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It is demonstrated through an explicit model that the weak high-subenergy tail of the multiperipheral
kernel, .acting in conjunction with the strong low-subenergy component, is capable of producing a high-
ranking output Regge doublet with vacuum quantum numbers. We show that association of the upper
doublet member with the P (Pomeranchon) and the lower with the P' is consistent with experimental total,
elastic, and diffractive dissociation cross sections, as well as with multiplicity of produced pions, and predicts
a Pomeranchon slope near t =0 that is roughly half normal. As t becomes negative, the Pomeranchon slope
decreases to a small value, while for t positive the slope increases to a normal value, the I' trajectory con-
taining the particles usually assigned to the E .The latter trajectory has a converse behavior, with small slope
for positive t and normal slope at negative t. The I' and I" trajectories thus exchange "normal" and "ab-
normal" roles near t=0.

I. INTRODUCTION

HE observed large multiplicity of particles
produced in high-energy hadron collisions pre-

cludes a dominant role for the Pomeranchon in the
multiperipheral kernel. Large multiplicity implies a
low average subenergy for adjacent particle pairs in
the multiperipheral "chain" and thus a controlling
inhuence for the low-energy resonance component of
the kernel. The high-energy Pomeranchuk component
can be no more than a perturbation if the kernel is to
generate the requisite number of final-state pions. Even
in the role of perturbation, however, it has been noted
that the weak Pomeranchon "tail" of the kernel may
be responsible for qualitatively interesting effects in
the complex J plane. ' This paper draws attention to
the possibility that the input Pomeranchon perturbation
may split the leading output pole into two poles, whose
combined strength corresponds to the single output
pole that would be generated by the kernel's low-energy
resonance component acting alone. We show that the
magnitude of this splitting may be sufficiently large
to permit identification of the resulting Regge-pole
doublet with the E and I"trajectories. The I' trajectory
is then relatively Rat for t(0 but has a normal slope
for t& 1 GeV . The converse is true for the I".Each has
a slope roughly half normal near t=0.

To achieve a tractable framework, we employ a
factorizable kernel. 4 ' Support for this simplification is
given by recent numerical work on the "ABFST"
model, ' where the leading output Regge pole turns out
to be adequately described by the trace approximation
to the Fredholm determinant, even when the low-energy
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resonance component of the kernel is dominant.
Validity of the trace approximation implies the existence
of an approximately equivalent factorizable kernel.
Our model, then, is of the CI' type, '4 but we shall
alter the detailed structure of the kernel so as to make
it identifiable with the more explicit and realistic
ABFST model.
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FIG. 1. ASFST model, each vertex being proportional to the
elastic xm. amplitude.
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FIG. 2. CP version of the ABFST model.

II. MODEL

The ABFST model is based on pion exchange, the
kernel being proportional to the elastic xw cross
section, as shown in Fig. 1. Our model further approx-
imates the elastic zz cross section by the sum of a
"Pomeranchuk component" —the high-energy tail, and
a low-energy resonance component. Opening up the xx
vertex, we thus may think of a "three-channel"
system, x, R, and I', as shown in Fig. 2, with no diagonal
couplings and no R-P coupling. (We lean on the duality
concept to justify speaking of the resonance link as a
crossed "channel. ") In the notation of Ref. 1, the
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while the external coupling is

0
g,g2

2.gaI' .

gI
0
0.

(2.1)

(2 2)

internal coupling matrix can be written in the form It is understood that the crossed-channel quantum
numbers are those of the vacuum, so the relevant
direct-channel total cross section is an appropriate
average over internal quantum numbers. Still using the
notation of Ref. 1, the solution to the multiperipheral
equation for the forward direction imaginary part,
projected onto the Lorentz quantum numbers X=J+1
and 3f=0, is

&ab(J) =gaR PR(J)gRb +gsP PP(J)gPb

fgaR PR(J)gR +gsP PP(J)gP'7P. (J)[gR'PR(J)gRb +gP PP(J)gPb 7
(2.3)

1 t -(J)L—aR'~R(J)+gP't P(J)7

the first two terms corresponding to the elastic cross
section and the third to the inelastic. The "propagator"
functions p R P(J) are the Lorentz projections of the
subenergy dependence of the x, E, and I' links, respec-
tively. For 3&0 these propagators become functions of
t 70therw. ise (2.3) remains unchanged.

