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We continue our study of the contribution of a Regge-pole family to the scattering amplitude. Total-spin
states are constructed, which allow us to expand the off-shell scattering amplitude in a series of representation
functions of the Lorentz group. The contribution of the family is transformed into a form which strongly
reminds one of a Lorentz-pole contribution, even at nonzero momentum transfers t. The most general
dependence of the Regge-pole residues on the total helicity X and daughter index sc is given in terms of two
arbitrary functions of composite variables tj(j+1) and nX, where n= (Lt—(m& —ms)'gI t —(m&+mz)2])'l2.
The contribution of a family to the scattering amplitude constructed from these residue functions and the
trajectories given in a previous paper is the most general one satisfying all kinematic constraint relations
at t =0, pseudothreshold, and threshold.

I. INTRODUCTION

HIS is the second of a series of papers in which we
set out to solve the general problem of con-

structing a Reggeized scattering amplitude satisfying
all requirements of I orentz invariance and analyticity.
The first paper of the series' deals with the determina-
tion of the most general behavior of a family of Regge
trajectories consistent with the above requirements. In
this paper we discuss the most general form of the Regge
residues. Our aim is to give a form for the residue that
can be easily parametrized for phenomenological
analysis.

Since unitarity requires that the residue of a pole be
factorizable, we shall work with Regge vertex functions,
i.e., the vertices which couple Regge trajectories with
two-particle states. The problem to be solved here is the
determination of the most general structure of the
vertex function such that the contribution of a Regge
family to the scattering amplitude is analytic at vanish-
ing momentum transfer, t=0, and at the same time
satisfies the constraint relations at thresholds and
pseudothresholds. To achieve this, we study the depen-
dence of the vertex function on the following variables:
~, the daughter number; X, the total helicity of the two-
particle state; and 0 and 3f, the quantum numbers
which characterize the family at t=0.' Although our
method differs from that of Cosenza, Sciarrino, and

* Supported in part by the National Science Foundation.
f On leave of absence from the Central Research Institute for

Physics, Budapest, Hungary.' P. K. Kuo and P. Suranyi, preceding paper, Phys. Rev. D I,
3416 (1970); hereafter referred to as I.

I

Toiler, 2 we essentially accomplish the task outlined in
their series of papers.

The underlying group-theoretic part of the problem
is described and solved in I for a less general scattering
process in which both the initial and final state have a
spinless particle. This arrangement avoids the difhculty
of having to couple the spins of a two-particle system in
a covariant way. A crucial step in our solution to the
general problem is the use of "total-spin" amplitudes
based on "total-spin" states. This concept of total spin
is the covariant generalization of the "north-pole-
frame total spin" introduced by Toiler. ' The total-spin
states, defined and discussed in Sec. II, transform as if
only one of the particles has spin. Hence the amplitudes
based on these states can be treated in exactly the same
way as in I. Having disposed of the problem of spin, we
return to the line of approach of I in Sec. III to give the
expansion of a Regge vertex function in a series of
representation functions of the Lorentz group. In spite
of the fact that the trajectories are in general non-
parallel, we are able to sum up the contribution of the
whole family into a form which resembles the contribu-
tion of a single Lorentz pole. This form is convenient for
establishing analyticity at t =0 as well as the fulfillment
of the constraint relations at f=o (equal-mass case).

The Regge vertex in the form of an infinite sum of
representations, however, is not convenient for practical
use. Specializing to the unequal-mass case, we study in
Sec. IV the behavior of the representation functions
near the special values t=0, threshold, and pseudo-
threshold. With the help of the method of composite

~ G. Cosenza, A. Sciarrino, and M. Toiler, Nuovo Cimento 5'7,
253 (1968).' M. Toiler, Nuovo Citnento 53A, 671 (1968).
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variables, '4 the infinite sum is reduced to a closed,
compact form useful for parametrization. It is also
shown in Sec. IV that the unequal-mass constraint
relations at threshold and pseudothreshold are satisfied
by the contribution of each daughter alone. The pro-
cedure of Sec. IV is repeated in Sec. V for the equal-
mass case. Here, however, for reasons to be seen later,
our results are in a less convenient form and are perhaps
less general. The constraint relations at threshold are
again satisfied by each daughter alone, but the same is
not true at pseudothreshold (which coincides with 1=0);
the constraint relations are satisfied only by the family
as a whole. All the important results of this and the
previous paper are summarized in Sec. VI.

Two appendices are included. They carry the more
technical parts of the discussions of the paper.

II. TOTAL-SPIN AMPLITUDE

In I we have shown that the wave function of a two-
particle state has a simple expansion in terms of the d
functions of the Iorentz group if one of the particles is
spinless. When both particles have spin, the spins have
to be combined to form a "total spin" before the simple
expansion can be used. At special values of total energy,
i.e., threshold and pseudothreshold, the total-spin states
are well known. ' Since at these values both particles are
at rest in the c.m. frame, their spins combine just like
angular momenta. At threshold,

lpg, ps, s,x) P (sg'Ayi ss —xsl»)

where p=Lp and k=Lk, i.e., the spin transforms as if
the momentum of the particle were k.' Having freed the
spin from the particle momentum, we can define a
two-particle state for which both spins transforms via
the same Wigner rotation:

I pg, »,hg(k))8 I p„ss,X,(k)). (2 6)

So, combining these states together by means of
Clebsch-Gordan coefficients, we obtain, the. total-spin
states

I p~, ps, s,X(k) &
= Q (s~X~,ss'As

I »)

&&
I p,s,X,(k)& I psssXs(k)&. (2.7)

It follows immediately that this state has the desired
transformation property

U(L) I pips»(k)) =g
I pi, ps~p(k))D„~'(A~='LA~), (2.g)

where p; =Lp;. For convenience, we choose k =pr
(assuming m~)ms) and denote our total-spin state
simply by I p&ps, »&:

where D„q' is the (2s+1)-dimensional representation
function of the SU(2) group generalized to the 5L(2,C)
group. ' It can be verified that this new state transforms
according to

U(L) Ip, ~,7 (k))=K IP,~,~(k)&D. '(A='LA. ), (2 5)

x I pi»xi&8 I pssszs&, (2.1)
I p&ps»& = p (»xq, ssh —Ii»

I ») I pqsqxq&

and at pseudothreshold,

I pbpsi~i»~ 2 ( I)" "'(»~~i » ~s I»)

&& lp,s,7„)g lpsSQXs&. (2.2)

The extra phase factor in the latter arises because the
momenta of the two particles are not in the same
light cone.

