleon or K-nucleon which can go into channels
such as w-w in the first case and w-A in the second (or
even many-particle channels) with a total mass smaller

than the total mass of the initial system. In those cases
there will be a range of energies below the physical
threshold in which the absorptive amplitude for elastic
scattering does not vanish. In this region the absorptive
amplitude has to be de6ned by analytic continuation in
the masses of the external particles and therefore its
sign is no t immediately known. In this note, we establish
that the sign of the absorptive part a~(s) of an elastic
partial wave amplitude f&(s) is given by (—1)', where 1

is the orbital angular momentum. We first consider the
case of spinless particles.

* Research /Yale Report No. 2726-564 (unpublished) jsupported
by the U. S. Atomic Energy Commission under Contract No.
AT(30-1)2726.

I. SPINLESS PARTICLES

Let F(s,f) be the amplitude for elastic scattering of
particles m1 and m~ with initial and final momenta

(Pt,ps) and (pt', Ps'), respectively, and let us assume
that there are channels with energy threshold below the
physical threshold (mt+ms)'= ss.

The absorptive amplitude is given by

=I'(n; Pt, ps) =
d4udk'P(rs u,X')

(2)
(k+e)' —) '

where k=-', (Pt —Ps) and P„=Pt+Ps.
' F. Dyson, Phys. Rev. 110, 1460 (1958).

&&(~ I
js(0)'IPt)(2w)'5'(P- —Pt —Ps) (~)

Below the physical threshold one cannot haec Pt+Ps
=- P„with physical momenta. The absorptive amplitude
in this region is defined by taking particle m2 o6 the
mass shell and then analytically continuing in Pss (Ps")
to the physical value ps'=Ps" ——mss. To do that, we use
Dyson's representation' for the matrix element:
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The matrix element (2pio)' '(nI Jo(0)tI pr) differs
from F(n; pr, po) in terms that arise from equal-time
commutators. These terms are polynomials in k and we
defer to later a discussion of their contributions.

In the center-of-mass system, we have p&+p& = 0 and
pyo+poo= gs. Then (2) can be written as

F(n; pg, po) =

where

d4udX'P(n; u,X')

A. —2k u
=y(e; p, ',k), (3)

~= Luo+ (mr —Poo)/2+sj —u —k —g (4)

For k') 0 one can show' that, over the whole region of
integration where f(n; u, X') has its support, A' —4k'u'
is positive so that the denominator in the integrand
in (4) never vanishes.

The absorptive part of the partial-wave amplitude is
given by

is p(n; mo', —k)* and

P(n; m, ',k)+(—1)'p(n; m, ', —k)
= (—1)'LQ(n; mo', k)+(—1)'Q(n; mo', —k)j*. (11)

Therefore, the analytic continuation of P& (n; Poo, k)
is (—1) 'P~ (n; mo ok)* and it follows from (6) that u~(s)
has the sign of (—1)'.' Now it is clear that the addition
to p(n; p&', k) of polynomials in k does not affect this
result. We also remark that should there be a need for
subtractions in the Dyson representation the effect of
such subtractions would be to add to and multiply g
by polynomials in (ko,k). Since k, is linear in p&, the
result of our analysis would remain the same. As a
consequence of this result one can find a domain of s
and t, with s below the physical threshold and positive t,
in which A(s, t))0 Inde. ed if to is the lowest threshold
in the crossed t channel, then for 0(t(to one can write

A(s, t) =P (2t+1)a~(s)P~(1+t/2k'). (12)1
ai(s) = — A(s, t)Pi(k k')d(k. k')

2
In the region (1+t/2k')( —1 each term in this ex-

p

I6 region:

with

pi"(eI P2o,k) = dk Vp(k)*y(e; poo,k),

k=
I
s' —2s(mp+po')+(mp —po')'g'"/2+s. (g)

Using the property F&~(—k) = (—1)'F'& (k), one can
write

yi (n; p2', k) = — dk I'g"(k)*
2

XLp(e; poo, k)j(—1)'p(n; po', —k)j. (9)

For k')0, @& is just P~™~.Now as one continues
p(n; p&', k) in p&' to its physical value, the only singu-
larity that one encounters is a branch point at
po'= (Qs —mr)', where k = 0. As poo increases, k becomes
imaginary. Then it follows from (3) that at po'=m&'
the analytic continuation of

y(e; p, ',k) =
d4udX'P(e u,X')*

h. —2k. u
Silvan S. Schweber, An Introduction to Relativistic Quantum

Field Theory (Row, Peterson, New York, 1961), p. 810.

