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Relativistic corrections are evaluated for a model three-body problem consisting of three identical bosons
in s-wave pairs through separable potentials. For the potentials, Shirokov s second-order (in s/c) correction,
which vanishes in the c.m. frame of a two-body system, is considered. No corrections are considered for the
kinetic energy, as it is argued that any such correction is intimately linked with the precise structure
assumed for a three-particle dynamics and cannot merely be incorporated through the modification p'/2m ~
(m'+p')'" —m for each particle, which aGects even the two-particle dynamics on the energy shell (and
hence also the parameters of the two-body potential). The reduction in the quantity analogous to the binding
energy of the triton is found to be of the order of 5 j&, while the curve for the counterpart of the doublet n-d
scattering length (a&~2) versus the two-body strength parameter (X) is slightly shifted to the right as a result
of the relativistic correction.

I. INTRODUCTION

'NVESTIGATIONS of the three-body problem seem
~ - now to have reached a level of sophistication where
it has become physically meaningful to speak of oner
effects in more quantitative terms. ' ' Already we seem
to be getting fairly clear ideas about the relative effects
of the tensor force and the repulsive core' ' on im-
portant three-body parameters which are sensitive to
such details of the two-body interaction, after the
limited success achieved with the long-range s-wave
attraction several years ago." "Relativistic corrections
to the two-body interaction represent an additional
effect which is generally estimated to be comparable to
that of the repulsive core. It is the purpose of this paper
to make a semiquantitative estimate of this effect on
the three-body problem by considering a model three-
boson system of identical particles, interacting in pairs
through s-wave forces. In particular, we wish to
calculate the effect of relativistic corrections to these
forces on two important low-energy parameters, which
are the analogs of the triton binding energy (B.E.) and
the neutron-deuteron doublet scattering length (ai~s).
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It need hardly be recalled that this model is a fairly
good facsimile of the actual triton state, to the extent
that its spatially symmetric (s) configura, tion accounts
for about 95% of the total wave function. In any case,
one would expect the model to provide a fairly realistic
reproduction of such gross attributes as the binding
energy and the n-d scattering length, provided the
latter is identified with the "doublet" (ai~s) variety
(the quartet scattering length asks has no counterpart in
this simple model). To the same extent, a calculation
of relativistic corrections to B.E. and a~~2 in the model
should provide a faithful index of the nature and extent
of such corrections to the more realistic three-body.
problem which takes account of greater detail in the
two-body interaction. On the other hand, such a simple
model would be too inadequate for other three-body
parameters which are expected to be more sensitive to
the noncentral parts of the interaction, e.g., polarization
in n-d scattering, charge and magnetic form factors
of H' and He', and so on. In this paper, we shall con-
sider merely the relativistic corrections to the simple
three-boson problem, and hence we must limit ourselves
to only the analogs of B.E. and a&~&. For simplicity, we
shall continue to use the notation B.E. and a&~2 to imply
the analogous quantities in the three-boson problem.

Now the question of relativistic corrections to a two-
or three-body problem can itself be viewed at different
levels of sophistication. Thus from the two-body point
of view, a relativistic correction might be taken to
imply not merely an interaction which takes account of
"retardation sects, " but an enlargement of the dy-
namical framework itself from the simple three-
dimensional Schrodinger equation to something like the
four-dimensional Bethe-Salpeter equation. " A less
sophisticated dynamical modification would be to use
relativistic kinematics within a three-dimensional
framework such as the (now old-fashioned) Tamm-
Dancoff equation" or its more modern versions, the
Blankenbecler-Sugar'~ and I.ogunov- Tavkhelidze

"E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
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(Row, Peterson, New York, 1955), Vol. II, p. 199."R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).
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equations. "In any one of these modifications, it is of
course implied that both the dynamical framework and
the (corrected) interaction should reduce to the usual
Schrodinger equation and the (uncorrected) static
interaction, respectively, when one considers the non-
relativistic (NR) limit. Therefore, insofar as the two-
body potential is parametrized to fit certain two-body
data, the parameters of the corrected potential must
in general be changed, so tha, t the same sort of data
might be fitted within the relativistically corrected
dynamical framework. As a result, the significance of
any comparison of the relativistic corrections with the
NR framework is likely to be considerably clouded by
the freedom of parametrization of the two-body inter-
action, especially since the correction is not expected to
be more than 10%.To add further to this confusion,
the formulation of a proper relativistic framework to
the three-body problem is itself a formidable problem
which has so far not crossed even the formal mathe-
matical barriers, not to speak of any uniqueness in
approach.