The problem of this section is to define a covariant
total-spin state which (i) transforms like a one-particle
state with spin s and helicity X and (ii) reduces to Eqs.
(2.1) and (2.2) at threshold and pseudothreshold, re-
spectively. To this end, we generalize the transforma-
tion rule of a one-particle helicity state, 6

U(L) I p,~,» = U(L) U(A.) I po;,»

U(L) lp~ps»)=p lp~pssIJ, )D„q'(h~ 'LA, ). (2.10)

In the c.m. frame, the D function in Eq. (2.9) becomes

02(A —1A ) &
—Xsts+(X—Xi))i&isiwg&

& & (2 1 I)

I+my —Res
cosh)1=-

21'~'m
cosh)s =

(—ml +ms

2~'~'m2

At threshold, =I(nsq+m )s' and (q
——fs=0, so that Eq.

(2.9) reduces to

I p»s7 s&D»~—»"(As 'A~) i (2 9)

whose transformation rule is

&& Ip~s~h~) IpsssXs&. (2.12)

=2 I7, I)D.~'(An 'LA.) ( ) lp,p,»&=(—1)"Q (sg7g, ss —Xsl»)

by introducing a new state,

Ip;,~(k)&=2
I p, ~,I &D (A A.), (2.4) At pseudothreshold, I=(mq —ms)', $~ ——0, $,=i' (since

4 P. K. Kuo and P. Suranyi, Phys. Rev. Letters 22, 1025 (1969).
~ M. J. King and P. K. Kuo, Phys. Rev. D 1, 442 (1970&.' The notation is the same as in I.

7 G. Cohen-Tannoudji, A, Morel, and H. Xavelet, Ann. Phys.
(N. Y.) 46, 239 (1968).

The transformation rule for spinor states is obtained if vye

choose k to be the null vector,
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2)21) 2)22); Kq. (2.9) reduces to

l
plp2s'A) = Q (—1)" "2(slxlr s2 —) 2 l sl()

X l pisl&(1)(8)
l p2s2&(2) . (2.13)

We have seen that the total-spin states defined by Eq.
(2.9) satisfy all requirements. We are now in position to
discuss the total-spin amplitude which is the S-matrix
element between the total-spin states. It follows directly
from Eq. (2.9) that

2 Varan s2 2 isis' 1112(sll~ls2~ ~l
l »)»23-31 (A2 Al)

X (s2X2s4X' —ll2 l sV)Dls&, 32"*(A4 'A2) . (2.14)

The transform rule for T follows from Eq. (2.10):

Ts'lrsl(PlP2P2P4) Z Tsrrsrs)s(PlP2P3P4)

XD„3'(Ar 'IA1)D„ 1 ""(A2 'LA2) . (2.15)

This rule is the same as for the helicity amplitude with
s2=s4=0, s~ ——s, and s3=s'. It then follows that all the
results of I apply equally to the total-spin amplitudes.
From this point on, we shall restrict our discussions to
the total-spin amplitudes. Once thej. r structure is known,
the structure of the helicity amplitudes can be obtained
immediately from the inverse of Kq. (2.14):

2 1314' 3112 Q 2 s 1 A(slllls2&l ~l
I
sly)Dl 3112 (Al A2)

sos'))1'

x (s2x2s 'A' —x2
l
s'l(') D), )„3,"*(A2 'A, ) . (2.16)

The threshold and pseudothreshold constraint rela-
tions for the total-spin amplitudes have been discussed
by King and Kuo'; they again agree with those for
helicity amplitudes with s2=s4=0, s&=s, and s3 s'.

The problem of total spin has often been mistreated
in the literature by building the two-particle state by
combining one-particle helicity states simply through a
Clebsch-Gordan coefficient (sX

l sill, s2X2). The total spin
defined in this way is certainly not covariant and the
expansion coeScients of the representation functions
of the Lorentz group will be Itelicity dePe2«de2«t Such a.
helicity dependence was noted in a paper of Bitar, '
where it was required that at threshold and pseudo-
threshold the amplitude has extra factors, thus giving
rise to the right combinations given by Eqs. (2.1) and
(2.2). This requirement is still not enough, however, to
satisfy the constraints at the singular points; we have
constraints on the expansion coeScients of the ampli-
tude around these points as well. A correct treatment
of the problem of total spin was outlined in a paper of
Frazer et a/. ,

"who, however, described in detail only

9 K. M. Bitar, Phys. Rev. 180, 1477 (1969).
'o W. R. Frazer, F. R. Halpern, H. M. Lipinski, and D. R.

Snider, Phys. Rev. 1'76, 2047 (1968).

the case of one spinless particle in both initial and final
states. Nevertheless, the method they oRer, namely, the
application of spinor amplitudes, leads to correct results.

III. EXPANSION OF RESIDUE FUNCTION AND
LORENTZ POLE FORM OF CONTRIBUTION

OF FAMILY AT ~~0

In the first part of this section we shall give the Regge
vertex functions (the product of which gives the residue
function) as a sum over representation functions of the
I orentz group, d, i, rs(g). At first the most general t and
~ dependence of the expansion coefficients will be given.
This result is a more or less trivial consequence of the
introduction of the method of composite variables'4 and
the treatment of total spin given in Sec. II. We do not
distinguish between equal- and unequal-mass cases until
Sec. IV and, therefore, do not specify the value of the
boost angle $.

As one can see from Eqs. (3.17) and (3.18) of
I L(I 3.17) and (I 3.18)j, the wave function satisfying
equation Is.p=O agrees with the Regge vertex function.
Of course, a normalization constant remains undeter-
mined by the homogeneous equation, so we shall work
at first with an arbitrary normalization and defer this
question to Appendix A.

As a erst step, we introduce the parity-conserving
combinations for the partial-wave projections of the
wave function defined by Eq. (I 3.23):

6'""'(q', «) =4' (q', t)~A' (q', «) (3 1)

It follows from the orthogonality of the functions
d,l,'M(+) that the wave function )P, 'M(+)(q', t) satisfies
Eq. (I 3.24) with E,'s's 's" (p', q', t) substituted by

M'M'(k)(P
q «) and. )P. jo(q t) by y M(+)(q t)

Using standard techniques of perturbation theory,
one is able to calculate the wave function in terms of
those at 1=0:

M(+)a(q2 «) b b , )p aM(6)(q2)

aMaM(+) (q2 qr. 2
«)

+42r2 dq'2 q"
aMaM(q2 q2 «) It aMaM(qr2 qr2 «)

XA "'(q")+ ", (3 2)

where )Po'M(+)(q') is the solution of the eigenvalue
equation (I 3.24) at t=0. The quantum number M is
determined at t=0, while 0. is the solution of Eq.
(I 3.33), g„(+&=n„(+)(t)+)(. We note that 0 and 3f differ
from 0- and M by integers.

Using Eqs. (I3.31) and (3.2), and repeating the
considerations of Sec. III of I, we obtain the most
general j (or &() dependence of P M(+) (t) Lfrom now on

we omit the q2 dependence of )Ps M(+)(q2, «) which is
inessential from the point of view of our further



REGGE TRAJECTORIES AND RESIDUES. II 3427

considerations]:

where up= IM —MI+!&r
—o! and o.& and M& are the

larger of o., o- and M, llf, respectively.
The residue of the daughter trajectories is given

essentially by the partial-wave projection of Eq.
(I 3.23),

4 '"'(&)=Z d '~"'(t)4 ' "'(&) (3 4)

This expression, together with Eq. (3.3), will serve as
a basis of our further considerations in the following
sections, where we shall give the most general form for
Regge vertices, which will be useful for parametrization.

