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Starting with the SW(3l group as the fundamental symmetry group, we develop a theory for the con-
tinuous breaking of this symmetry, in analogy with the theory based on the W(3) group discussed earlier.
Despite what appears at erst sight, there are considerable differences in the two theories, and in the present
case one can avoid many difhculties associated with the W(3) theory. Several refinements of the arguments
given earlier are also presented, which lead to mass formulas for ~ and E as well as the g meson. A method
to calculate Qnite-mass corrections to soft-pion theorems is also proposed and applied to a few problems.

I. INTRODUCTION
" 'N previous papers, ' we have proposed a possible ap-
~ - proach to studying the consequences of breaking
the chiral W(3)= U&+&(3) U& &(3) symmetry realized
through Goldstone bosons, and have obtained several
interesting results using only some rather general
principles. Our arguments are based on the observation
that by varying one of the symmetry-breaking parame-
ters in the theory, one can realize various subgroups of
the W(3) group at suitable discrete points. We have
presented arguments that this parameter can lie only in
a finite "physical" domain, whose end points correspond
to special subgroups involving degenerate vacuum
states and the attendant zero-mass pseudoscalar bosons.
This restriction was shown in I to arise from the follow-

ing considerations. In order to realize the special sub-

groups with degenerate vacua, one can show from
general considerations of the two-point functions and
positive definiteness of Hilbert space, that the end
points must be essentially singular. Now regarding the
physical quantities or matrix elements as continuous
functions of the symmetry-breaking parameter under
consideration in the physical domain, and using general
principles such as current algebra, soft-meson methods,
and variational techniques, we can impose considerable
restrictions on the functional dependence, which leads
to several interesting results, some of which have been
derived in I. In this way, one can, for instance, 6x the
"physical" value of the symmetry-breaking parameters,
and one finds, in agreement with the work of Gell-
Mann, Oakes, and Renner, ' ' that whereas the Hamil-
tonian is approximately invariant under the W(2)
symmetry, the vacuum state is predominantly an
SU(3) singlet.

Another important aspect of our work is that our
approach provides a clear separation between the points
where one may use soft pions, or soft kaons, or SU(3)

*Work supported in part by the U. S. Atomic Energy Com-
mission.' S. Okubo and V. S. Mathur, Phys. Rev. D 1, 2046 (1970);
also Phys. Rev. Letters 23, 1412 (1969). The former paper will
be referred to as I; V. S. Mathur, J. Subba Rao, and S. Okubo,
Phys. Rev. D 1, 2058 (1970), referred to as II.

2 M. Gell-Mann, Physics 1, 63 (1964).
3 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,

2195 (1968); see also S. L. Glashow and S. Weinberg, Phys. Rev.
Letters 20, 224 (1968).
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symmetry, so that all of these results may then be used
as constraints for continuation from one point to
another, in contrast to using them simultaneously
Lwhich would imply working in the SW(3) limit), as is
often done in the literature. In principle, then, one can
also compute corrections to soft-meson theorems, which
were discussed briefly in I.

The purpose of this paper is twofold. Firstly, we re-
investigate the problem using the SW(3)=SU&+&(3)
SU& '(3) group rather than the W(3) group as the
underlying fundamental symmetry, and, as usual, break
the SW(3) symmetry by terms that transform as the
(3,3*)&l& (3*,3) representation of the group. ' Secondly,
we discuss in greater detail the application of our
technique in evaluating corrections to the soft-meson
theorems.

At first glance, the change of the fundamental
symmetry group from W(3) to SW(3) may appear to
be rather trivial. However, there are some aspects of
the problem which are considerably modified and it is
these features which we would like to study in the first
part of this paper. In particular, we find that we can no
longer present heuristic arguments for the existence of
scalar mesons as discussed in I. Also in contrast to II,
we do not have to introduce a large and complicated
structure for the g-X mixing, which, of course, is a
great advantage. Another attractive feature of the
present analysis, which is also related to the q-X mixing
problem, is that in this case we can discuss much more
precisely the question of the zero-mass Goldstone p
meson. In fact, we have proposed here an expression
for the g mass aside from the formulas for m and E,
which were derived in I and remain unaltered in the
present case.

Thus, in general, the SW(3) theory elimina, tes the
troublesome results of the W(3) theory, while retaining
its good features. From the point of view of the quark
model, however, this situation is somewhat puzzling
since in practice if one constructs a quark-model
Lagrangian which satisfies SW(3) symmetry, one seems
to find that it is also invariant under the W(3) group,
if we insist on the conservation of the total quark
number.

In Sec. II, we present the basic structure of the
SW(3) theory, starting with the model of Gell-Mann,
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Oakes, and Renner, and emphasizing those features
which are different from the W(3) theory. We also
present some refinements of the arguments presented in
I, which are equally applicable to both types of theories.
In particular, we have given a detailed discussion of the
way SW(3)- or W(3)-symmetry limit may be achieved,
which plays an important role in our continuation argu-
ments. Some of these points were somewhat obscure
ln I.

We also investigate a symmetry-breaking model in
Sec. III, where we add a term proportional to the
(8,1)&f&(1,8) representation in addition to the usual
(3,3*)$(3*,3) term in the Harniltonian for both the
cases corresponding to the fundamental symmetry
group being SW(3) and W(3). As expected, since the
number of parameters has increased, the situation is
far more complicated.

In the final part of the paper, we have discussed in
some detail ways to compute corrections to soft-pion
and soft-kaon theorems. This technique has been
applied to a discussion of the X~3 decays and the
Goldberger- Treiman relations.

where Hp(x) is now assumed to be invariant only under
the chiral group SW(3)—=SU&+&(3)&35U& &(3) rather
than the larger symmetry group W(3)—= U'+'(3)
&3U&

—
&(3). ~e also assume that the scalar densities

5& &(x) together with the pseudoscalar densities P& '(x)
(n=o, 1, . . . , 8) transform according to the (3,3*)

(3*,3) representation of the semidirect product group
Q=SW(3)lNZ8. As before, we shall assume that in a
certain domain which will be specified shortly, the
SW(3) symmetry is realized through the emergence of
an octet of massless pseudoscalar mesons, with the
vacuum invariant under SU(3) rather than the full
symmetry group SW(3). Also we shall use the current-
algebra postulate so tha, t, although the SW(3) sym-
metry may be broken, the SW(3) algebra will be as-
sumed to be valid as equal-time commutation relations.