It would thus appear that any serious attempt at
relativistic corrections to the three-body problem is
fraught with ambiguities, not only in the parametriza-
tion of the two-body potential but also in the definition
of what constitutes a relativistic dynamical framework
for the two-body problem, not to speak of a three-body
system. Fortunately, however, there is one limited
aspect of relativistic corrections to the two-body
potential which is not only free from such ambiguities
at the two-body level, but promises to give a clear
(though limited) answer to the corresponding three-
body problem even without having to enlarge the
dynamical framework beyond the simple Schrodinger
equation. Such a correction to the two-body potential,
which was first suggested by Shirokov, " is based on
the consideration that the potential can be so modified
as to make it invariant under the group of Lorentz
transformations up to and including terms of O(v'/c').
The correction is, moreover, proportional to the total
c.m. momentum of the two-body system, so that it
vanishes exactly in the c.m. frame of that system. This
fact makes it possible to view the relativistic correction
to the three-body problem as an og-c.m. effect, an
aspect which may be studied independently of any
relativistic modification to the dynamical framework at
the two-body and three-body levels. In particular, at
the two-body level, this correction to a given parametric
potential does not produce any change in its parameters,
as long as the dynamics is assumed to be governed by
the same Schrodinger equation. However, at the three-
body level, the above correction to the two-body
potential, which can now make off-c.m. contributions

' A. Logunov and A. N. Tavkhelidze, in Proceedings of the
Tzvelfth International Conference on High Energy Physics, DNbna,
1964 (Atomizdat. , Moscow, USSR, j.966).
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to the two-body energy, is now capable of making
definite predictions on the relativistic corrections to
suitable three-body parameters. In this paper, we shall
calculate only the Shirokov corrections to the three-
body parameters B.E. and a&~2, and not try to concern
ourselves with the bigger, but much more ambiguous
question of what constitutes a proper relativistic
modification to the dynamical framework, whether at
the two-body or the three-body levels.

In Sec. II we obtain the necessary equa, tions for the
bound and scattering states of a three-boson system
when the relativistic (Shirokov) corrections to the
two-body potential are taken into account. (The
uncorrected potential is, of course, taken to be a
separable, s-wave structure. ) In Sec. III we describe the
numerical results for B.E. and a~~2, with and without
the relativistic corrections, as a function of the strength
parameter of the two-body interaction. It is found that
while B.E. registers an expected decrease ( 5%) as a
result of relativistic corrections, a~~2, as well as its
relativistic correction, exhibit a more Auctuating
behavior as a function of the two-body strength
parameter.

II. NECESSARY FORMALISM

For any two-body potential V involving two equal
masses (3II), the second-order relativistic correction 8U
can be expressed, in momentum space, as

(pPI ~vip'P') = —(4~') 'LJ"+l(p P)(P.&.)
+l(p' P)(P ~')&(pl vip'),

where p and p' are the relative momenta in the initial
and final states, and P is the total c.m. momentum of
the two-body system. Note that while the nonrela-
tivistic potential V is independent of P, the correction
b V is proportional to I"and hence vanishes in the c.m.
frame. For the NR potential V in the c.m. frame, we
take the s-wave separable form

(pl vl p')= —~ 'a(P)g(P') c(P)=(&'+P') ', (2)

while its representation in any arbitrary frame charac-
terized by the momentum pairs (P&P&) and (P&'Ps') is