Let us turn now to the question of normalization. The
partial-wave scattering amplitude near one of the
daughter poles has the form

0( );"'4o, Iql, &)~b(s) ")*(qp',
I
q'I, &)r-N (I) , (3.5)i-~ (&)

where f(i»(+) and f(s);(+) are the wave functions for
initial and final states, respectively, normalized to unity:

14 (') "'(vp, !qI, &) I 'dvpd
I qI I qI '=1.

-r(~,+q+2) r(~ —q+1)
p osr(+)(() Inp/2

-I'(«+i+2) I'(« —i+1)
r(M, +q+1) r(~ —M,+1)- i&s

X
r(M, +j+I) r(q —M, +1)

X I a(t, )'i) +Isl(b(I, Ii)], (3.3)

The summation over M extends from 0 to s, while in
o- it extends from j to infinity.

The coefficients of the expansion (3.7) were studied
in several papers. The ~ dependence of the first few
derivatives of P;™~)(t)in t at 1=0 was determined in
papers of Domokos and Suranyi" and Kuo and
Walk. er."Bronzan" was able to give the ~ dependence
of arbitrary order of derivatives of the functions
r...), (+)(I). In a recent paper, Durand, Fishbane, Klein,
and Simmons'4 have given a form for the coe%cients
P,'~(+)(I), but their approach is entirely different. So
a direct comparison with our results at this stage is
very hard.

We regard Eq. (3.7) only as an interinediate step
towards the final formulas we shall obtain in Secs. IV
and V. The infinite sum in Eq. (3.7) is certainly not
useful for practical applications (parametrization,
phenomenology). Even from a fundamental point of
view it is not satisfying: It does not give the right
number of independent constants in a given order of t.
We shall show in the following sections, after a study of
the structure of functions d, if~(+)(&), that the residue
is completely determined in terms of one or two arbi-
trary functions of the composite variables instead of
infinitely many.

In the following part of this section, we shall give a
useful form of the contribution of a Regge-pole family
at arbitrary values of I. This form will be useful for the
proof of the following statements.

(i) The contribution of the family to the scattering
amplitude is a regular function of t at 1=0.

(ii) The constraint relations are satisfied at t=0
(equal-mass case).

The contribution of a daughter pole with daughter
index I(: and parity index v to the scattering amplitude
has the following form Lsee Eq. (3.7)]:

In Appendix A we show that Nps(I) I;=,&+&(o can be ~ (,)() ~ d,~(,)( ),~( )(),.( )
0,M, 0', M'

NJ'I)'= .'"(()=G(I «» +Isi)

t9

X 1——F(&, &i, &&sr)
Bj

(3.6)

Xd, , a'M'(r)( ]1)Ps'M'(r)(I).
8 ——1

1——F(I, ti, +t@) (3.8)

8
X 1——F(I, tr, &I)s)

8j

——1/2

~'=n &') (~)

(3.7)

where we have absorbed function G(I, Ir, &/sr) into
p, ~sr (2) (~)

where G(I, Ii, &/sr) is a regular function of its variables
near I=O, while F(t, ti, &t~) =f(t, ii)&Isrg(t, ti) was
deffned in Eq. (I 3.33).

Using Eqs. (3.4)—(3.6), we finally obtain, for the
normalized Regge vertex function,

(k)(I) —P (I .rrM(+)(()P ~M(+)(I)
0,M

Equation (3.8) can be recast as

"(&)= di Z Z d. (')(f)
2xi o, M 0', M'

Xp nM(r)d, j'(0)o), „. , .a'sr' (r) ( (&)

X4"' "'(&)Li+» FP, &i, +&~)] '—
"G. Domokos and P. Suranyi, Nuovo Ciinento 56A, 445 (1968);

SPA, 813 (1968).
rs P. K. Kuo and J. F. Walker, Phys. Rev. I"/5, 1794 (1968).
~~ J. B.Bronzan, Phys. Rev. 180, 1423 (1969).' L. Durand III, P. M. Fishbane, S. A. Klein, and L. M.

Simmons, Phys. Rev. Letters 23, 201 (1969). We thank Dr.
Durand for a correspondence.
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where the zero of the denominator is inside the integra-
tion contour. Equivalently, by introducing o = j+x, we

may write

1
), Y"(t)=— do 2 2 d.).-—.+" "(")

27ri y, M g'M'

Xf +"-"(t)d))," "(&)d") .— .+"' "'(—j')

XP- +"' "'(t)L,o —F(t, ti, Wt~)7 —'. (3.9)

For any contour of integration, there exists a value
of t small enough that (cr —F) ' can be expanded in
powers of ti ——t(o.—x)(o.—~+1) and

t/Lr
= $I'(o w+M—+1)/I'(rr K M—+1—)7t~/2

The powers of t~ and +tg can be absorbed into

P,'~'+)(t) without altering its structure.
Using the notations of Appendix B and the form of

the Clebsch-Gordan coefficients given by Eqs. (I 3.29)
and (I 3.30), we may write these modified functions

s3r (+)(t).
0. 31 o- M e 0

P.sM(+)(r) P trs/2 sM(t)00"'
/ro. —3II o. M r/ 0

"(t) (3 10)
m 0 0

where P„,i'~(t) and P„,o'~(t) are regular functions of
t. In Eq. (3.10) the j dependence is explicitly factorized
in the Clebsch-Gordan coeScients. By making use of
the Clebsch-Gordan series for the functions d, i/'/o($)

t Eq. (B9)7 and summing over ~ and r, we obtain the
contribution of the whole family of Regge poles. Using
the addition theorem for the functions d, i/'"($)" and
performing the circuital integration, we obtain

2 s)s')' P P Ts, sos'i'
«=0 7=+

ss' k=l n n' r, r'

clear from the construction that if k&n/2+n'/2, then

n, ss's, M(t) ~0(t/s —n/2 s's/—2) (3.12)

IV. UNEQUAL-MASS CASE

For the case of unequal masses, a convenient variable
to use for the d function is x =e '&,

Equation (3.11) is rather interesting from the point of
view that it is essentially a one-Lorentz-pole form for the
contribution of the family even at t~O. The infinitely
many derivatives of the function D,), ),"~(A, 'A„)
introduce a "nonlocal" effect, which results in the
appearance of nonparallel trajectories. If the trajectories
were parallel, no derivatives of the D functions would
appear I

because the function F(t, t„+t )))rwould be
independent of ti and +t/)r7. On the other hand, the
"number of derivatives" depends on the external masses
as well. For equal masses, as d„oo"'($) is a bounded
function of t near t=0, it follows from Eqs. (3.11) and
(3.12) that the 4th derivative of the amplitude in
variable t at 3 =0 would only contain the 0th derivative
of function D;q;.),"~ in the variable 0. For unequal
masses the functions d,oo"o($) are singular at t=0, so
t"/'d„oo"o(&) is finite and infinitely many derivatives of
D;~; ~"~ appear at 3=0.