Defining the SW(3) generators' F&"& and F,&~&

(&&. =-1, . . ., 8) by

F& &(t)= —i d'x V4& &(x),

II. SW(3) THEORY

We shall use the same notation as in Paper I, and
write the strong-interaction Hamiltonian density H(x)
as '

H(x) =Hp(x)+pps"&(x)+885&'&(x),

partial-conservation laws

a„V„& &(x) = ppf. pps&P&(x),

B„A„&~&(x)= (ppd pp+ ppd pp)P&P&(x),
(3)

00

dm' 3 — 8„&—), lp.p&" (m A)
p — m

j.
p.p&'&(m, A—)&I„&&„6(x—y, m), (3)

m'

and a similar one for the vector currents, we obtain, on
taking divergences of both sides with respect to x and
setting xo= yo, the relations

dm'p p&P&(m, A)

(ppdpa7+88d8ay)(fpdppv+58dppy) y (6)

dm'&p. p&" (m, V) = 88&pf8.,f,p—„
where the summation over y runs from 0 to 8 again,
and where

p, =&ols&p&(0) lo), g, =&ols&8&(0) lo

are the only nonzero vacuum expectation values of the
scalar density operators. As in I, dining the real
parameters a, 6, and y by

8= ——
7

V2 eo

1
7= 88PPPy

v2 b

Kq. (6) leads to

where n=1, . . . , 8, while the summation over P runs
from P=o to /=8. The fact that 5& &(x) and P& &(x)
(n= 0, 1, . . . , 8) form a (3,3*)&I& (3*,3) representation of
the SW(3) group, leads" to the following algebra at
equal times:

LF"(t),S"'(*)j.p=, =if.»5'~'(x),
LF"(t),P"'(*)j*.= = f-,P"'(*),

LF8 '(t),s '(x)j„,=id ppP '(x),
LF8& &(t),P&P&(x)j„=,= —id p,s&»(x),

where again n= 1, . . . , 8, but P andy run from 0 to 8.
If we write the usual spectral representation for the

commutator (n, P= 1, . . . , 8)

&o I I A."(x),A."'(y)3 I o)

Fp& &(t) = —i d'x A4& '(x),

where V„&~&(x) and A„& &(x) denote the octets of vector
and axial-vector current densities, one can derive the

I88——y(1+a) (1+b),
I44= v(I —pa) (1—pb),

I88——y(1 —a —b+3ab),
E44 (9/4) yab. ——

(9)
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and Ios here. Note also that the positivity requirement
on I88 slices off the opposite corners of the otherwise

square domain (II—III), which then assumes two

hyperbolic boundaries.
One can now repeat the same arguments as in I, and

observe that the boundaries for the domains in Fig. 1

are related to various subgroups of the SW(3) group
as follows:

-1I
/««i p P~&11r (IV) ~~

&~y&oi
~r'r'r r' r r

1

FIG. 1. Allowed domains for the case of the SW(3) group.

These are exactly the same relations as in I. However,
the important difference is that now we do not have
any equations for Iso and Iss, since n and P in Eq. (6)
cannot take the value 0 for the SW(3) theory. It is
interesting to note that Eq. (9) still leads to the sum
rule

4I88+ 4I88 I44= E44. — (10)

(I)
(II—III)
(IV)

(V)

(VI)

(VII)

a&2, b&2, y&0,
2)a)0, 2&b&0, 1 a b+3ab&—0,—y&0,
0&a& —1, 0&b& —1, y&0,

(12)
a& —1, b& —1, 7&0,
a&2, b& —1, 7&0,
a& —1, b&2, y&0,

where we have used the special notation (II—III) for
the second region for reasons which will be explained
below. These six distinct allowed domains are most
conveniently projected on the a-b plane as in Fig. 1.
Comparing the present domains with those' of the
W(3) symmetry depicted in Fig. 2, we 6nd that the re-
striction in the SW(3) case fuses the two domains II
and III of the W(3) group into a single region (II—III)
of Eq. (12). Therefore, the point a= s, which played
an important role in Paper I, is no longer a special
point in the present case. This difference is simply due
to the fact that we do not have any relations for Ioo

~ S. Okubo, Nuovo Cimento 44A, 1015 (1966); G. Pocsik, ibid.
43A, 541 (1966).

Now, let us utilize the positivity condition4 of the
spectral weights, which implies

Iss) 0, I44& 0, Iss& 0, I144)0. (11)

It is easy to see that Eqs. (9) and (11) give rise to the
following restrictions:

(1) a=0 implies B„V„& &(x) =0 (o.=1, . . ., 8), (i.e.,
it corresponds to the validity of the usual SU(3) group.

(2) a= —1 leads to cj„A„t '(x) =0 (n= 1, 2, 3). To-
gether with the ordinary isospin group SU(2), the point
a= —1 then corresponds to the validity of the SW(2)
= SU&+'(2) S SU f '(2) subgroup. Note that we no longer
have an additional conservation law cj„A„& 'l(x) =0 as
in the W(3) case, so that our subgroup at a= —1 is

SW(2) rather than W(2). In particular, we do not
have to worry about the question whether p and X
mesons would become soft at a = —1.

(3) a=2 leads to cj„A„t l(x)=0 (tr=4, 5, 6, 7).
Setting X( ~=F( & for o.=1, 2, 3, 8 and X =Ii~( ) for
n= 4, 5, 6, 7, we find that Xf l (o.= 1, . . ., 8) generates
the chimeral SU(3) group discussed in I.

As before, one can prove the following theorem. At
a= 2, 0, or —1, we have b= a, if and only if the vacuum

state is nondegenerate under the subgroups in question.
Conversely, at b=2, 0, or —1, we would get a=b
under the same condition.

An important difference from the W(3) theory dis-

cussed in I is that we no longer have a conservation law

at the point a=~. Hence a=2 or b=2 gives no addi-

tional constraints, and all our previous arguments for
the existence of scalar mesons do not hold in the

present case.
We may now assume that b is a continuous function

of a and es, b= f(a, es) We shall .first study how b

8uui/z
'(E);

-1I
~gg««r Pi (IV) ~ ~p

;y&oi
Jr Jr/rr

-f

Fio. 2. Allowed domains for the W(3) group.
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behaves in the SW(3) limit. As assumed, the SW(3)
symmetry is realized' in the limit in which the masses of
the mesons in the pseudoscalar octet tend to zero, and
the vacuum state is invariant under SU(3). Now the
Hamiltonian (1) will become invariant under SW(3)
symmetry as 60 68~0 in any particular manner, so
that the parameter a=ep/%2pp can take all possible
values. Also, since the vacuum state is invariant under
SU(3), we must have pa=0. From the definition (8),
this in turn implies b=0, if (p&0. Thus if fp/0, one
would get in the SW(3) limit b=O for all a. However, a
glance at Fig. 1 shows that 5 cannot assume the value
zero for 1(a&2, since this value falls in the forbidden
zone. Thus the following possibilities arise: (1) If we
accept b= 0 for all a in the SW(3) limit, we are forced
to conclude that for all a) 1, b as a function of eo must
possess discontinuities at &0=0, and there is no way of
reaching the SW(3) limit uniformly in this region. (2)
In the region a& 1, on the other hand, we may not have
5=0. In this case, one can show that the hyperbolic
bounds to the region II—III (see Fig. 1) can describe the
realization of the SW(3) limit. For this purpose, note
that 1 a b+3a—b=—Oimplies -Ipp=0 from Eq. (9).Then
the positivity' of the spectral function demands the
stronger result

a„~„i»(x)~0) =0. (13)

Now if we assume that the vacuum state is unique over
the hyperbola, Eq. (13) implies' 8 A i'i(x) = 0, so that
from Eq. (3) one then obtains ep

——ep
——0, i.e., exact

SW(3) symmetry. However, even if the vacuum state is

degenerate, but is invariant under the SU(3) group,
one can realize the SW(3) limit, again over the
hyperbola. This follows from Eqs. (3) and (13), since

we would then have

~ This ansatz has been proposed and applied by Dashen and
Weinstein in a series of papers: R. F. Dashen, Phys. Rev. 183,
1245 (1969); R. F. Dashen and M. Weinstein, ibid. 183, 1261
(1969); Phys. Rev. Letters 22, 1337 (1969).

' P. Federbush and K. Johnson, Phys. Rev. 120, 1926 (1960);
R. F. Streater and A. S. Wightman, I'CT, SPin and Statistics aid
All That (Benjamin, New York, 1964).