(PtPs
I
v

I
Pt'Ps') = B(P—P')(PI vl P'), (3)

where

2p=Pt —Ps, P=Pt+Ps,

with similar definitions for the primed quantities. Since
the potential V is separable, it is clear from (1) that the
correction bV is also a sum of separable terms, so that
it should admit of the standard manipulations' when it
is inserted into the three-body Schrodinger equation.
As mentioned already in Sec. I, we refrain from taking
any relativistic correction to the kinetic energy, since
any such correction is linked with the larger question
of what constitutes the correct relativistic dynamics of
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where TABLE I. Binding energies of S' and 1P as functions of X.

left-hand side = 43 (P' —k")f(P') . (22)

We now set the boundary condition

Fg(P) = (2~)'8(P —k')+4~a(P)/(P' —k"—ie) ) (23)

where a~~2 is defined as

in the limit k"=0.
~u2= —~(o) (24)

III. RESULTS AND DISCUSSION

As already stated in the Introduction, a comparison
of this simple model with experiment can be meaningful
only in respect to the triton binding energy and the
n-d doublet scattering length a~~2 and not, e.g., the
quartet scattering length a3~2, which depends on the
mixed-symmetric component of the orbital function
(a quantity which is not simulated in this model).
Within the above limitation, however, a comparison
with the experimental B.E. and a~~2 is almost as good
as that of an (more realistic) s-wave model which
distinguishes between the triplet (V~) and singlet (V,)
forces, provided one identi6es the strength of the E-S
force in this model as the average 2(V,+V~) between V,
and V&. The only disadvantage is that one has only a
single strength parameter (X), which simultaneously
affects the "deuteron" (N') and "triton" (N') parame-
ters without separate handles on the singlet and triplet
strengths. We do not consider the variations with the
inverse-range parameter P, since these have been found
to be somewhat insensitive to this input quantity so
long as the intrinsic strength parameter2' is held fixed.
For purposes of numerical evaluation we have therefore
arbitrarily considered a central value

P =6.255n (n'/M = 2.225 MeV)

roughly similar to Yamaguchi's original parameter.
Table I gives the results for B.E. as a function of P,
together with the corresponding values of the deuteron
binding energy n'/M. A comparison of the nonrelativistic
va.lues with those obtained from relativistic corrections
shows a decrease which is typically of the order of

» A parameter akin to u Vo, where Vp and u are, respectively,
the depth and range of a square-well potential."Y.Yamaguchi, Phys. Rev. 95, 1628 (1954).

dq g'(V)(V'+ ') 'L1 —lA(V)7,

(21)
a'(V)(1 —(P'/4~') Ll —le'a(V) j)

f(P') =
(~2+~2) (q2+~2+ 3P2 3 $2)

Note that k" vanishes with k', so that the pole position
remains unaffected for zero-energy n-d scattering.

As a result of these manipulations, Eq. (19) may be
approximated as

Binding energy of ideal triton
Nonrelativistic Relativistic

(MeV) (MeV)

Strength
parameter

X(n ')

Binding
energy of

deuteron (MeV)