It is easy to see that the form (3.11) is an analytic
function of t (assuming the convergence of the sums)
near /=0. The multipliers of the D;z; z

'~ are analytic
functions of t. The functions D;q; q ~, together with
their derivatives in the parameter 0. at a place
o =F(t,0,0), are analytic as well. '

We remark that the derivatives of D;q; q
~ in the

variable 0- lead to additional logarithms in the asymp-
totic behavior. If we sum over the derivatives, these
logarithms sum up to a fractional leading power of s,
giving rise to the right value of the leading trajectory.

If we disregard the eQects of nonparallel trajec-
tories (that is to say, the derivatives in o.), the form
(3.11) coincides with that of Delbourgo, Salam, and
Strathdee, ' except for the treatment of total spin. Their
form, however, is not applicable in the case of unequal
masses, when "perturbations" to the total-spin value
appear even at t=0.

Xtn/o+n'/2d no(()d, n'0( (r)

X(s) Ia); r0)(s'X'Ia'X'; r'0)(d/do. )" '

Xr D „„rrM(A —1A )~~( 1)s+s' r r'——

X)-).-),.— ),' (Ao 'Ai)7
I o-=r//, o, o), (3.11)

cosh( = (t+rr/i' —rr/o')/2t' 'mi

in the c.m. frame. At t=O, x=O, and at both threshold
and pseudothreshold (3=(mi&mo)'7& x=1. From the
definition (B1) of Appendix B, the d function has the
following power-series expansion:

where g is the product of the internal parities of the
scattered particles.

The functions c are analytic at t=0. In addition, it is

'5 A. Sciarrino and M. Toiler, J. Math. Phys. 8, 1252 {1967}.

d, )/ &'(&) =xi&i&' 'i—'(ao+aix+aox'+ ) (41)

'6 The analyticity of the D,&,.z ~ functions at t=o has been
discussed by D. Z. Freedman and J. M. Wang, Phys. Rev. 153,
1596 (1967)."R.Delbourgo, A. Salam, and J. Strathdee, Phys. Letters 25B,
230 (1967).
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where the erst coefficient ap is given by

a =iV ), j0=
0 s'Aj

I'(o —jp+1)F(a+X+1)

I (jp —X+1)

(2j+1)(2s+1)F(jo+j+1)F(j,+s+ 1)

F(o—j+1)F(j—j,+1)F(o+j+2)F(j+X+1)
I'(j—X+1)I'(s —X+1)

X
F (o.—s+1)I'(s —jo+1)I'(o+s+2) F(s+~y1)

—1/2

(4.2)

d &.~io(() —
gpss &

~iox I(tio—xt—~)f &.~to(x) (4.3)

Then the function f is normalized at x=0:

if jp&X. The case jp&A, is obtained by interchanging jp
and X in the above expression. It is convenient to define
a new function f,)„"($)by

for jp&X. We start with the maximum value of jp=s,
and use Eq. (4.7) to decrease jp by unity each time until
we. reach the value jp ——X. Bv induction, every f,),,"p(x)
is a regular function of x and x&. The situation jp(X is
handled by the symmetry relation

f ~"'(x)=f '"(*)

x =4tm) P/(I+m~' —mp'+tI) '
where

f v"'(0) =1. which follows from Eqs. (4.3) and (83). Since in the

Comparing Eq. (4.3) with Eq. (BS), we see that for
jp=s)

f ~ "(X)=(1-x)' '

XF(j o, j o—1;——o——l—).; x/(x —1)j
(1 x)x—s—)

XJ L
—X—j; —I yj+1; —o—I; x/(x —1)j.

(4.5)

A = (Lt—(m) —mp)'7Lt —(m~+mp)'j) '", (4.8)

if f,q &'(x) is a regular function of x and x) near x=0,
then it is also a regular function of t and t~ near /=0.
Before we proceed any further, let us define the short-
hand notation

(4 9)

The second form follows from the erst by a transforma-
tion of the hypergeometric function. It is useful to show
that f,q," is a regular function of the composite tM = tM LF(j +xV+1)/F(j &+1)j. —
variables x and x) ——xj(j+1) near x=0. Indeed, the
(r+1)th term of the hypergeometric function is equal to

F( X j+r—)F(—&+j+1—+r)F( o. &)(——
!

F(—X—j)I'(—X+j+1)I'(—o.—lj,+r)r! kx —1~

F(—~—X) ) x~"
F(——~,y.).!kx —1)

1/2

d ),
~io —(2j+1) ) ha)~~ (t, tz) if go)&~

=(2j+1)"' ! ,h')& (tp, t ) ))f'A&g, . (4.10)
1~. ~ij0i

Furthermore, we can write Eq. (3.3) as
X ('A+i) P +i—1 —jj +1 . 4.6

i=p

The last product is a polynomial of rth order in j(j+1)
and it is multiplied by x", thus yielding a polynomial of
x and x~. Our next step is to show that this fact holds
for all f,z,'&p by using the recursion formula which can
be translated from Eq. (B4) to read

f 2 jp Lx+ (x—1)x(d/dx) j
—(x—1)(jo—~) (o—jo+1))f.~,"'(x)

p,'M '+) (t) = (t.)'tM)/t. ( tM() 't'La(t, t))+tM(b(t, tg)],

so that

)/aM(k)d .rrM(+) —f (I, )d PM.
~f.M( —X)d.),P—,(4.11)

where
I/2 d' .oM

f.M() ) = — — a(t, t))
~o& "M( dsg j

= (jo—
~ ) (~—jo+1)f.~ "'-'(*) (to&tM&tM( d'8k j

b(t, t,) . (4.12)
d.)„'Lju+1) —jpuo+ 1)3Ls(s+1)—jouo+1) 7

(-—jo)u.—l +1) It can be easily verif)ed that f,M is a regular function of
Xxf,), '"+'(x) (4.7) t and t) near t=0. We may now sum over o and 3II in
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Eq. (3.4):

p, (+)(t) Q p aM(+)d .rM(+)

-r(q+M+1) r(q —sy1)-'I'
i i+) (t) t-.', (M—s)

r(j—Myi) r(j+sy1)

where

=f(t,j,).)d,&; ~a f(t,j, —X)d &'-~ (4.13)

and it is a regular function of t and t~ near t=0. The a

and 3f are the quantum numbers of the family. We
must be cautious about one point, however. When
M) s ' since d,zp~=—0, Eq. (4.13) has to be modified.
In Eq. (4.11) we use d,z, +' instead, so that in place of
Eq. (4.13) we obtain, for M) s,