where I'~ are normalized spherical harmonics, k and k'
are unit vectors in the directions of k, k, respectively,
and we have used the addition theorem for Legendre
polynomials. Inserting (3) in the expression (1) for
A(s, t) and taking it into (5), one obtains, for values
of po' such that k') 0

2t+1
a((s,po') = P yp(n; po', k)@)"(n;po', k), (6)

16~ ~m
where

t(to, s((m~+mo)', su+(m~' —mo')') 0. (13)

In the equal-mass case the last condition reduces to
n)0. Unfortunately in all elastic processes to=4m '
and owing to the smallness of the pion mass the region
in s for which A(s, t)) 0 is rather small and in most
cases does not include the whole unphysical region
below threshold (one exception for instance is Z-~
scattering with A-n. as an unphysical region).

We next proceed on to discuss the case of elastic
scattering of particles with spin.

II. PARTICLES WITH SPINS

We consider the elastic scattering of particles with
spins 5&, 5& as described by a set of helicity amplitudes:

y,y (k,k') = (k'O'P', Xy'Xo'
I
T

I

khaki

~&~&&

X(4P oP o) '"(4P o'P o')"', (14)

where (k, g,p) and (k', 0',p') are the polar coordinates
of k and k', respectively, in an arbitrary center-of-mass
frame. The partial-wave helicity amplitudes fz;&„&„z,~(s)
for transitions in states of total angular momentum J
are given by4

f) i ~o ),i~o (s) =
16m'

F),i ~'~no(k, k )

XQ D, '(y', e', y')D„,.(y, 0, y)*dkdk', —(15)—

where the D~'s are the matrix elements of an irreducible

' I was informed that Dr. G. Mahoux arrived independently at
this result.

4 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) '7, 404 (1959).
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representation of the rotation group and X=X~—X~,
X' = Xy' —Xg'.

The absorptive part of F» &„z»,(k,k') is given by

~~, »»i, (k', k) = (4piopio')'" 2 (pi'~i'
I j» (o) I n)

X(nl j,(0)'lp l )(2 )'8(p--p -p.) (16)

Now one cannot write down a Dyson representation
for helicity amplitudes because the helicity labels are
the projections of the spins on the directions of the
momenta and therefore momentum dependent. So in
order to be able to use Dyson's representation, we have
to express the two-particle helicity states Ik, 8,it;44)
in terms of the covariant spinor states

I
piSipi', poS~po).

The relation is'

I k, 8,$; Xiho)

= 2 D"(L(1)).»iD "(L(2)).».(—1)""
P 1+2

real and positive in the interval (0, (gs —mi)'). In going
to the physical value of po', we come across the branch
point of k at Poo= (gs —mio) and take the path along
the side of the cut on which k is positive imaginary,
which is the value it takes on in the physical sheet.

The absorptive part of the partial-wave helicity
amplitudes will be given by

ii»'»'»» (s~po ) = 2 (2~+1)
16m-

where
Xpm» g, s(n; po', k)@m»»s(n; poo, k), (23)

1 2
y )„g,s(n; poo, k) = p — —

I
D„),s(k)*

gizmo g(4or) 2J+1J

XD„,» '(k)~»(pio, k)D„ i,"(k)a»(poo, k)

Xppi po (n '
po k) dk, (24)

where
X lpiS»» p&S»&) ~ ( ) Under the transformation k~ —k, we have p~g+7r,

8 —+m —8, and

L(1)=R~(8)Bo(pi), L(2) = R~(8)Ro(vr)Bo(po), (18)

with Bo a boost along the s axis and R„(8) a rotation of
an angle 8 about the axis n =g3&(k. The matrix elements
for the boost Bo(p;) are given by

p. k i/2

D (Bo(p')),), = — &,), =~i(p'o, k) 8,i (19)
p;o+k

D» „s;(k) e ii';o'd i s:,(8—)cia*& +D „s;( 'k)— —
—e—iyiod i si(8)ei»o( 1)si+&i (25)

Similarly,

D i~(k)*-+D„is(—k)*
=e' dmi (8)e '"&(—1) +&. (26)

Therefore taking into account that

The rotations are given by

Ds(R„(8))„i D„is(i', 8, —y—)—= D„gs(k) . (20& one can write

~~,(p,o,k)=~ x,(p;o, -k),

Then we have

Ds&(L (1))„»,——D„»,s&(k)n)„(pio, k),
21

( 1)SQ xoDS2(L(2)) i —D i s&(k)~i (Poo k)

Qm, »,» (n j po )k)

yzyo g(4n') 2J'+ 1
D„),s(k)