' Another possibility is to relax our requirement so that we
assume only the SU(2)-invariant vacuum rather than the full
SU(3)-invariant one in the SS'(3) limit for the range 1&@&2,
while maintaining the SU(3)-invariant vacuum in the same limit
for ~a ~

(1.Then we may avoid petting b=0, gp=0, and /=0 in
this range. This possibility will be investigated elsewhere.

P t-i, a„~„i i(x) j~o&

=(i/v3)(42pp —ep)f~pp&ii' (x) ~0)=0, (14)

so that for Pi&i(x) ~0)WO, we must have ep= pp=0 for
@41.Also, since the SU(3) invariancer of the vacuum

implies $p= 0, and since b/0 (a) 1), we must also have
in this case fp 0 for a&1——. Note that the SW(3) limit

can now be reached continuously and uniformly.

Writing
b= f(~,ep),

we would then have in the SW(3) limit

b= f(a,O) =0,
= (~—I)/(3~- 1)

—1&a&1
1(g& 2. (16)

—1=f(—1, ep). (17)

Because of our ansatz, Eq. (17) is also valid in particular
when &0=0, but the resulting equation contradicts
Eq. (16) at a= —1. Clearly Eq. (16) requires that at
a = —1 or, for that matter, at any particular value of o
less than unity, b must be a function of ep, say, b(pp)

f( 1, ep), —such—that b(0) =0. Now, since at u= —1,
we see that b cannot take the value —1, the transition
from the region IV to V (see Fig. 1) as a moves across
the point —1, must necessarily be discontinuous. If we

assume that b as a function of a is also an analytic
function of u except at some isolated points, we have
shown that the point a= —1 corresponds to an essen-
tial singularity of the theory. Similarly, we can prove
that 5 cannot attain the value b=2 when we let a
increase to u= 2. Thus a= 2 is also an essentially singular
point.

We would like to remark that in these arguments we
didnot assume that the pion (kaon) becomes a zero-
mass Goldstone boson at a= —1 (a=2) for nonzero
values of pp, as was done in I. Indeed, at a= —1 (a= 2),
since b cannot assume the values b= —1 (b=2), our
theorem stated before and proved in I shows that the
vacuum state must be degenerate at a= —1 (a= 2). We
must then have zero-mass particles appearing at u= —1

and u= 2, for all nonzero values of eo, which, from con-
siderations of the divergence conditions (3), can easily
be identified as the pion and the kaon, respectively.
It is interesting to note that we have shown that the
points a= —1 and a= 2, which are essential singularities
in the theory, are also the points where vacuum states
are degenerate. The connection between these properties
has been known for some other models in the literature,
e.g. , the Nambu —Jona-Lasinio model. '

Y. Nambu and Jona-Lasinio, Phys. Rev. 122, 345 (1961);
124, 246 (1961).

Notice that g(a)= f(a,0) is a continuous function of a.
We have in Eq. (16) restricted ourselves to the domain
—1&a&2, since, as we shall see presently, it is im-

possible to continue 5 outside this domain.
In Paper I, we showed that the points a= —1 and

a=2 correspond to essential singularities of the theory.
This argument applies here too. However, we can prove
this result in a more convincing and instructive fashion
if we make the ansatz' that the SW(3) limit (ep ep-+0)
should in fact be achieved continuously and uniformly
for all a, so that we accept the possibility (2) mentioned
above. Then b as a function of a and eo will satisfy the
constraint (16). We can now prove that at a= —1, b

cannot assume the value —1 for all t. o. For if this is so,
we find from Eq. (15) that for arbitrary ep, we must
have
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The fact that we have been able to show that the
SW(2) and chimeral symmetries are realized through
the a.ppearance of zero-mass pions a.nd kaons, respec-
tively, may appear quite surprising in view of the fact
that these symmetries as well as the larger symmetry
SW(3) can, in principle, also be realized as ordinary
symmetry groups with unique vacuum states. One may
thus well ask what would have ha, ppened if the SW(3)
symmetry were realized as an ordinary symmetry with
a nondegenerate vacuum. In this case it is most likely
that b as a function of a would be simply given by b =a
in the SW(3) limit, instead of the structure exhibited
in Eq. (16), so that the subgroup symmetries would also
be realized without Goldstone bosons.

Our argument based on the continuity ansatz is, of
course, also applicable at a=0. Here since SU(3)
symmetry is exact, one expects b=0, for arbitrary ep,

if we accept the usual assumption that the vacuum state
is not degenerate in the SU(3) limit. The result 6 = 0 is,
however, consistent with Eq. (16), according to which,
if b is independent of ep for a&1, it must be zero. Thus
a smooth transition is possible between the domains
(II—III) and (IV) as one passes across a =0, so that a= 0
is not a singular point.

Before going into further details, we may also prove
that $p may ha, ve an essential singularity at pp=o for
fixed values of u, provided that $p can assume a non-
zero value in the limit ep ~ 0. This is due to the fact
that since y&0 for the physical domain of a, we have
E'pPp& 0, so that Pp& 0 for pp+ 0 and Pp+ 0 fol pp& 0.
Thus, if $p does not go to zero a.s pp —+ 0, it follows that
$p must have a discontinuity at pp ——0. Assuming, more-
over, that $p is an analytic function of pp except at a
few isolated points, this implies also that (p has an
essential singularity at pp=o, since the value of
must discontinuously jump at op=0. In such a case
unless $p also has an essential singularity at pp =0 which
cancels the one in fp, the parameter b= fp/V2$p may be
essentially singular at ep =0.

Returning to the original discussion, we note that the
arguments presented here are evidently applicable to
both the cases when SIV(3) or W(3) is the fundamental
symmetry group. In the W(3) case, however, the ansatz
lea, ding to Eq. (16) is now replaced by

f(a,o) =0, —1&a&-,'
f(a,o) = —,', —,'& a& 2.

We see that now b as a function of a need not have a
singularity at a= ~, if at this point we also have b=-2,
i.e., the vacuum state is nondegenerate. This provides
a justi6cation for the assumption made in I that a=- —,'
is not a singular point for nonzero ep. However, at ep =-0,
g(a) = f(a,o) is evidently discontinuous at a= —,

' in
contrast to the SW(3) ca,se [see Eq. (16)].This, in our
opinion, is an unpleasant feature of the IF(3) theory.

At this stage, one might well ask if there is any point
in Fig. 1 where one might realize a zero-mass p, just

as a,t a= —1 and a=2, one obtains a zero-mass pion
and kaon, respectively. In fact a moment's reAection
shows that the vanishing of the g mass has to do with
the hyperbolic boundaries of the domain (II—III). I.et
us first imagine, for the sake of argument, that if
b= f(a, pp) could be solved as a function of a and pp

for the "realistic" case F8@0, ep/0, the resulting curve
for b for some 6xed ep/0 touches the hyperbola in
Fig. 1 a, t some suitable point (or points). Then Eq. (13)
should be valid at such a point. If we have no zero-mass
Goldstone particles emerging at this point, Eq. (13)
implies' pj„A„"&(x)=0. In the event that the vacuum
state is degenerate, this conclusion does not necessarily
follow. However, as mentioned before, an inspection of
Eq. (3) shows that B„A„&'&(x)=0 implies pp= pp=o, i.e.,
the exact SL'V(3) limit. Since, in fact, we started with
6pP 0, 6840, we obviously have to discard this solution.
Similarly, we discard the case when the vacuum state
is an SU(3) scalar, since as shown before this case also
corresponds to the SW(3) symmetry limit. Thus, if we
want up & 0 as& 0 the vacuum state is presumably
symmetric only under the smaller SU(2) group. Also
note that Eq. (13) in pa.rticular demands that

But the left-hand side of Eq. (19) is proportional to
m„', so that g can in fa,ct become massless at the point
under discussion. Actually, however, the same argument
is also applicable to the X meson. Thus it is not possible
to decide whether one obtains a zero-mass g or X or
both, if indeed a zero-mass particle emerges. It may,
however, be more appropriate to assume that a zero-
mass g in fact emerges, whether or not one obtains a
massless X. Such a possibility seems to be consistent
with the assumption of an octet of massless pseudo-
scalar mesons in the SW(3) limit pp —+0, which, as
mentioned before, is also realized on the hyperbola.
This argument is particularly relevant if the p-X mixing
is not large, as we will see shortly.