Regge poles arise when the denominator of the
secon. d term of Eq. (2.3) vanishes, and a qualitative
understanding of the main point of this paper can be
based on the following observations: The "propagators"
p, R P(J) are real and analytic functions in a J-plane
cut along the real axis from J= —~ to J=Pa, R,p,
where for t=0, Pp=2np(0) —1=1,P =2u (0)—1=—1,
and (by duality) PR=2n, (0)—1=0. In each case, the
branch point at J=p is logarithmic and, at least for
pP(J), is infinite. To the right of the branch point at p,
each propagator is positive and monotonically decreas-
ing as J increases. The region of concern here is the
interval 0.5(J(1,where p (J) and pR(J) are positive,
real, and smoothly decreasing, but toward the upper
end of this interval there occurs the infinite branch
point in pp(J).

As already discussed, the Pomeranchuk coupling
g~4 is much smaller than the resonance coupling gg4'

and to achieve the experimentally indicated multiplicity
it is necessary that the magnitude of g~4 lead to a zero
of the denominator close to J=1 when the input
Pomeranchon is neglected completely. At the same
time, if we set g~4= 0, even a small value of g~4 unavoid-
ably generates a zero for J just above pP and therefore
near the point J=1.This pole has a very small residue
and a correspondingly small physical effect. With
gg4 and g~4 both nonzero, nevertheless, two poles near
J=1 are expected in the absence of R-I' interaction,
one pole of large residue generated by the "resonance
channel" and one pole of small residue generated by
the "Pomeranchon channel. " Because of the indirect
coupling between E and I' channels via the pion
channel, ",there is a mixing" of the two poles together

' W. R. Frazer and C. H. Mehta, Phys. Rev. Letters 23, 258
(1969).

with a mutual repulsion. If, before mixing, the two
poles are sufficiently close together, the final pair of
poles may have comparable residues.

III. REGGE PROPAGATORS

To illustrate the above mechanism we now proceed
to make specific choices for the propagators p, R,P(J).
Treating the exchanged pions as particles of fixed, zero
spin suggests the approximation p (J)= (J+1) ',
replacing the cut by a pole at J=—1. A study of the
ABFST model confirms the presence of such a pole
but also reveals an effective pole near J=O when the
trace approximation is employed, owing to the very
small pion mass. ' Thus we take

t -(J)= 1/(J P-), - (3.1)

G. F. Chew, T. W. Rogers, and D. R. Snider, UCRL Report
No. UCRL-19457, 1970 (unpublished).

G. F. Chew and D. R. Snider, Phys. Letters 31B, 75 (1970).

where —1(P„(0.
The simplest reasonable choice for the "resonance

propagator" is pR(J) = 1. Although a branch point
occurs near J=O, as noted above, numerical estimates
show that the corresponding high-energy tail of the
resonance component of 0- " is small compared with
the contribution of the individual p and fo resonances.
Cutting off the tail of the resonance spectrum removes
all singularities from pR(J). (We ignore the exponential
decrease at large positive J associated with multi-
peripheral phase space. ')

We can afford to be crude in our treatment of p (J)
and pR(J) because the singularities of these functions do
not fall into the region of concern: 0.5&J&1. It is
necessary to be more careful with pP(J). If the
Pomeranchuk trajectory were flat we could take pp(J)
= (J—Pp) '. The most recent evidence on the energy
dependence of the forward diffraction peak in pp scatter-
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ing suggests that n&'(0) =0.47 GeV '."Now, if

ei/d~ ~ e2at&2[ai (t)—&1

the effective length of the cut in pi (J) is given by

6J=ni '(0)/a.