Therefore the absorptive helicity amplitudes in the
unphysical region will be obtained by analytic continua-
tion in po' of (16) with the matrix elements in the sum

given by

&nlji'(0) Ip l )(2p o)'"= 2 D. »"(k) ~ (p o,k)

A

X o, » '( ) ~,(poo, k)go, oo(n; po', ), ( ) F

XD„~,"(k)~—»(pio, —k)

XD i sm(k)(y —l (poo k) ( 1)
J'—S&—s&

Xpp, „,(n; poo, —k)dk

= (—1)s—s'—s'g i ),s(n; Po', k) . (27)—

where g»»(n; Poo,k) has a representation of the form
of (3) with g (n; u, X') replaced by iP„,„,(n; N, X', Pi) which
is a polynomial in the p s. We remark that, for fixed s,
the boosts nz(p, o,k) are analytic functions of p&' with
branch points at Poo=0 and Poo= (gs&mq)'. We there-
fore take the po' plane cut along the intervals (—~,0)
and L(gs —mi) ', (gs+mi)'] and take the boosts to be

' G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N. Y.) 46, 239 (1968).For the phase convention of helicity states
we follow Jacob and Wick (Ref. 4).

y„,y, , y,s(n; poo, k) =y„»g,s(n; p, o',,k)*. (28)

On the other hand, as p&' takes on its physical value,
k becomes purely imaginary for s below the physical
threshold, and the analytic continuation of @

(n; Poo, k) will be given by

4m, )„,»'(n; mo')k)

)„,g,s(n; mo', —k)*
= (—1') —'—'it i g (n po'k)*.
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%e are thus led to consider the combinations

4,)„,i„(n;p2', k) - (1/v2) [4„g,i„(n;p2', k)

+e( 1)
J'—»—S2$ i, i, J(Z. p22 p)j (30)

with ~=&1., corresponding to transitions from states
of definite parity I'=p&g&e, where the p's are the
intrinsic parities of the particles. Then we have

i,,$', (n; mss, k)
= (1/K2) [(—1) ' y i„g2 (n; ms', k)

+ep„,i„i„(n;ms', k) j*=ep, i„,),, '(e; ms', k)*. (31)

It follows that below the physical threshold the matrices

These amplitudes are also free of kinematical
singularities.

The absorptive part of Fq,q, '($, t) in the $ channel, for
positive values of t below the lowest threshold tp of the
crossed t channel, can be written as a partial-wave
expansion:

Ag, i„'($,[)

—($/2) Si+S2+[XI Q (2J'+1)

Xay i y y ($)Cky (0)[cos (z&)$I "I

«[i"I,[ I '($)=ze(&iii2&1&2 ($)
+~i—i —&, —i —i ($)+e(—1)

X[o~, ~2 ~2 ~2 ($)+~-~, -~2'1~2'($) j} (32) = ($/2)»+s2+I~l Q (2J+1)
are positive Hermitian. We shall, from now on assume
parity conservation. Then the above expression reduces
to

«[Vi, [XI ($) e[G) 1'i12'X2X2 ($)

+e(—1)' " "~—i, i, i, i '($)j (33)

In parti;cular, the diagonal elements of these two
matrices are positive; hence it follows that (—1)$» 8'

X17, q, q,qiq, $($) is positive
In the physical region it is the matrices a[q I, [qI '($)

which are positive Hermitian. Since the parity of a
two-particle state with relative orbital angular momen-
tum l is F tjiii2( —1)', it follows that for transitions
between states of initial and 6nal angular momentum l
and l' and total spin S and S', the absorptive partial
waves ai 8 isa($) with (/' —l) even are the matrix
elements of a Hermitian matrix of definite sign (—1)'.
This can also be obtained directly from the relation
between the set of amplitudes ai s is$($) and
a&„ i,2 &„&,,~($). This result is independent of the assump-
tion of parity conservation.

We can also generalize the result obtained for the
transition amplitude for the scattering of spinless
particles as a function of the invariants s and I,.

It has been proved that the amplitudes"

X ~i)„~2i„~2'($)F$-Ii I' ""(a)[-'(*+1)g' '

sp f~f

+e G—Xi—y2x&2 ($)PJ IAI
' (*)—

s

where x= cos8 and F ~(x) are Jacobi polynomials.
For g) 1, F„['(g) is positive and using Rodrigues's

formula for the Jacobi polynomials, 2 one can show that

(a+1) F„o (a))(*—1) F '(x) (37)

Then, since for physical values of s we have from
unitarity

$ fxf

iiklX2X1X2 ($)+e . ~—ill—i12ilX2
s

(38)

it follows that Aq, q, '($, t) is positive for $ above the
physical threshold and t in the interval 0(t'(3p.