Some questions na, turally arise at this stage. At the
point under consideration on the hyperbola, what sym-
metry group does one realize, and is this larger than the
symmetry [presumably SU(2)] of the vacuum? Also,
would this point be an essentially singular point of the
theory) With respect to the 6.rst question, one could
argue that there is no reason to believe tha, t if a zero-
mass particle exists, the symmetry of the Hamiltonian
should be necessarily higher than that of the vacuum
state. Thus, unlike z and E, the g may not be a Gold-
stone boson in the ordinary sense, and the vanishing of
the g ma. ss for nonzero 6p would then have to be a
dynamical accident of the theory. Also in this case,
unlike the situation of a= —1 and a=2, we have no
compelling reason one way or another with regard to
the existence of an essential singularity, except for the
comment that should it exist, a smooth transition to
the SW(3) limit would be hard to understand.
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There exists, however, another possibility which by-
passes these problems. This arises if b as a function of a
for a axed &0&0 does not make contact at all with the
hyperbola. In this case one cannot realize a zero-mass

g, except as a Goldstone boson in the SW(3) limit

(pp —&0) when b as a function of a is given by the
hyperbola itself. From the point of view of our present
discussion, this possibility is much more attractive.
However, if this is the case, it is clear that the soft-g
technique would make sense only in the SW(3) limit,
unlike soft-m and -E methods which are valid for sub-

groups of SW(3) at a= —1 and a= 2, respectively.
Before proceeding further, we would like to point

out that one can analyze the functional dependence (15)
in somewhat greater detail, which suggests that the
numerical value of b is quite small in comparison with

unity for the entire physical range of a, —1&a& 2. First
of all, notice that both a and 5 are dimensionless,
whereas eo and e8 are not. Hence, if we have no other
constant with the dimension of mass in the theory, b

must only be a function of a. But this contradicts
Eq. (16),unless b is identically zero for a&1. We know,
however, that an extra constant M with the dimension
of mass must be present in the Hamiltonian IIO in

Eq. (1), so that in the SW(3) limit one can have
baryons, vector mesons, etc., with nonzero mass. Thus,
assuming that eo has dimensions of mass as in the quark
model (the other cases may be similarly worked out),
we must have

b= f(a, pp/M). (20)

Since we expectP
i
pp/M i((1, assuming that pp=0 is not

a singular point, we may expand b in a power series in
pp/3E to obtain, for the range —1&a& 1,

b = (pp/M ) 'g(a)+O((pp/M) '), —1&a & 1. (21)

Note that in deriving Eq. (21) we have used Eq. (16)
and the fact that b cannot depend linearly on pp/3II.

The reason for this is that we must have ab&0, for
our solution of Fig. 1 irrespective of the sign of ~0. Now,
since (pp/M)'((1, Eq. (21) suggests a rather small
value of b in the range —1&a&1.This is also consist-
ent with the numerical solution at the physical point
computed in I and II. For the range 1&a&2, one ob-
ta, ins, using Eq. (16), the result

a —1 pp)'
b= -+ —

i
h(a)+O((pp/cV)'), 1&a&2. (22)

3a —1 Mi

Once again the linear term pp/3f makes no contribution
since we know that for ppWO, one must have b) (a—1)/
(3a—1) for all a lying in the range 1&a&2, irrespective
of the sign of eo. Since the Q.rst term on the right-hand
side of Eq. (22) can only be as large as —,

' for the range of

cQ and es are related to the pseudoscalar-meson masses and
hence will be of the order of w, as we may see from the argument
of I. If we use asymptotic SU(6)~ symmetry, then we can com-
pute ~0 140 MeV. See S. Okubo, Phys. Rev. 188, 2293 (1969);
188i 2300 (1969).

a under consideration, the value of 5 is still expected
to be small compared with unity. This explains why for
some matrix elements the use of SU(3) for any a in the
range —1&a&2 may lead to sensible results. Such
matrix elements would not depend sensitively on a, but
rather only through b. Also the smallness of b may be
interpreted to suggest that the vacuum is roughly
SU(3) invariant. This then provides an understanding
of the result of Gell-Mann, Oakes, and Renner, accord-
ing to which at the physical point where the Hamil-
tonian is approximately SU(2)@SU(2) invariant, the
vacuum state behaves roughly as an SU(3) singlet.

However, as we noted earlier, 6 may have an essen-
tial singularity at pp= 0. In tha, t case, Eqs. (21) and (22)
and the discussion based upon them will not hold. It
may be possible, however, that numerically the effect
of the essential singularity at &0= 0 is small so that the
conclusions may possibly be still valid approximately.

III. MASS FORMULAS

As long as the SW(3) symmetry limit can be reached
uniformly, our arguments leading to the mass formulas
for m ' and m~' and the other relations derived in I,
are also valid here. Some care is necessary, however, for
obtaining the mass formula for the X meson, as we
shall see shortly. Since m ' vanishes at a= —1 and
m~' at a= 2, we may write, as in I,

= (%2pp+pp)Fii(ppipp) =V2c (p1 +)aF (iipp, p)p, (23)

'jpzx (V2pp p pp)F jj', (ppipp) %2pp(1 2a)F—x(ppipp) . (24)

Now, unlike the situation in Paper I, it is possible to
obtain some information on the mass of the g. For this
purpose, recall that at the boundary 1—a —b+3ab=0
of the domain (II—III), we have argued that m„'-+ 0.
The fact that this boundary may not be accessible in
practice except in the SW(3) limit is not relevant at the
moment. One expects then that m„' would be propor-
tional to 1 a b+3a—b, s—o that we may write, in analogy
to Eqs. (23) and (24),

m„'= L(V2pp pp) b(v2pp 3pp) jFp(pp pp)

=V2 pp(1 —a b+3ab) Fp(ppipp) . (25)

We would first like to show, from dimensional con-
siderations and the ansatz that the SW(3) limit may be
approached uniformly, that to a good approximation

F( p, p)p=pFrr(ppipp) =Fp(pp, pp) . (26)

Assume for simplicity that eo and es have the dimensions
of mass, as in the quark model. Then from dimensional
considerations, one can write

F,(pp, pp) pp4 &'&+ p p &"+3IIQ;"', (2/a)

wherei stands for m, E, or g and3SI is a mass which, as
mentioned before, must be present in Hp in Eq. (1),
so that the baryons, for example, may have a nonzero
mass in the SW(3) limit. The functions g; depend on the
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dimensionless parameters a and ep/M or es/M. We shall
now assume that ep/M and es/M are small enough'
to be neglected, so that Eq. (27) becomes

that we must have, at a=0,

my =m~ =m+2 2 2 (29a)

F,(eo, es) My, &s&(a). (27b)

Note that jn p;&3~ the dependence on ep/M ol es/M is
also dropped. Now if a uniform transition to the SIV(3)
limit is possibl e,one obtains from Eq. (27a) that for
any a, F,(0,0)=M&;&3&(a), so that from Eq. (27b)
F;(ep es) F;(0,0). Thus to the extent that Eq. (27b) is
valid, F,(ep es) is given by its SW(3) value. It should be
noted now that F;(0,0) is in fact independent of i
This follows because in the SW(3) limit, the vacuum
state is SU(3) invariant for all values of a. Thus,
F,(ep, es) is also independent of i to the extent that
eo/3II and es/M are negligible. This establishes Eq. (26) .