I'(j+M+I)I'(j—s+1)- 'I'
p .(+)(t) —ti (~—~)

I'(j—M+1)I'(j+s+1)
XLf(t,i,~)~.»"+f(t j, —~)d.~t 'j (4 14)

We have only discussed the j dependence of f and g.
For the purpose of discussing constraint relations at
threshold and pseudothreshold, we must also determine
the X dependence as well. This may be done as follows.
From Eq. (88) we see that, n.ear x=1, for js——s,

I'(j+X+1)I'(j—7+1) '~s

r(s+X+ 1)I'(s —7+1)

where f is a regular function of 1—x and (1—x)X near
x=1. Furthermore, this property is obviously not
destroyed by the recursion formula (84), so that
d, i ~ has the form of the right-hand side of Eq. (4.15)
as well. The function f depends on X only through the
ratio of d functions with the same s, ), j.The numerical
factor in Eq. (4.15) cancels out in such a ratio; we
therefore conclude that, near x=1,

Since

1—x =2t1/(t+mis —mss+d),

and at threshold and pseudothreshold 6=0, the P

dependence of f is such that it is a regular function of
composite variables 6 and AX. So we can state the final
result for the unequal-mass case: The most general form
of the Regge residue, for the trajectory j=n„&+&(t), is

r. ..i"'(t) =Lf(ti, 7)d ~~'"~f(t,j, —~)~.i™j
if s)M, (4.16)

"This situation certainly can occur; for example, a two-pion
state can couple to a trajectory belonging to an 3f=1 family.

where
if s~&M, (4.17)

f(t,j,X) =f&(t,tj(j+1)) near t=0

f(t j7) =ft94~7)

6= ([j—(mi —ms)')$t —(mi+ms)'j) 'I'= 0.

(4.18)

(4.19)

The above vertex function has been shown to give
rise to a Regge-family contribution analytic at 3 =0. Our
remaining chore in this, section is to show that it
guarantees the ful6Hment of the kinematic constraint
relations at 6=0 as well.

The constraint relations for the total-spin amplitudes
at threshold and pseudothreshold have the same form'.

P Ai„'e ' "T, &;,i AI" near 6=0, (420)
X

we have

d, ~&~&(b)ti& &e 'me&A„, —
& 6& near 8, =0.

Xm

Since sinhfi 6 and costt, 1/6, the above will be true
if we can prove that

g ~,„d„;~ + (~,)a,„t-(sinh~, ) -- as ~, ~0.

The above follows quite readily from the addition
theorem of the d functions. ""It remains to be shown
that Eqs. (4.16) and (4.17), with any f satisfying Eqs.
(4.18) and (4.19), are also consistent with the constraint
relations (4.20). It is a necessary step because we have
shown tha, t any wave function of the form (3.4) leads to
a vertex of the form (4.16) or (4.17), but we do not

1 A. R. Edmonds, Angltar Momentum in Quantum Mechanics
(Princeton U. P., Princeton, N. J., 1957).

~ We remark that it perhaps takes much less than the addition
theorem to prove this. The left-hand side is simply the matrix
element (0MsX+ )e 'x~&~ 0MjX&), whose gq

——0 behavior can be
established by studying t e differential equations satis6ed by the
matrix element. This proof has some advantage over the addition
theorem since the latter is only asymptotically true for continued
values of j.

where Aq„'=dq„'(-', ir). We first show that Eq. (4.20) is
satisfied by any term in the expansion (3.4), which
gives the ) dependence of T, q,q&+) in the form
d, z &+'($i)dz &,

&'(8,). When this is substituted into Eq.
(4.20) and use is made of the identity"

j(0 ) —p & (i—X')~—,'~p, jg j& rmeg—
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know if Eq. (4.16) or (4.17) is too general. To complete
this last step, we observe that if f is expanded in the
powers of X, because of Eq. (4.19), each power of X is
accompanied by at least one power of h. To absorb all
the powers of A., we can use the recursion formula

XAvx' aA——i +i&'+bAi, i'+cAi

where the coefficients u, b, and c do not depend on ).
The charged values of X' are compensated by the powers
of h. This completes the proof.

The t 0 or the 6 0 behavior of the vertex function
can be further simplified by substituting Eqs. (4.10) or
(4.15), respectively, into Eqs. (4.16) and (4.17).

V. EQUAL-MASS CASE

The behavior of the Regge vertex functions near t=0
in the equal-mass case (mt=ms and/or oros=m4) is
essentially different and much more complicated than
in the unequal-mass case. The physical origin of this
difference is, on the one hand, the higher symmetry of
the equal-mass problem; on the other hand, in the
equal-mass case the point t=0 is the pseudothreshold
as well. Mathematically, one of the consequences of the
different circumstances is that the function d, M/o(]) is a
regular function of cos$ = tit'/2esi at cos) =0. It is much
harder to give a useful form for the function d, i o($)
near this regular point than around singular points $ =0
or $= ~ (@=0or x=1).

In the first part of this section we shall show that the
kinematic constraints for helicity amplitudes are auto-
rnatically satisfied, and later on we shall study the
possibility of simplification of the form (3.7).

For the sake of simplicity, we discuss only the equal-
mass —equal-mass (EE) case; the (EU) case may be
obtained using the known structure of unequal-mass
vertices (see Sec. IV) and factorization.

The constraints for a (EE) total-spin amplitude can

y
"t"" "'+"( X(sAi r0)(s'Ii'

~

s'X'; r'0)D;i; ),"/o(A
W, X'

be written in the following form'.

(5.1)

where A„ie=d„i'(sror) We prove that the constraint
relation (5.1) is satisfied by the contribution of a Regge-
pole family as given by Eq. (3.11).At the same time we
have to emphasize that the contribution of a single
daughter pole does not satisfy the constraint rela-
tion (5.1).

As a first step we can see that a single-Lorentz-pole
contribution satisffes Eq. (5.1)"

Z Apx Age'x' Deke'v (Ao Ai)
XV

=r, d i'(P+'~)d i "'(~)d i"(—P' —s~) (5 2)

where o., p, and p' are given by the addition formula of
Lorentz transformations"; y and halo' satisfy sin(to+sor)

sin(p'+-,'or) =0(t'") for t o 0. Making use of the be-
havior of the function di„'(y+sor) near sin(llo+sor) =0,
we obtain

P Apx Ap'Y Dexe'i' (Ao Al)
XX'

g I',-lp —kid i,ajo(co)tile' —&'I =0(tile —v'l) (5.3)
'h

The differentiations with respect to 0. do not make any
difference from the point of view of kinematic con-
straints. We have to study, on the other hand, the role of
the coefFicients of the functions D;i;.i.o™(As'Ai) in Eq.
(3.11).The inequalities N) r and oo') r' are always satis-
fied and d„oo"'($) is a bounded function of t at t =0, so the
important t- and X-dependent multiplier of the coeS.-
cients is t"l'(st~A;r0). The contribution of a special
term of expansion (3.11) to the constraint relation (5.1)
has the form (we do not write the differentiations
explicitly)

o 'Ai)

=I""+""2 2 A.-oi'A. —.). "&oo"A„s"(st (at —pre)

)((s'to'
~

8'to' —oi' r'r/')D i, ,i, & /o~tels+e'/otklie oie'+o'l =—O(-tklee —s'l) (5 4)

In Eq. (5.4) we have made use of the Clebsch-Gordan
series for the functions A„i,', Eq. (5.3), and the in-
equalities r& ] ri ), r'&

]
rt' [.