(3.2)

(3.3)

Assuming the value of a to be the same as in pp scatter-
ing, ' we have a=3.4 GeV ' and thus AJ=0.14. The
smallness of this interval justi6es the replacement of

the cut by an equivalent pole at

pi ~pi —hJ, (3.4)

~ (J)= 1/(J —P.).
IV. REGGE POLES AND RESIDUES

Our model solution (23) then becomes

(3.5)

if we are concerned with structure in the J plane on a
scale large compared with hJ. Since the P-P' splitting
is of the order 0.4, it is not unreasonable to take

g.I'g»' Lg ii'gii'+g. i 'gi '/(J Pi*)—][gz'gz~'+gi'gi i,'/(J Pi)—]~.~(J) =g.z'go~'+ — +J pi*— J P- —gz' —gr '/—(J Pi)—

~y =k(p I +p'~ [(pz p')'+4—
g
i']'"), (4.2)

Observe that the "pole" in the elastic cross section at
J=Pi, which represents the AFS' cut, is canceled by
a corresponding "pole" in the inelastic cross section, so
that the only poles in the total cross section arise from
the two zeros of the denominator of the third term.
These are the true Regge poles.

The two Regge poles are located at

of the pole residue factors becomes

(g zgz +g i )/(g iigz —
g i') (48)

favoring the pole at 0,+. Thus, for a suKciently small
ratio of Ap to 2gi', even though the Pomeranchon
coupling g~' is small, the two poles will have comparable
residues. It is easy to show that the slm of the two
residues is independent of g&', being given by

where &++& =gas —gi t +g~ii gz get &
(4.9)

with

'+ r
A, p(J) = — +J—e

+g.z'gzi', (4.4)

1) AP
r~= -i 1w

2k an

(4.3)

is the position of the single pole that would be gen-
erated by the resonance component of the kernel,
acting alone. The residues of the two poles are easily
calculated, allowing us to write

so the resonance component of the kernel alone deter-
mines the sum of the two residues, even when these
residues are comparable in magnitude.

To the extent that the splitting 5n between the two
poles can be considered small, they behave in effect
as a single pole with residue given by (4.9). In this
sense the input Pomeranchon effect is weak. Experi-
ments, however, have been sufficiently precise to resolve
two separate high-ranking poles with the vacuum
quantum numbers, the P and the P'. I.et us now see
whether the observed P-P' splitting and residue ratio
can be reasonably acconunodated.

where

and

2gi gai
X i g.~'gz'+ X(a ~ fi), (4.5)

&An —Ap

~p= pz p'— — (4 6)
From Eq. (3.4),

he=0.4. (5.1)

V. NUMERICAL ESTIMATE OP PARAMETERS

The observed P-P splitting is roughly 0.4, requiring
us to set

Q~ —+L(gp)2+4g 4]li2 (4 7)

Note that as gi'~ 0 with Ap fixed, hn-+ hp and the
residue of the pole at J=+ approaches g,&2g»2,

corresponding to purely elastic scattering. The residue
of the pole at J=n in this limit is much larger, since
it carries the entire inelastic cross section. On the other
hand, if,hP -+ 0 with gi ' fixed, hn —+ 2gi ' and the ratio

'0 G. G. Beznogikh et al. , Phys. Letters 30B, 274 (1969).Note
that for the purposes of this paper it is the "effective slope" of
the Pomeranchon, as measured by the actual rate Of for~&I'd peak
shrinkage, that is important.

and since

it follows that

Thus we choose

Next, if we set

pi =2n+ —1—hJ,

.=-:(p +p'+~ ),

p'=1 —hn+LLJ.

p'=0.7.