In fact it is simple to obtain an explicit expression for
F,(0,0). We have shown in I that using the variational
principle and partial conservation of axial-vector
current (PCAC), we can obtain

F ( „,)= ',v2(g—,/-f ')(1+b) (m ' 0),
(28a)

Fx(eo, es) = —l~~(b/f z)(1 —lb)

In the SW(3) limit since m '=0 and nels ——0 for all a,
using Eq. (16) we obtain for —1&a&+1

F;(0,0) —=E= 3V&((3—/f 3) (28b)

wh. ere f is the common SU(3) value of the decay con-
stants f and frr Note tha.t, in general, E can depend
on a. Ke might remark here parenthetically that if
Eq. (28b) is valid also in the region 1&a& 2, where we .

have taken to=0, we have to accepts f'=0 also to
get a finite result K.Ke have not studied this constraint
in detail and it may have some special significance.
However, for the purpose of our discussion here, it is
sufficient to limit oneself to the range —1&a& 1 in the
SW(3) limit. The realization of the SW(3) symmetry
limit in the region 1&u& 2 indeed poses some problems.
For instance, in this range of the values of a, the mass
formula (25) for g seems to have a double zero in the
SW(3) limit, in contrast with the expressions (23) and
(24) for m ' and mx' which go to zero as ep. This seems
to be contrary to the perturbative argument, if indeed
it can be trusted.

Returning to our main argument, we thus see that
provided ep and es are negligible compared to 3f, one
obtains the result Eq. (26). Note that if ep and es have
dimensions different from that of a mass, a little reRec-
tion shows that the above type of argument would still
go through in obtaining the result Eq. (26).

Although the neglect of the first two terms in Eq.
(27) may a priori seem a.ppropriate, we would like to
show that for the p case this is not strictly true. The
evidence for this comes from the use of the variational
principle near the SU(3) symmetric point. One can
readily show, following the procedure outlined in I,

8m& 8m~= ——=2
868 868

(29b)

~m~ 8m~ 8m~'

86p 86p C) 6p

(29c)

F„(eo,es) = tt1+bn(a, b)jE,
with the condition

(30)

n(0,0) = 1. (31)
Clearly no such b dependence is needed for F and Iiz.
However, in the SW(3) limit when eo, es ~ 0, the third
term on the right-hand side of Eq. (27) is the only
surviving term, so that the result (26) must be strictly
valid in this limit. Realizing SW(3) in the region—1&a&1 where b must go to zero, one observes that
the function E on the right-hand side of Eq. (30) must
be the same as in Eq. (28b). Furthermore, if we realize
SW(3) in the region 1&a& 2, it is evident that since
b&0 in this case, we must choose n(a, b) to vanish here.
This suggests

n(a, b) = 1—a—b+3ab, (32)

which also satisfies the constraint (31). Finally, there-
fore, one obtains

F.(eo, es) =Fx(eo, es) EM,
Fs(eo) es)—71+b(1—a—b+3ab) jEM'. (33)

From Eqs. (23)—(25) and (33), we then obtain the
results

m7r
2

m~ 1——,92 1 (34a)

mn
2 (1—a —b+3ab) (1+b(1 a b+3ab)j——

1——c2

(34b)

The relations for the decay constants f, frr, and f„
can also be obtained. For the relation between f and
fx, the argument is the same as in I. From Eqs. (26)
and (28), we obtain

f 3 1+b

fx' 1—sb
(35)

assuming that the g meson becomes a member of the
pure pseudoscalar octet at a=0. From Eqs. (23)—(26),
it is evident that Eq. (29a) is satisfied. But to sa, tisfy
Eqs. (29b) and (29c) for m„s, one requires Bb/Bes= Bb/Beo 0, ——which is unacceptable. This feature is, of
course, linked with the appearance of an explicit b
dependence in the expression for m„'. It is simple to
see, however, that Eq. (29) can be satisfied if F„(ep,es)
is given by



BROKEN CIRIRAL SYMMETRY. III. SW(3) ~ ~ ~

The g case is not so straightforward, because of the
complications arising from q-X mixing. To start with,
we do not know the PCAC condition for g, since it
would in general involve also the X meson. However,
if we neglect the p-X mixing completely, and use the
PCAC hypothesis B„A„&g&=(1/v2)f„m„'P„, we obtain
from the variational principle the following results in
the limit m„' —+ 0:

4 (p
(1-b),3'

$p
=-;%2 (1—3b) (m„'~ 0).

2

(36)

Now, Eq. (36) in general contradicts the derivatives
obtained from Eq. (25), unless we neglect the depend-
ence of b on 6p and e8. This neglect is presumably then
connected with the neglect of g-X mixing. Now, if
this neglect is reasonable, we obtain

Pp(pp, pg) = g~~(4—/f p') (mp' ~ 0) (37)

Using Eq. (26), we now obtain from Eqs. (37) and (28)
the result

f '/f '= 1/(1 —-'b). (38)

If the q-X mixing is not too large, one might expect
Eq. (38) to be approximately correct.

Using the known masses of m., E, and g, we obtain
from Eqs. (34), (35), and (38), the following numerical
solution:

a= —0.89, 5 = —0.10,

fx/f~=1.08, f„/f =1.06, y=5 05m 'f '. (39)

Notice that these values are very close to the results
obtained in Papers I and II, as well as in Ref. 9, based
upon the asymptotic SU(6)~ theory. The numerical
value of y is obtained by using Eq. (28) with Eq. (23)
or (24), if we recall the def'nition (8). Alternatively, if
one desires, one can obtain two sum rules among m ',
m&', m„', f&/f„, and f„/f by eliminating a and b

from Eqs. (34), (35), and (38).
A few remarks are in order regarding the structure

of the mass formulas. Calling V26pE3f = mp'& 0, we may
rewrite Eqs. (23)—(25) upon using Eq. (33) in the form

m '=(1+a)mp', mx' ——(1——,'a)mp',
(40)

m '= (1—a —b+3ab) [1+b(1 a b+3ab)—jm—p'

Note that all the squared masses are non-negative in
the entire physical region —1&a(2. The situation is
quite diQ'erent for the mass of the eighth component of
the octet given by

f '= f'(1+b) fx'= f'(1—'b) (42)

where f is the value of f and fx in the exact SU(3)
limit.