Equation (5.4) establishes that the constraint rela-
tions (5.1) are satisfied by the contribution of a family
of Regge poles as given by Eqs. (I 3.33) and (3.7), or by
Eq. (3.11).

We can now turn to the question of simpli6cation of
Eq. (3.7).For this aim we apply the same device applied
in Sec. III for the derivation of the Lorentz-pole form
of the contribution of the family, with the only excep-
tion that we do not now expand the normalization
factor

L1 —(a/a j)F(t, ti, atM) j-'/'.

We get

r„,,g'+ (t) = P Q d,oo"'(&)t""
a=M oMnt

o. M o M 0 0)
X eM(t)d eM(().

s ) s X r 0)

(o 3E o. —3II os 0)
eM(t)d „,e—M(P)

ks X 8 X r 0)

X9—(~/~i)F(t ti ~tM) j "'l/ -."&(oi =~
oe K. M. Sitar and G. L. Tindle, Phys. Rev. 1/8, 1835 (1968).
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2 cosh)
dsr p,'~(&) = —(a+1)(sinh&)

—~—~—'
~'/'I'(M'+1)

Using the ) dependence of the Clebsch-Gordan coeffi- if (o.—j) is even, and
cients as obtained from Eqs. (B11) and (I 2.3) and
summing over 0-, M, e, and r, we obtain

y[f (t tl/2y)d gc9(~)~f (t tl /9) de M,
—
(~)]

X[1 (~/~—j)F(t tt +tsr)] "'l~=-."&i~i (5 5)

where f;(t, t'/9. ) is a regular function of its variables
at )=0.

By the successive application of the recursion relation
(B5), we can reduce the 8 values in Eq. (5.5) to s and
s—1 if M&s:

r„,g&+i(t) = (Ot(td/dt, t, t'"X)d, /, ~(t)
+Or(td/dt, t, —t'/s) )d, /„'—~(&)

+Os(td/dt, t&tr/9)t'"[(s+X)(s —) )]'" d, tq, ™(t)
&Os(td/dt, t, —t"9)t"[(s+'A)(s—) )]r/'d, ty. ($))

&&I1—(&/e)F(t, t ~t -)]-'"I;=-. «l (56)

If M) s, then 8)s and we obtain

I'(M+) +1) I'(cV —) +1)
(6i(t) —p'[M—s[

r(s —X+1) I'(s+) +1)

&&[0,(td/dt, t, t'/9, )d&,~ (&)

+Or(td/dt, t, —t"') )dsrx, ™(t)]
——1/2

(5.7)

In Eqs. (5.6) and (5.7), the operators Ot and Os are
regular at the point (0,0,0).

Expressions (5.6) and (5.7) are less useful than the
corresponding ones for the unequal-mass case given by
Eqs. (4.16) and (4.17) because of the lack of a simple
closed analytic form of the functions d, z &'(f)

For the special case s=0, however, we can write the
d functions in the following simple form'2:

dsre;™(t)=(o+1)(sinht) ' sI '[ '/'I'(~+1)] '

I'(o —&+1) I'(j+cV+1)
X

I'(o+/V+2) I'(j—M+1)

r(-;( + j)+1)r(-;( —j+1))-"'
X

r(-;( —j)+ I) I'(-;( +j+3))
XF(s(1+o.—j), —,'(a+ j+2); —,'; coth'&), (5.8)

"In Eqs. (5.8) and (5.9) we make use of the form of the func-
tions doo, 0 given by G. Domokos and P. Suranyi [Nucl. Phys.
54, 529 (1964)j, recursion relations given by A. Sebestyen,
K. Szego, and K. Toth I Fortschr. Physik 17, 167 (1969)$, and an
expression for Gegenbauer's functions in terms of hypergeometric
functions given by W. Magnus, F. Oberhettinger, and R. P. Soni,
Formulas and Theorems for tlse Special Functions of Mathematical
Physics (Springer, 3erlin, 1966).

I'(o.—HI+1) I'(j+cV+1)
I'(o+3f+.2) I'(j—xV+1)

I'(s(~+j+3)) I'(s(~ —j)+1) "'
X

I ( (o+j)+I) I ( (o j+I))-
&&F(l(2+ —j), !( +j +3); l; coth'0, (5 9)

if (o —j) is odd. The hypergeometric functions appear-
ing in Eqs. (5.8) and (5.9) are regular functions of t and
tr (cosh )= t'/'/2m), and the powers of sin) are regular
functions of t at t =0 as well. Substituting into Eq. (5.7)
and taking into account that an operator 0(td/dt, t)
applied to a regular function of I, and t~ gives again a
regular function of t and t~, we obtain

'dw/' (k)f(t, tt) I;= „l~l ~ (5.10)

where 0; are regular functions of their variables at 6=0.
More generally, since the d functions themselves are
regular functions of 6 and AX, we can write

0;=0,((t 4r/t') d/d t,A, AX) .— (5.11)

A simple way to combine the requirements on operators
0; at t =0 and threshold is

0;=0,(A'd/dt 6 t),X) (5.12)

where the 0; are regular functions of their arguments at
the point (0,0,0).

Thus our final result for the Regge vertices in the
equal-mass case is

r„,,g'"'(t) = {Or(X)d,)„' ($)aOr( —X)d.)„' (f)
+0,())&[(s+))(s—)~)]'/sd, „,'~(~)+0,(—) )a

)& [(s+X)(s—X)]'/'d, ,g;
—

($)) l, ,„l,l (5.13)

These Regge vertices are different from zero for only
one choice of parity, 7, depending on the internal
parity of the external particles. For this reason we
suppressed the index & in Eq. (5.10).

Equa, tion (5.10) shows that in contrast to general
belief, the odd-order daughter traj ectories are de-
coupled only at 3=0.