-,=p+-. (~p+~-)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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equal to 1, we have

AP= 2(1—P') —An

is easily calculated to be

R, = 2gg4 lns. (6.1)

=0.2.

The parameter gi ' is determined now from (4.7):
L(A&)2 (AP)2]1/2

= (0 12)'~'

(5 7) As the energy increases the burden shifts gradually to
the upper pole at o.+, which carries a fraction =~~ of
the residue sum. The coefficient of lns has a correspond-
ing gradual decrease to a limiting value which a short
calculation shows to be

5.8
ol

From (4.3),
gg 4=0.03. (5.9)

AP~ g
4-

Fs 2 —',gii'~ 1— ~+ lns.
An) An

(6.2)

(5.10)

and since P is supposed to lie between 0 and —1, we
choose for simplicity

(5.11)

To discuss residues, we must select a particular
pair of incident particles. We choose these to be pions
and assume that at moderate energies, say s=20 GeV',
the ratio of total to elastic cross sections is about 6;
this estimate is based on the corresponding ratios for
mN and NN scattering, together with factorization.
In our model the elastic cross section has an energy
dependence characterized by Pi =0.9, while the total
cross section contains the two powers a+=1.0 and
n =0.6 with comparable weight: At not too high an
energy the ratio of total to elastic cross section is thus
slowly varying. Forinula (4.9) then leads us to take

g~ii /g i =5. (5.12)

r+ 1—AP/Anfg g' 2gi'
gs'+

r 1+A//Aukg i ' An —AP

g~z 2gi
ga'+

g, i ' —An —APl

0.5 2(0.173) ' f 2 (0.173)) '
«5)+-

1.5 0.2 0.6

We are now in a position to calculate the residue
ratio. 'From (4.5) we have

With the numbers of Sec. V, we thus have a gradual
shift from 8=2 1ns at moderate energies to 8 =0.65 lns
at extremely high energies. "Cosmic-ray emulsion data,
interpreted superficially, suggest multiplicity at very
high energy that is larger by a factor of 3 than what we
predict, but complex nuclei are involved and, in
addition, low multiplicity events may be missed.
Accelerator data at moderate energies are consistent
with (6.1). We therefore regard the multiplicity predic-
tion of the model to be at least marginally satisfactory.

VII. DIFFRACTIVE DISSOCIATION AT
INTERMEDIATE ENERGIES

At moderate energies the eRect of the Pomeranchon
in the kernel is a relatively small perturbation, and
the cross section can meaningfully be expanded in
powers of g~'. The linear term in such an expansion
corresponds to a single Pomeranchon link occurring
at one end of the multiperipheral chain and may
approximately be identified with the cross section for
"diffractive dissociation. "The experimental magnitude
of the latter thus provides a check on the magnitude of

gz
The full cross-section formula corresponding to

(4.4) is"

o, i,(s)=r~s"+r s"
', (r,yr )(s- +s=)+,'(r„-—r )(s-+—s.-)-

= (r++r )s cosh(-', An lns)

+ (r+ r)s sinh(2iAu lns), —(7.1)

—$ 9
where

k(PP+0')— (7 2)
Such a number is in reasonable accord with the phenom-
enologically determined ratio of I' and I" residues for
mN and NN scattering, " translated by factorization to
KX ~

VL MULTIPLICITY

At moderate energies the average multiplicity of
produced pions in our model is roughly the same as in
a model with only the resonance component in the
kernel, that is, with gz' ——0. This average multiplicity

"R.J.N. Phillips and W. Rarita, Phys. Rev. 139,Q Q$Q (1965).

and where we have omitted the resonance 5 function
corresponding to the third term of (4.4). If lns is only
moderate, the cosh and sinh functions in (7.1) may be
expanded to give the simpler form

O.,t,(s)=(r~+r )s +(r+ r)s (~An) lns. —(7.1')

The first term of (7.1') is independent of gi', and

~This predicted shift in the rate of multiplicity growth is a
characteristic qualitative feature of any multiperipheral doublet
model.