In closing this section, we would like to say a few
words about the g-E mixing problem. As is evident,
our proposal that SU(3) perturbations are really ex-
pansions in b would lead to a small mixing between g
and X. Using Eq. (42), the frst-order SU(3) results
indicate

fg'= f'(I —b). (43)

If we now use the pole approximation, and saturate
Igg in Eq. (9) by the SU(3) octet and singlet states, we
obtain

ingful only for ~ai &1, where the SU(3) perturbation
with respect to a can be made. The formula for the
physical g in Eq. (40), by contrast, does not suffer
from this defect. There is, however, an extra complica-
tion which we would like to mention here. Consider for
instance that point a=2 where chimeral SU(3) sym-
metry is exact. At this point E is massless, but x and g
are not. Thus decays of the type x, g ~EKEK are
possible near a= 2. Therefore, the mass formulas (40)
cannot be strictly correct in the whole physical domain
of a, since one would at least expect m and g masses to
develop an imaginary part near a=2. Note that this
situation cannot arise for the kaon mass, because of
strangeness conservation. It may, of course, be that
these imaginary parts are numerically small. However,
as long as one's attention is con6ned to the region near
the physical point a~ —0.89, no such complication
arises, and one would expect the formulas (40) to be
reasonably accurate.

As shown in Sec. II, b is presumably quite small
compared with unity for the whole physical range of a.
We have also noted before in I that the radius of con-
vergence of the SU(3) perturbations is quite large,
i.e., ~

a~ =1, and that the SU(3) symmetry seems to
work quite well even at a~—0.89. We now make the
following proposal as a possible explanation of this
surprising fact: We suggest that the effective parameter
for SU(3) perturbations is not a but b, unless some
kinematical constraints dictate otherwise, as in the
mass formulas. Thus the explicit dependence on u is
probably minimal and enters only through kinematical
requirements. Since 5 is small at the physical point, it
would be understandable why the SU(3) perturbation
theory would work well. Indeed, the relation for f '/fx'
in Eq. (35) is not directly dependent upon a, but on b
and is well represented by an SU(3) perturbation
theory, according to which

mg' ——(1—a)mp', (41) Igg=- gmg'fg'+ ', mi'fi' y(1 a -b+3ab—-)-, (4—4)—.

which satisfies 3mgg+m '=4m''. The formula (41)
becomes meaningless for a) 1, since m8' becomes
negative. This suggests that the concept of g8 is mean-

where fi&g& isdefined by

«I ~."'(o)
I
~i(»'"') = (2&pI') '"ifi&»4(I/~2) (45)
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Using Eqs. (41), (43), and (44), we obtain

2ab
~i'fi'=re'fx' -— —=4vab.

(1—la)(1—'b)
(46)

If we are considering the case where the fundamental
symmetry is SW(3) rather than the W(3) group, we
have only to discard the equations for Ipp and Ip8.

First of all, let us consider the W(3) case, and define

IV. FURTHER GENERALIZATION

So far all of our analysis is based upon the structure
of the Hamiltonian density given in Eq. (1).It would be
interesting to modify Eq. (1) by a,dding a, term which
behaves as (1,8)g(8,1) representation of SIV(3) or

W(3) group":

H(x) =Hp(x)+ ppS "&(x)+ppS"'(x)+gM&'&(x), (48)

where Hp(x) is invariant under SW(3) or W(3) group,
and where M&"'(x) and N~ '(x) (n= 1, . . . , 8) are rnem-

bers of the (1,8)Q(8,1) representation, satisfying the
commutation relations

[Z&.&(t),M &»(x)7.,=,= if.»M &»(x),

[F '(t),N' '(x)7.. .=if p,&V' '(x),
[F "(t),M"'( )7,—= f- .N"'( ),
[F,&-~(t),iV&P~(x)7.,=,= if.p,Mt»(x) .

(49)

Then, the partial conservation law Eq. (3) is now

replaced by

B„V„&~&(x)= ppf ppS«'(x)+gf ppM«&(x),

B„A„& &(x) = (ppd. pp+ppd. pp)P«~(x) (50)
+gf.ppN «'(x),

which will lead to the sum rules

Ip p= q(1+a) (1+b),
I«= v(1 —pa) (1—pb) —gr,
Ipp ——y(1 —a —b+3ab),
Ipp

——7(1+2ab),

I pa V2y(a+ b ab), —— —
%44= (9/4)7ab gr, —

where v is dered by

r= —'(OiM&" (0) i
0).

(51)

(52)

'0 Some results of such a model in connection with weak inter-
actions have been given by V. S. Mathur and J. Subba Rao,
Phys. Rev. Letters 31B, 383 (1970}.

Since we expect m~=mx, we obtain from our numerical
solution (39) the result

yP/yxP=0 03

which implies tha, t f~ is indeed very small, consistent
with a small g-X mixing theory. Note that the smallness
of f& arises mainly because f& is proportional to b in
Eq. (46). Our result here is in sharp contrast to the
W(3) theory, investigated in Paper II, which requires
a rather large and complicated g-X mixing.

I g, g
——y(1+a)(1+b)=Ipp,

I p, p
——y(1 —2a)(1—2b),

I y, 2=0.
(54)

Hence for the W(3) group, the point a= —1 cor-
responds to the exact validity of the W(2) group,
while a= —.', leads to the group Z associated with the
conservation law B„A„& "(x)=0. Thus, the discussion
of these groups at a= —1 and a= —,'is essentially un-
changed, and the introduction of the new term pro-
portional to (1,8)g3(8, 1) does not help possible dif-
ficulties of the W(3) group mentioned in the previous
section. Note that we have to modify our ansatz slightly
and require that the uniform W(3) or SW(3) limit
should result for 6p ~ 0, e8 ~ 0, and g ~ 0. The posi-
tivity conditions are now replaced by

7(1+a)(1+b)&~o,
y(1 —2a) (1—2b) ~& 0,
v(1 —2a)(1—lb) & gr,

(9/4) vab& gr

Since we have an extra parameter g, the analog of
Figs. 1 and 2 is now replaced by a complicated three-
dimensional diagram in the a, b, and 7. plane. However,
for gr&0 the positivity conditions Eq. (55) reproduce
the previous ones without the new term. But it is now
easy to see that points a=6=2 and a=5=0 do not
satisfy the inequality Eq. (55) for gr&0. Hence the
domain (II) is completely disjoint from the domain (I)
while the domain (IV) has no common points of contact
with the domain (V). However, on the contrary, for
gg& 0 these points a= 6 = 2 and u= b = 0 are now interior
points rather than at the boundaries, so that domains
(I) and (II) as well as domains (IV) and (V) form single
domains (I-II) and (IV-V), respectively. For the case
of the SW(3) theory, the point a=b= —,

' is an interior
point from the beginning, and, hence, four domains
(I), (II), (III), and (IV) become a single connected
domain for gv & 0 and we have only four disjoint regions,
(V), (VI), (VII) together with the new single domain
(I-II-III-IV) .