Now Iet us take s below the physical threshold so
that k'(0. If

/+4k') 0,
$I X'—XI /2($/2) S1+Sa—M

F/1'g2'i11$2($1i) 1

(sin-,'0) I
~' "I(cos-,'0) I

~'+~I
(34) we have x( —1 and we use the following property of

Jacobi polynomia, ls:

with M'= max( [ V f, f
7~

f }, are free of kinematical
singularities.

We consider the combinations

Fi,ii„'($2[)= ($k') '+ ' I' [cos'(-'0)$ ' Fg1i,2i, ii,2($1/)

s
+e(—1)2I&l — [sin spg) jl&IF

& & & 2 ($ f) (35)
s

6 Y. Hara, Phys. Rev. 136, 8507 (1964); I. L. C. Wang, ibid.
142, i i87 (1966).

F„&(a)= (—1)"F & "(—a) .

Then we write

Ai, i, '($, t) = ($k2) $1+s~t&I P (27+1)

Sp f)I. f

X tii», 2i, 2i,2 +, ( 1) —
I Iii

s

7 Handbook of M'athematica/ Fgnctions, edited by M. Abramo-
vitz and I. A. Stegun LNatl. Bur. Std. (U. S.), Washington, D. C.,
1964j, p. 785.
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g+1 2lxl

X P~-I~I "I'I(&)
2

x—1 '~"~

+(—1)~—I&l P Pl&I, P(g)
2

x+1
X P~—I ~I

"I"I (a)
2

x 1 2lxl

( 1)J—Ixl P plxl, P(~) (41)
2

Now it follows from (33) that the sign of

sp I )tl

g) r~2~r~2 ~ e — (—1)
s

(42)

js that of ~e( 1)s&+su—I& I and from (37) and. (40) jt
follows that for x( —1 the sign of

tg 1 slxl

~( 1)&—I&II P&—Il, l

I&I, P(g) (43)
5 2

0& t& tp, t+4ks&0. (44)

These amplitudes do not coincide with those con-
sidered by Mahoux and Martin' out of which they
constructed an amplitude satisf ying the pbsitivity
condition in both s and N channels. Their amplitudes
are essentially Fl„l„z,z, (s,t) (apart from factors which

From an inspection of the threshold behavior, one can sho~
that Flips (s,t) vanishes at s=so.' G. Mahoux and A. Martin, Phys. Rev. 174, 2140 (1968).

is that of +(-1)'I"I so that the sign of the summation
in (41) is that of e(-1)s&+sp+I"I. On the other hand,
since k'&0, the factor in front of the summation in (41)
has the sign of (-1)s&+s'+I"I, then if follows that
pal„q, '(s, t) is positive. We have thus constructed a set
of amplitudes Fq,q,+(s,t) and' (s—sp) 'Fq, l„(s,t) whose
absorptive parts are positive in the s-channel in the
domain of s and t given by

remove kinematical singularities), whereas below the
physical region positivity holds for F l„ l„l„z,(s,t)
(with the appropriate factors) rather than for
Fxrxpx&x~($&t) '

It might be possible to construct an amplitude
satisfying the positivity condition in both channels out
of a linear combination of the amplitudes F&„q,+(s,t)
and (s—sp) 'Fq,&„(s,t). If this were to be the case, this
result could be used to generalize the analysis of
Martin'P for s--pr scattering, based on. analyticity and
the positivity properties of the absorptive amplitudes,
even to the case of processes with unphysical regions.

However, as pointed out before, the applicability of
these results is severely restricted by the fact that
tp=4m ' is very small as compared to other physical
masses.

CONCLUSIONS

We have considered elastic processes which have an
unphysical region corresponding to the existence of
channels below the physical threshold. We have shown
that, for s below the physical threshold, the absorptive
partial wave amplitudes for elastic transitions between
states of given parity P = t)qt)sp (where r) t and r)p are the
intrinsic parities of the particles and e=&1) has the
sign of e. The result applies for elastic scattering of
particles of arbitrary spins. In particular, for transitions
between states of orbital angular momentum / the sign
of the absorptive partial-wave amplitudes is (—1)'.
More generally, one obtains that below the physical
threshold, the matrix for partial-wave transitions
between states of given J and P= tt trtss has an absorp-
tive part which is Hermitian and of deinite sign s.

We have then constructed analytic amplitudes as
functions of s and t which, for positive t below the
threshold tp for the crossed t channel, have absorptive
parts in the s channel which are positive both above
and below the physical threshold, provided that
4k'+t& 0 Since tp ——4m. ' this condition is rather restric-
tive owing to the smallness of the pion mass and severely
limits the applicability of these results.
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