Finally, we discuss the constraints at the threshold
/=4m~'. At the threshold the behavior of x=e '& is
identical with that for the unequal-mass case, so the
discussion of constraints in Sec. IV can be applied
without any change to the equal-mass case. This dis-
cussion would result in the following form for the
operators 0; at threshold:

0'=0'(6 6") A=[t(t —4m')]'/',
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if M(.s, and

I'(M+X+1)I'(M —l(+1)
r ~(k) (t) —t ())r—s) /2

r(s+Z+1) r(s —X+1)

X[0&p()dw)„' ($)F01( I()dM)» -"(I)]l~=-.(o

(5.14)

if M&s, where the operators 0, are of the form (5.12).
For the zero-total-spin case our result is given in Eq.
(5.10).

functional equation

j+)(=f(», 4)&tsrg(t, ty) =F(t, ty, &t ), (I 3.33)

where t( ——tj(j+1), t)(r »sr[——1'(j+M+1)/I'( j—M+1)],
0 =f(0,0), and M are the Lorentz quantum numbers of
the family at t=0. f an.d g are regular at t=0.

Note that the above trajectory formula requires the
equality of trajectories of opposite parity up to order
M —1 in powers of t.

(b) The total-spin amplitude is deiined by

&N ), ;.),=P T),y, )„)„(s)hq, s2I( —X)
~
sl()D)„), ),&"(A2 'A))

VI. SUMMARY AND DISCUSSION X(s3X8', s4)(' —)(3
~

s'l(')D)„q )„'"(A4 'A3), (2.14)

For ready reference, we collect here all the important h g '
h } I f

results of I and this paper. which transforms the four-vector (m;,0) into P,.
(a) The most, general behavior of the )(th trajectory (c) The contribution of the entire family to the

function of parity &1, j=n„( '(t), is the solution of the scattering amplitude is of the form

(t)t'"+"'Coo"'(h)d" oo"'(—$3) (sl(; r0
~
sl() (BV; r'0

~

s'P ')(d/do)"
ss' k nn' rr'

where

cosh)y =
t+m)' —m2'

2t'my
coshb =

t+m3' —mP

2t'm8

The function c is regular at t =0, and when k &-,'(e+r»'),
c(t) 0(t" I("+"')). For parallel daughter trajectories,
k=0 only. If we do not require any further conditions
on the coeKcients c in Eq. (3.11), then this form is more
general than a contribution of a family of Regge tra-
jectories, and could include cut effects as well.

(d) The Regge vertex of the ((th pole (unequal mass)
has the general form:

(i) for M(s,

Near t =0, f is a regular function of composite variables
t and ti.

f= f) (t,t)),

and near 6={[t (m( —m2)'][—t —(mqm2)']}'" =0, f is a

regular function of composite variables 6 and AX:

J'=f, (a,aI).
BF(t, t), a»sr)--'»'

[d "" (&)f(t,j,~)r„,), '+)(t) = 1—
Bj

+d. '+" "(k)f(t,j, -I)]l =-. ' (),
(ii) for M&s,

I'(j+M+1)I'(j—s+1)- '('
„(6)(t) —t-', (M—s)

I'(j—M+1)I'(j+s+1)
(3F(t, t(, Wt)(r)--"'

X 1 — [d,) j+"'(t))f(t,j,~()

p, =min{A, M }—1.

(e) The Regge vertex of the )(th pole (equal mass) has
the general form:

Bj
~d ), '+" '(h)f(» j'—")]I»= .&')() (417')

BF(t, t(, &t~) )~2 f d
O,

~

~'—~,~~ ~d„~ ~(~,)

(i) for s&M,

r„,g(+)(t) = 1—

It is interesting to note that while the trajectories for
parities +1 and —1 are equal up to order M —1 in

(416~) powers of t, the residues have a lower degree of con-

spiracy: They agree up to order p, , where

aO(~ 6'—6 —Al( ~d, )„'+"—~($y)+02~ 6' ,D, h'A [(s+l()(s—l()]"'hd, g),j+"~(b—)
dt dt

&02 6'—6 —6) 6 s ) s —) ' 'd, y)„+" ~ y, 5.13'
dt' I — g'=a, &')(~)
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(ii) for s(M,
F(M+)(+1)F(M—)&+1)

(+)(t) t (/&r s) /2— 1
F(s+1&+I)I'(s —)&+I)

BF(t, t&, &t)&r)

d d
X O) ~'—,~,» id~"+"~(r~)~O& ~'—~ -» id~~, +"-"(b), (5.14')

dt

where Oq and 02 are regular near (0,0,0);
(iii) for s=0,

~.(t) =t "d»t""'(6)f(t t~)I:I—~/~j)F(t t~ t~)] '"I/=..(o (5.10')

Note that the odd-order daughters are not decoupled at nonzero values of t.
It is interesting to remark. that the following special forms satisfy the constraints at 1=0 and at threshold as

well Lthey are less general than Eqs. (5.13) and (5.14)]:

&(+)(t)—
BF(t& t1& &t)&r)

I f(t,~,»)d', """(~)

F(M+)(+I)F(M —1(+1)-'/'
„(+)(t) t-,'()&r—a)

F(s+1(+1)I'(s —)&+1)

+f(ti, 6, —»)d, &,
'+" ~($))]l; ~, &'&«) for M&s; (6.1)

BF(t, &t(& t/&I)

XI f(t)&h&»)d~), ,' " (ty)af(t)& 6, —A)&)As&„' " (&))]I;=~ &+&«) for M&s. (6.2)

f is a regular function of t&, 6, and».
(f) The behavior of the d functions near the special points are as follows.
(i) Near t=0 (unequal mass),

(2j+I)&'2t- "-/' -' -F (q —
I j, I +I)F(j+ I

x
I +1)

f(t, t)) X
LF(0+j+2)F( —j+1)]"' -F(j+ I jol+1)F(j—ll) I+I)-

X& jt).

(2j+1)&/2t-'(I &&
—tpI —a) -F(j+

I j,I+1)F(~—
I
1(1+1)-'/

f(t, t&) X , j,& )

I F(&r+j+2)F(a j+1—)]'/' F(j—I j&&i+1)F(j+I)&i+I)-
(4.10')

(ii) Near 6= f Lt —(m) —m2)']Lt —(mq+m2)'])'/'=0, hospitality. For two of us (MJK and PKK), this work
but 3@0, was initiated at The Johns Hopkins University.

d s)).y

I'(j+)&+1)I'(j—1&+1)
t& ' 'f(A, t& X) .

F(sy),+1)F(s—) y1)
(4.15')

The formulas listed above can be used for phenomeno-
logical applications, by parametrizing the function f,
etc. , in a suitable way. In these parametrized expres-
sions, dynamical singularities can be taken into account.