Actually, it is more convenient to introduce a new
variable p—=gr/y rather than gr, and consider a three-
dimensional space with respect to three variables a, b,
and p. Then, allowed domains speci6ed by inequalities
Eq. (55) are now three-dimensional manifolds in this
space. We may refer to the cross section p=0 as being

A„- (x) =(1/v3)[A„"'(x)+vs„~o~(x)7,
A „& '&(x) = (1/v3) [A „&'&(x) —v2A „&'&(x)7,

(53)

as in Paper I, instead of A„&'~ and A„( ~. Then, we have



BROKEN CHIRAL SYMMETRY. II I. SW(3l ~

"at sea level, " so that the domains p&0 and p- 0 may
be termed above and below sea level, respectively.
Then, the previous considerations can be translated
as follows. For the sake of definiteness consider the case
of the W(3) theory. For the SW(3) case, we have only
to replace the two separate domains (II) and (III) by
a single domain (II-III). Then, all allowed domains
will now be represented by the 6ve disjoint manifolds
D~2, D34, D&, D6, and D~ in the three-dimensional space.
Each of these five manifolds is connected inside itself,
while D~2 and D34 share a line boundary a=b= 2, and
similarly D34 and D5 have the common boundary line
a=6= —1. Otherwise, all Ave manifolds are mutually
disjoint. For the case of the SW(3), we replace the two
manifolds D» and D34 by a new single connected mani-
fold D~~34. At sea level p= 0, the cross sections of D5, D6,
and D7 are exactly the two-dimensional domains (V),
(VI), and (VII), respectively, of Fig. 1, while D» and
D34 are the two island domains (I) and (II) and (III)
and (IV). Below sea level, p(0, and the two domains

(I) and (II), as well as (III) and (IV), become fused
together, making the undersea supercontinents D~2 and
D&4, respectively. Above sea level, p) 0, D» (D34) will

be split into two disjoint infinitely high mountain
peaks corresponding to a continuation of domains (I)
and (II) (III) and (IV). On the other hand, the other
manifolds D~, D6, and D7 do not produce such mountain-
like structures at all. We may also remark that the
sign of p remains always the same inside each manifold,
so that we have y& 0 for Di2, D34, and D5, while y &0 for
D6 and D7. Also, the manifolds D~2, D34 and D5 re-
semble ordinary continents in the sense that their
shapes become narrower for the increasing value of p.
On the contrary, D6 and D7 have shapes similar to those
of inverted pyramids in the sense that their cross sec-
tions for a given value of p will be larger for increasing
values of p. As we remarked already, in the case of the
SW(3) theory, we have only four manifolds D»34, D&,

D6, and D7 to deal with.
Although one can obtain mass formulas for m ',

mz', and m„' in the present case by arguments essenti-
ally similar to those used before, these are much more
complicated and we shall not attempt to construct
them here.

V. CORRECTION TO SOFT-PION THEOREMS

In this section, we revert to the discussion of the
original model (1), i.e., we set g=0 in the previous sec-
tion. Also, all results that follow are valid for both
SW(3) and W(3) cases.

First let us consider the X&3 form factors by setting

&
'(p')

I
I'." *"(o)I&'(p))= —(I/~2)(4popo'I") "'

XLf,(q')(p+p')„+f ( )(p —p')„], (56)

with q'= (p —p')'. If we consider the soft-pion (a= —1)
and the soft-kaon (a=2) limits, we obtain the well-

known sof t-boson theorems"

f+(™x')+f(™-rr')=fxlf- (~= —1),
f+(™-')f—( -m—-') =f-If (~=2) (57)

Now, let us set 6= —(mx'+m ') and consider an ex-
pression given by

This may be regarded as an equation incorporating a
finite-mass correction into the soft-pion theory. Of
course, our method has an ambiguity since we could
have obtained the same conclusion if we had used
m ' and mrs' instead of m ' and mrs' in Eq. (59). How-
ever, for the sake of simplicity, and minimality of u de-
pendence, we adopted Eq. (59) as a more reasonable
choice.

Similarly, let us set

J= f+(~)+f (~) fxlf-, -—(60)

where 5 is given by 8=m '—mz'. Then a similar argu-
ment gives us J=0 at u= 0 and —1. Since the physical
point a~ —0.89 lies in the range —1(a(0, where by
the smoothness assumption we expect J to be small,
we may set J 0, i.e.,

f+(m ' mx')+f (m '——mx')~fir/f . (61)

This relation was 6rst obtained by Dashen and Wein-
stein, ' who used an SW(3)-perturbative argument.
Note that, on the contrary, we need not assume the
perturbative argument with respect to the SW(3) in
our derivation. Our crucial assumption lies in regarding
I or J to be as smooth a function of u as possible con-
sistent with the various conditions that I or J satisfy.

We could apply this technique to a variety of prob-
lems. As another application, we shall calculate the
correction to the Goldberger-Treiman relation. For this

I C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966); V. S. Mathur, S. Okubo, and L. K. Pandit, ibid. 16, 371
(1966); M. Suzuki, ibid. 16, 212 (1966).

Regarded as a function of the variable a, I satisfies the
condition I=O at the three points @=2, 0, and —1.
This assertion at a=2 and —1 comes from the soft-
meson theorems Eq. (57), since m '=0 at a= —1 and
mz'=0 at a=2. For a=0, we have the validity of the
exact SU(3), so that we have mx' m——', fx f to-——
gether with f+(0) = 1, and f (q') =—0. Hence the quantity
I vanishes at the three points a= 0, —1, and 2. On the
basis of the smoothness assumption, one might expect
I to be generally small in the whole physical domain,
including, in particular, the physical point a~ —0.89.
Therefore, we may approximately set I=O to obtain

(mx' —m ')f+(6)+(mx'+m ')f (6)
(mx'(foal—f-) m-'(f-Ifx—))=o (59)
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purpose, let us set

m 2 'I'
&P(P') I ~.'"'"(0)

I ~(p))=, — ~(P')L'v.v G &"&(q')+~,q„G„&»(q )]~(p),
popo' V'

8$+5$+
&P(P') I ~."+"'(0)

I ~(p)) = — &(p') Lsy.yoG~'"&(q') p~oq„G„«&(q')+»(p+ p') „H&~& (qo)]N(p)
popo' V'

1Ã+mQ
&~(p') I ~."+"(0) I

~ (P))=, — &(p') I 6.voG~ "&(q')+poq„G„&z&(q')+y, (p+p') „H&z&(q')]~(p)
PoPo'V'

(62)

nz&,mz )"'
&~(p') I

4 "+'"(0)
I
~ (P))=,—

I
~(p') Log.voG~&~" (q')+p, q„G„&~&&(qo)+~,(p+p')„H&~~&(qs)]„(p)

Popo'V'&

Now, the ordinary Goldberger-Treiman relation would
be exact at the soft-pion limit u= —1. This gives us

2m&vG~~(0) = v2f.G&v—~.,
(m~+mz)G~&r ~&(0)—(nzz' —m~')H&z ~&(0) (63)

= —f.Gz~. (~= —1) .

Similarly, in the soft-kaon limit (a= 2), we would obtain

(nz +m )G„& &(0)—(nz '—m ')H& &(0) = f G—
(mz+m&v) G~ &r&(0) —(mz' —mN')H &z&(0) (64)

~~frrGz&vx (&= 2) .
Hence, if we set

Ii= iiix'&f.G—&v&v. +v2i&s~G~' '(o)]
——,'m 'I frrGz&vie+(1/42)(mz+m&v)G~&~&(0)

(1/V2) —(mz' m&v')H—&z& (0)]+,'43m. '[-fir G»vrr

+ (mi.+m~)Gg &~&(0)

—(m&&' —m&v')H &~& (0)],
(65)' I,= err'&&f.G&,z—.+ (mg+nsz)G~ & '(0)

(mz' —nz~') —H&z ~&(0)] ,'V3m~—'[—f&rGz&vrr

+ (1/W2) (ms+ m&v) G~ &z& (0)
(1/V2)(mz—' m&v')H& '(—)0]+-',m 'ffrrGJ&vie

+(m~+m&v)G~& '(0) —(mi&' —m&v')H& '(0)],
then we have I~=I2=0 for a=2, 0, and —1. Again,
the identity at a= 2 and —1 is due to the validity of the
Goldberger- Treiman relations Eqs. (63) and (64),
while I&=I2= 0 at u= 0 follows from the validity of the
exact SU(3) invariance at this point. Invoking the
smoothness assumption again, we would expect that
in the whole physical domain I& 0, I2—0. These rela-
tions in principle provide a way to calculate the finite
pion-ma, ss correction of order (m /err)' to the Gold-
berger-Treiman relations. Many of the coupling con-
stants that appear in Eq. (65) are not known, so that
one has to await future experiments in order to test
these sum rules. We would also like to point out that
the relations in Eq. (65) are very similar to the ones
derived by Dashen and Weinstein using the SW(3)
perturbative method.