"Qur unit of energy squared is 1 Ge&'.
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keeping only the linear component then gives

or
Tab (gaP gPb +gaR gR gRb )S (7 4)

r balff diss&ab f gaR gPb +gaP gRf=gP'gR'I. . . , 1»~ (7 5)
kgaP gPb +gaR gR gRb

The numbers of Sec. V, when inserted into Eq. (7.5),
lead to

(7.6)diff. diss. /fr &a& p 13 ln&

a result which evidently is meaningful only for moderate
values of lns.

Current experimental evidence is too meager to
yield a reliable integrated diffractive dissociation cross
section. However, an ABFST-model extrapolation from
the A ~ region, where such a model is successful, suggests
a diffractive-dissociation cross section that at moderate
energies is of the same order of magnitude as the
corresponding elastic cross section, in agreement with
(7.6). Thus the value of gP2 needed to produce the
observed P-P splitting is consistent with that implied
by diffractive dissociation.

VIII. DISCUSSION

The model employed here oversimplifies a complex
multiperipheral mechanism, but relatively few aspects
of the mechanism are essential to the point in question.
The essential features are:

(a) The multiperipheral kernel chieQy generates low
subenergies for adjacent pion pairs in the chain, while
at the same time the kernel possesses a weak high-
subenergy "tail."

(b) In the absence of this "tail" the kernel strength
must be capable of generating an output "vacuum"
Regge pole with position fairly close to J=- 1 and with a
residue whose magnitude corresponds roughly to the
high-energy inelastic cross section.

(c) The kernel "tail, " acting alone, generates a
weak-output vacuum pole, also near J= 1.

(d) The complete kernel then generates tfffo vacuum
poles which split apart by the usual repulsive mechan-
ism. If the uncoupled spacing is sufficiently small,
the two final residues are of comparable magnitude.

The function of our model is to see whether the
strength of the kernel "tail" can

(i) be large enough to produce the observed PP'-
splitting,

bdiff. diss.
g 2g 2(g 2g 2+g 2g 2)~a in' (7 3)

to be compared with the first term of (7.1'), which
approximates the total cross section at intermediate
energies. Using (4.9) to evaluate the latter, we have, for
comparison purposes,

(ii) be large enough with respect to the uncoupled-
pole separation so that the P and P' residues are
comparable, '

(iii) be small enough to avoid pushing the I' above
J=1, in violation of the Froissart limit,

(iv) be small enough to accord with the observed
probability of diffractive dissociation. "

All the foregoing requirements can be satisfied within
our crude model, leading us to suggest that the actual
multiperipheral kernel may generate a P-P' doublet.
The most questionable aspect of our model is its
replacement of the input Pomeranchon cut by a pole.
This replacement depends on the effective Pomeranchon
slope's being sufficiently small that the effective length
of the input cut is smaller than other significant
J-plane intervals. If the input cut is not concentrated,
the splitting of the two output poles has a substantial
imaginary component in the J plane (one of the poles
residing on the unphysical sheet) and the observed
P-P' configuration may not be achieved.

A number of questions are raised by the suggestion
of a doublet P-P' relationship:

A. Phenomenological schemes often have assigned
to the P' a role closely related to that of other meson
trajectories, while the P is considered a unique phenom-
enon. Is our proposal incompatible with such a picture?

B. With the doublet mechanism, are particles
expected on both the P and P' trajectories?

C. Ting" has suggested a baryon-exchange multi-
peripheral mechanism for the P' and co. Does our
proposal exclude his, and vice versa?