7.20
8.48

12.91
14.50
18.50
25.50

6.91
8.20

12.40
13.92
17.76
24.48

25.81
26.48
28.55
29.22
30.82
33.36

0.036
0.097
0.464
0.637
1.149
2,225

4-5%%u&.
28 The decrease in B.E. is a direct reffection of the

fact that the relativistic correction bV is of opposite
sign (repulsive) to that of the main potential V (attrac-
tive). V does not, of course, affect the deuteron binding
energy, since it vanishes exactly in the two-body c.m.
frame. We recall in this connection that the present
result for the triton's binding energy is not inconsistent
with an earlier calculation'4 which had indicated an
increase in B.E. due to relativistic effects. The apparent
contradiction is resolved through the observation that
while the Shirokov correction to the potential decreases
the B.E., this decrease was more than offset by an
increase brought about by the correction ( P~4/8M')—
to the NR kinetic energy (P,2/2M) for each particle.
For reasons explained in the Introduction, this last
correction has not been considered in this paper. This is
not to claim that the kinetic-energy correction does not
exist. Rather the latter is connected with the bigger
question of what should be regarded as the appropriate
relativistic dynamics for two- and three-body systems.
We have not committed ourselves at this stage to this
important question, which would in general imply a
reappraisal of the two-body potential parameters; we
have merely considered a limited aspect of the rela-
tivistic correction, viz. , one bearing on the potential V,
off the center of mass, and this yields a decrease in the
triton's B.E. without affecting the two-body pararnetri-
zation of V in the least.

The behavior of a~t2 as a function of P is somewhat
more involved and does not seem to have been investi-
gated in any great detail in the literature, in contrast
with the two-body system, for which the variation of
the scattering length with the potential strength has,
of course, been thoroughly studied and found to show
the characteristic (infinite) discontinuities at the suc-
cessive bound-state limits for ) .' The behavior of a~~2 as
a function of X, on the other hand, is in general beset
with nontrivial three-body effects manifested in both

~3 We note from Table I that the "best" value of B.E. (~ 11-12
MeV) which may be expected with purely s-wave forces seems to
be associated with o,'/M= 0.5 MeV, which is about one-fourth the
experimental value. Such a reduction is expected in this simple
model where a single effective force plays a role intermediate
between the stronger triplet force V~ and the weaker singlet force
V„so that the effect of a larger number of deuteron pairs is, so to
say, compensated by assigning a smaller value to the deuteron's
binding energy.

~V. K. Gupta, B. S. Bhakar, and A. N. Mitra, Phys. Rev.
Letters 15, 974 (1965).
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Fro. 1. (a) Variation of the doublet scattering length aquas as a function of the two-body strength parameter (X &X,), both a&gs and X
being expressed in units of the deuteron binding-energy parameter (n). While curve (1) represents the NR behavior, curve (2) gives
the corresponding relativistic correction. (b) Variation of the real part of the doublet scattering length Re(a&~s) as a function of the
real part of the two-body strength parameter (Reh(X.).

pole and cut structures. In connection with this
investigation of relativistic corrections to a~~~, it is
therefore useful to keep on record the results for a~~~

versus X in this simple model. Figure 1(a), which shows
this variation for a fairly wide range of A. values, does
indicate a rather rapid Quctuation, though not quite as
violent as in the two-body case. '~ For values of X down
to P,= 24.80n', which corresponds exactly to zero
binding energy for the deuteron, one has, of course, a
precise mathematical definition for the n-d scattering
length, based on a 2+1 breakup of the 1Vs system.
Below this critical value for X one cannot, strictly
speaking, have an asymptotic 2+1 breakup, and must
theref ore be content with a nontrivial three-body

~' Note that for a single separable potential, like the one con-
sidered here, it is not possible to have more than one bound state
for a two-body system, so that the characteristic discontinuities
in the scattering length at successive bound-state limits obtaina-
ble with )peal potentials are a&gent jn this rggdg&,

system. Formally, however, it is possible to define the
behavior of a~~~ with X in the sense of an analytic
continuation, the price now being a complex value for
this quantity (since the kernel of its integral equation
will now be complex). Since the imaginary part of the
kernel builds up rather slowly from a zero value at
threshold (X=X,), we have, as a first approximation,
neglected the imaginary part and evaluated the real
part of at~s on the basis of the real (but approximate)
integral equation, for values of X down to about 24.7o.'
Lsee Fig. 1(b)). As expected, the real part of ai~s for

X, does seem to show a fairly smooth transition froln
its value at threshold P,= X,).