Finally, we should like to remark that Eq. (3.11')
gives the contribution of a family in terms of t-channel
helicity amplitudes. To apply this expression to high-
energy phenomenology, we have to calculate the
crossed-channel helicity amplitudes. The differential
cross section can be obtained, however, directly from
Eq. (3.11) because of the orthogonality of the crossing
matrix.
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()Er T+-
8$

=0. (A1)

Taking the most singular part of the partial-wave
projection of the matrix element of Eq. (A1) between
states (p3,E,s, )(l and lpq, F.,s', )&'), we obtain with the
help of Eq. (3.5)

~ (t) dgodpolql'lpl'dipl dlqlk, "'*(vo, lql, t)

&A ")(~o, lql, po, lpl, t)
x — A.;")(po, lpl, t)

Bf

+1V/2(t) „(+)'(t)I;= „(+'( )
=0 . (A2)

APPENDIX A: NORMALIZATION
OF REGGE VERTICES

Differentiating the equation ET=I in the variable
t, we obtain
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We shall use a shorthand notation for Eq. (A2):

8E;(+)
i))t 2) +»'n '+'(t) =0. (A2')

8t ~'=~."'(~)

somewhat different form as well:

8
1 ——

Lf(t, ti) &ts&g(t, ti)j
Bj

—&)n„(+)(t)-—i

Using a similar notation, we may write the homogeneous where 0 =f(0,0).
equations for the wave functions as

and
&-.")())'+'If))=o

(Alit .'"'()'+'=0 ~

(A3)

(A4)

APPENDIX 8: PROPERTIES OF REPRE-
SENTATION FUNCTIONS OF HOMO-

GENEOUS LORENTZ GROUP

By making use of Eqs. (A2) —(A4), we obtain

j=o.„(+& (t)
(A6)

Using the expansions of P, ,
;(+) and E,(+) in a series

of d functions and diagonalizing, we obtain

8 —1

»'= $F(j +)&, M, t, t„atM—), (A7)
Bj g=a„(+)(t)

where F(&r, M, t, ti, &t~) is the diagonalized matrix
element of operator I). defined in Eq. (I 3.32).

As F(0, M, t, ti, +ts&) has a simple zero at e =f(t,ti)
&tsrg(t, ti) Lsee Eq. (I 3.33)j, we may write

F(I'+», M, t, t„~t~)=G(fy., M, t, I„+t~)
x)j+~—f(t, t,)wt~g(t, t,)j. (As)

Substituting Eq. (AS) into Eq. (A7), the norrnaliza-
tion constant has the form

»'=G(t, ti, at2r)LI —(r)/&) j)(fatsrg) j~;=., ('&(~), (A9)

where G(t, ti, &ts&) is a regular function of its variables
at t=o.

It is interesting to note that the second multiplier of
the right-hand side of Eq. (A9) can be brought to a

ax;(+)
lofti)

Bt i=~ "'(&)

BE;(+)
+ ."'(t)(AI . I~t ) . (A5)

Bj i-~."'(&)

Comparing Eqs. (A2') and (A5), we find

8»'= —.(A IL&' ")
I 6)

Bj

8
dzodlql lql'dI)odlpI lpI'

Bj

XA "'*(ve, Iql, t)fi "'(po, Ip l, t)

We compile here some useful relations for the general
d function of the SL(2,C) group. Our sources of informa-
tion are the works of Sciarrino and Toiler, "of Freedman
and Wang' and of Sebestyen, Szego, and Toth. We
begin with the definition of our notation:

d i'J'(5)=—d i ' "(&)

=P((2)r, 8,—tr ~ j)()(a)2, 8 —)2~S) )e "&—")&, (81)

where 0=(2+b and js=a b. The a—bove definition is

continuable in 0. and j, keeping o —j=~ at 6xed integer
values; s may be an integer or half-integer, and jo, X=s,
s —1, .. ., —s. All the relations listed here are com-

patible with these conditions. In the 0(4) region $ is

purely imaginary; hence,

d.»"'*(k)=d.»"'( k) =d—' '( 5)—
Other symmetry relations are

d.»"'(&)=d.-i,' "(k)=d. "(5).

The recursion formula for jo is given by

(82)

(83)

Lj()(@+1+2(x—1)xd/dx)+(x —1)(0+1)Xjd,» "($)
=&"'(E(s+jo)(s—jo+1)U+ jo)(j—jo+1)0 "

Xd.»"' '(8 —HS —je)(S+je+1)(j—jo)
X(j+jo+1)3"'d.»"'+'(&)) (84)

where x=e '&. The above formula can be interpreted as
a recursion formula for X because of the symmetry
relation (83). There is also a recursion formula for s:

(s—1, X; 10
i SX)p, i'd, i »'"($)+(s+1, )(; 10

i SX)

Xp,~i'd, +2»"'(&)=i2"'(d/d &)d,» "(&)
—(sX; 10) s)&)p, 'd, "'($) (85)

where

Pa—1

ps+1 =

s' —(~+1)2)Ls2—j 2j i/2

s(s+-,')

L(s+I) —(cr+I) )L(s+1) —jo g

(s+1)(s+2)
(86)

p, ' =2ij ( +()01)/s( +s1) .

For the special case of jo ——s, a simple explicit form can

I D. Z. Freedman and J.M. Wang, Phys. Rev. 160, 1560 (1967).
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be given:

(2j+1)I'(j—X+I)I'(o —s+1)I'(j+s+1)I'(2s+1)
d, g,"=r(o+X+1)

I'(s+X+1)I'(s —X+1)I'(j+X+1)I'(o+s+2) I'(j—s+1)I'(o+j+2)I'(o j—+1)

—1/2

&(xl&'-'-~&(1 —x)'-'J (j—o, j ~——1; —o—X—; x/(x —1)), (87)

or, equivalently, by transforming the hypergeometric function,

(2j+1)"' I'(j+X+1)I'(o+j+2)I'(j—X+1)I'(j+s+1)I'(2s+2) I'(o —s+1)
dshj

I'(2 j+2) I'(s —'A+1) I'(s+X+1)I'(a —j+1)I'(j—s+1)I'(o+s+2)

&&xl' "+' '(1—x)' 'J (j—o y
—X+1; —2g; (x—1)/x). (BS)

Finally, we give the generalized Clebsch-Gordan series for the d functions:

(o~jo o jo &jo (&~jo & jo
d.v"(6)= E I

k sV s'V' sX i'i" k j'X' j"X"
crjo

Id" '"'"(k)&"' -"""'(5), (89)

where the Clebsch-Gordan coefTicient couples the two states
~

o'jp's'X'& and
~

o"jp"s"X"&into
~

o josh&:

(o'jo' o"jo" ojo)
Iajpsz&= 2 I

[)o"jo"s'V'&8)a'jo's'Z'&.
"&""&"as% s"X" s'A l

(810)

It is related to the 9-j symbol through
r g/ g//

((Tjp 0 jp o'jp)
(

=L(2s'+1) (2s"+1)(2a+1)(2b+1)]'~'(s'X'; s"P "(sX)» b' b" b ~,
E s'X' s"X" sX )

s s s~

where a+b=o, a b=j p, etc. —
For the special case of s//=0, it simpli6es to a 6-j symbol:

(811)

(tr j p o 0 o'jp) (2a+1)(2b+1)-"'
k sV 00 sX I 2a+1

s
( 1)b+a'ya "+s

a" b a
(812)