We would like to point out that the sum rules of the
type (59) or (65) may also be interpreted as providing a
relation between the departures from experiments of
the soft-pion and the soft-kaon results. Thus only if
the original soft-pion sum rule is known to be rather
accurately satisfied, would one expect the soft-kaon
sum rule to be an approximate result in any reasonable
sense. On the basis of these arguments, we would expect
the soft-kaon Goldberger-Treiman relations (64) to be
rather bad, since the soft-pion relations (63) themselves
are satisfied with an accuracy of only about 10%%u~.

In conclusion, we would like to remark that an
interesting comparison between the W(3) and SW(3)
theories seems to arise in the recent suggestions regard-
ing the origin of the Cabibbo angle. Most of these ap-
proaches" suggest that tan'0= 0 at a= —1 and tan'8= 1
at a=0. However, in the formulation of Gatto et al."
tan'8= ~ at a= —,', whereas the numerically conjectured
formula" tan'8=m 'f '/mir'frrs blows uP at a=2,
suggesting that the former approach may in some way
be connected to the W(3) theory, whereas the latter
form may arise more naturally in an SW(3) theory.

After this paper was written, we discovered a paper
by Kuo, " who has shown that the chimeral and
ordinary SU(3) symmetries are unitarily related. In
our formalism this would impose constraints if the
SW(3) symmetry is realized in the usual manner where
vacuum is also an SW(3) scalar. However, starting
with the SW(3)-symmetry group, realized through
Goldstone bosons, it is a matter of convention whether
vacuum is symmetric under the usual SU(3) or chimeral
SU(3) (since it cannot be symmetric under both), and
these two descriptions are indeed equivalent. The
arbitrariness arises because of the fact that there is no
way to fix the relative parity of strangeness-carrying
mesons with respect to the nonstrange mesons. If one
adopts the usual description of SW(3) symmetry where

"R. Gatto, G. Sartori, and M. Tonin, Phys. Letters 283, 128
(1968); N. Cabibbo and L. Maiani, ibid. 28B, 131 (1968); R. J.
Oakes, ibid. 29B, 683 (1969)."Some basis for this formula has recently been given by R. J.
Oakes (Ref. 12)."T.K. Kuo, Phys. Rev. (to be published).
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the vacuum state is a scalar under the ordinary SU(3),
the chimeral SU(3) subgroup of SW(3) will be realized
as a Goldstone symmetry, in contrast to the ordinary
SU(3) subgroup, and our theory presented here would
go through unchanged. These points will be discussed
in greater detail elsewhere.

Lastly, we may make the following remark: We
showed that b as a function of a is discontinuous at
g= —1 and a=2. From this, we concluded that we
may have essential singularities at these points, pro-

vided that b is an analytic function of a except for a
few isolated points in the complex plane of the variable
a. However, there is another possibility that b may
have branch cuts, instead of the essential singularities,
passing through points a= —1 and 2, since these will
also give the desired discontinuity. An interesting
possibility is the conjecture that the Kuo transforma-
tion a —& (2—a)(1+4a) ', es-+ —s(1+4a)es may trans-
form physical quantities on the first Riemann sheet in
this cut plane into those on the unphysical second sheet.
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The nonforward multiperipheral integral equation for the Reggeon-particle absorptive amplitude is
generalized to include complete dependence on the Toiler-angle variable.

I. INTRODUCTION

'UCH progress has been made in formulating the
- ~ multiperipheral bootstrap equation using a multi-

Regge production model. '' In a recent publication, s

Goldberger, Tan, and Wang have constructed a simpli-

fied. integral equation for the Reggeon-particle absorp-
tive amplitude S(p,ps, Q) in a formulation of the multi-

Regge model. Their construction seemed to depend on
the assumption that the double Regge coupling is
independent of the Toiler angle co, and an approximate

justification for this assumption was suggested by Tan
and Wang. 4 It is our purpose to show that an integral
equation which includes the complete dependence on the
Toiler angle can be written for the absorptive amplitude
Q, . This establishes the full generality of the integral-
equation approach through the 8 amplitude.

In the process of formulating this equation, we

elaborate the relation between the co angle and the other
invariants. We then express the integration of the loop
momentum in terms of a particular set of invariants

* Research sponsored by the U. S. Air Force Ofhce of Scienti6c
Research under Contract No. AF 49 (638)-1545.

~ G. F. Chew, M. L. Goldberger, and F. E. Low, Phys. Rev.
Letters 22, 208 (1969).

2 G. F. Chew and C. DeTar, Phys. Rev. 180, 1577 (1969);I. G.
Halliday and L. M. Saunders, Nuovo Cimento 60, 494 (1969);
A. H. Mueller and I. Muzinich, Ann. Phys. (N. Y.) (to be pub-
lished); M. Ciafaloni, C. DeTar, and M. Misheloff, Phys. Rev.
188, 2522 (1969);A. H. Mueller and I. J. Muzinich, Brookhaven
Report No. BNL-13836 (unpublished).

3 M. L. Goldberger, C.-I Tan, and J. M. Wang, Phys. Rev. 184,
1920 (1969). We use a slightly different notation, 0', (p,pp,. Q), for
the absorptive amplitude of the reaction Reggeon(p+-, 'Q)+parti-
cle (pp —

2 Q) ~Reggeon (p ——',Q) +particle (pp+ & Q), while reserving
A (p,pp, Q) for the physical on-shell absorptive amplitude.

4 C.-I Tan and J. M. Wang, Phys. Rev. 185, 1899 (1969).

which manifestly cover the entire phase space. These
variables also allow us to explicitly continue the integral
equation to the forward case t=o.

p

by

A(ppo Q)= -~'((P —P') '-I ')
(2s.)'

Xg(I,t '; t, t ')B(P,P',P,; Q). (1)

We use the CGL equation for 8 with a double
Regge coupling and propagator function G(t+', co~', t~")
=P*(t ', td ',I ")P(t+',a+', I+"), which is now assumed to
depend on the Toiler angles te~'

t in contrast to Eq. (2)
of Ref. 3j:
~(p,p', p. ; Q) =~.(p, p', p. ; Q)

g4 II

+ 8+((p —p')' —p')G(t~', (og', t~")
(2s.)'

/(g/p&)~(&+')+a(t —')2I(p~ p«p .
Q) (2)

5 M. I.. Goldberger, Erice Summer School, 1969 (unpublished),
is a thorough and stimulating presentation of the integral-equation
approach to multiperipheral dynamics.

II. CHEW-GOLDBERGER-LOW EQUATION

Our starting point will be the Chew-Goldberger-Low
(CGL) equation' ' for Regge multiperipheral dynamics
where now arbitrary Toiler angle dependence is assumed
for the double Regge coupling P(t', ce', I")'. The 8 ampli-
tude introduced by CGL is related to the elastic two-
body absorptive part A(p, p„.Q) for