We do not have a definite answer to these questions
but suggest a partial answer to A and B in order to
illustrate the subtlety of the situation. The model
employed here can be extended to nonzero momentum
transfer t, and one may continue to decompose the
kernel into a resonance component plus a high-energy
tail. If the effective Pomeranchon slope is substantially
smaller than "normal, " the uncoupled output trajec-
tories will have different slopes, crossing at some small
positive value of t (see Fig. 3). At either large positive t
or large negative t, therefore, the mixing of the two
poles will be weak. The trajectory controlled by the
resonance component of the kernel is expected to be
"normal" and to contain particles, but the trajectory
controlled by the high-energy tail of the kernel will be
"abnormal. "Note, as shown in Fig. 3, that an exchange
of roles for the two final trajectories occurs in the cross-
over region. The slope of each near t= 0 is expected to be

~4 Satisfaction of this condition ensures a substantial multiplicity
at very high energy.

"The strength of the kernel tail inferred here is much larger
than that inferred earlier from diGractive dissociation data by
Chew and Pignotti in Ref. 4. The earlier determination incorrectly
omitted the contribution to the diffractive dissociation cross
section from produced masses above 2 GeV."P.Ting, Phys. Rev. 181, 1942 (1969).
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I"ro. 3. Uncoupled (dashed) and coupled (solid)
P and P' trajectories.

about half the "normal" slope. For the Pomeranchon,
at least, there is experimental evidence for such an
"in-between" slope. " One of the further striking
predictions of our model is that the Pomeranchon slope
will decrease as

~
t

~

grow—s.'t
The picture represented by Fig. 3, for negative

t away from the crossover region, allows revival
of the suggestion in Ref. 5 that the tendency of the
Pomeranchon to remain near 1 is related to the small-
ness of gt '. The uncoupled trajectory Ptr+(1), that is)
occurs at PI (t)+0(gz4), where Pp(t) = 2u+(t/4) —1
—AJ(t). The natural way to accomplish such a condi-
tion, with AJ(f) small, is to have n+(f) always close to 1.

~7 The Frazer-Mehta generalization of the CP model in Ref. 7
has pp(J, t) decreasing strongly with

~
$~. If pp(1, $) -+—0 as

5 —+ —~, the model predicts that ~I (t}—+ 1 as t —+ —~, so there
would be a region in which the Pomeranchon slope is actually
negative.

The mechanism described here is expected to double
other trajectories as well, such as the p, but because
the weak input cut is now less concentrated, the output-
pole splitting may be less visible experimentally. The
reason to expect larger AJ with nonvacuum quantum
numbers is that trajectories with slopes near 1 GeV '
will occur in the combinations that give rise to the weak-
input cut.

In conclusion, we refer to three other recent multi-
peripheral calculations that are related to the doublet
phenomenon. Ball and Marchesini' studied the ABFST
Bethe-Salpeter equation with a kernel qualitatively
similar to ours, but the resonance component of their
kernel was not sufficiently strong to produce the needed
approximate coincidence of uncoupled poles. The
ABFST model kernel, if based on the on-shell elastic zw
cross section, contains a resonance component that is
too weak by a factor =2. Ball and Marchesini thus did
not achieve adequate pole mixing. In this paper we
have assumed that some correction to the ABFST model
will suitably augment the low-subenergy component
of the kernel.

The model of Ref. 4, in particular Eq. (4.12), contains
an explicit doublet but, as remarked in our Ref. 1.5,
the splitting was taken in Ref. 4 to be so much smaller
than in this paper that there was no temptation to
associate the doublet with P-P'.

In a completely different but still essentially multi-
peripheral calculation, using the on-shell strip model,
Collins and Johnson's found only a single high-lying
output vacuum pole, of large residue. In their equations,
however, they employed a cutoff which effectively
removed the high-energy tail of the kernel —leaving
only the resonance component. We conjecture that if the
strip-model equation can be solved without a cutoff,
two vacuum poles will emerge, each with residue about
half that found by Collins and Johnson.

"P. D. B. Collins and R. C. Johnson, Phys. Rev. 185, 2020
(1969); I'7'7, 2472 (1969).