For ease of comparison, the relativistic correction to
ai~s as a function of X is also shown in Fig. 1(a) alongside
the nonrelativistic curve. As expected, the shapes of the
two curves are very similar, the corrected one merely
being laterally displaced from the uncorrected one



RELATI V I STI C CORRECTIONS ~ ~ ~ 3501

towards the right, this now being the manifestation of a
reduced strength for the effective (V+bV) potential.
However, unlike the case of B.E., where the correction
is always represented by a small decrease over the NR
value, the corresponding quantity for a&~2 can now show
a more Ructuating variation depending on the particular
value being considered for X. In particular, for X=25.8n',
which gives B.E.=7.2 MeV, the value of a1~2 changes
from +0.36 F to —0.33 F as a result of the relativistic
correction.

To summarize, we have considered relativistic correc-
tions to certain three-body parameters in a rather
simple model which is realistic as far as the results
depend on the totally symmetric part of the three-body
wave function. There is only one kind of "deuteron, "

and hence only one adjustable strength parameter for
the two-body potential V. Only a limited aspect of the
relativistic correction to the three-body problem has
bee@. considered, viz. , one which bears on the Shirokov
correction bV to the potential, and which vanishes in
the two-body c.m. frame. This has the advantage of
yielding no correction to the two-body parameters, and
hence does not require any concomitant readjustments
in the parameters of V. The three-body effect of this
correction is unique, predicting about S%%uq decrease in
the "triton's" B.E., and a lateral shift of the a1~& curves
versus X to the right. This simple investigation leaves
open the broader and more involved aspects of relati-
vistic corrections which bear on the actual dynamics of
two- and three-body systems.
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Sign of the Absorptive Elastic Amplitude below the Physical Threshold
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We show that for elastic processes which have absorptive channels below the physical threshold, the
absorptive partial-wave amplitude a&(s) has the sign of (—1)' for s below the physical threshold, where / is
the orbital angular momentum. The result is valid for any stable particles of arbitrary spins. More generally,
for elastic partial wave transitions between states of defmite parity E=es~vs (where s& and ga are the in-
trinsic parities and ~= ~1), the sign of the absorptive amplitude below threshold is that of e.

INTRODUCTION

HE positivity of the absorptive part of the partial-
wave elastic amplitudes has been extensively

used, together with analyticity of the scattering ampli-
tude as a function of the energy and momentum trans-
fer, to derive a variety of bounds and inequalities for the
scattering amplitude and cross sections. This positivity
follows immediately from unitarity at physical values of
the energy. However, there are systems such as nucleon-
antinucleon or K-nucleon which can go into channels
such as w-w in the first case and w-A in the second (or
even many-particle channels) with a total mass smaller

than the total mass of the initial system. In those cases
there will be a range of energies below the physical
threshold in which the absorptive amplitude for elastic
scattering does not vanish. In this region the absorptive
amplitude has to be de6ned by analytic continuation in
the masses of the external particles and therefore its
sign is no t immediately known. In this note, we establish
that the sign of the absorptive part a~(s) of an elastic
partial wave amplitude f&(s) is given by (—1)', where 1

is the orbital angular momentum. We first consider the
case of spinless particles.

* Research /Yale Report No. 2726-564 (unpublished) jsupported
by the U. S. Atomic Energy Commission under Contract No.
AT(30-1)2726.

I. SPINLESS PARTICLES

Let F(s,f) be the amplitude for elastic scattering of
particles m1 and m~ with initial and final momenta

(Pt,ps) and (pt', Ps'), respectively, and let us assume
that there are channels with energy threshold below the
physical threshold (mt+ms)'= ss.

The absorptive amplitude is given by

=I'(n; Pt, ps) =
d4udk'P(rs u,X')

(2)
(k+e)' —) '

where k=-', (Pt —Ps) and P„=Pt+Ps.
' F. Dyson, Phys. Rev. 110, 1460 (1958).

&&(~ I
js(0)'IPt)(2w)'5'(P- —Pt —Ps) (~)

Below the physical threshold one cannot haec Pt+Ps
=- P„with physical momenta. The absorptive amplitude
in this region is defined by taking particle m2 o6 the
mass shell and then analytically continuing in Pss (Ps")
to the physical value ps'=Ps" ——mss. To do that, we use
Dyson's representation' for the matrix element:


