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We work out an analytic method for the discussion of broken symmetries. After the demonstration of the
power of the method on a quantum-mechanical example, we apply it to the question of broken SL(2,C)
symmetry and families of Regge trajectories. As a result, we obtain all the constraints on daughter trajectory
functions in a closed functional form for arbitrary Lorentz quantum numbers a and M.

I. INTRODUCTION

HE importance of being able to give a group-
theoretical classification of the singularities of a

relativistic scattering amplitude has long been demon-
strated by the works of Domokos and Suranyi, ' ' of
Toiler and his collaborators, ' and of Freedman and
Wang. 4 One of the goals of such analysis is to give a
general form for the Reggeized scattering amplitudes
which automatically satisfy all kinematic requirements.
These include (i) factorization of the residues of poles
(units. rity), (ii) singularities at the boundaries of the
physical regions, (iii) singularities and constraints at the
physical thresholds, (iv) singularities and constraints at
the pseudothresholds, and (v) absence of singularities at
vanishing momentum transfer (=0 (when 3=0 does not
coincide with the pseudothreshold).

The first requirement can be satisfied if one regards
the pole contribution as a product of two vertex func-
tions and a propagator. The second is automatically
satisfied by the usual partial-wave expansion of the
helicity amplitudes. The remaining requirements, how-

ever, are not as simple. A great deal of effort has been
devoted to the point 3=0 (v) alone. '~' The outcome is

the recognition that, in general, poles exist as members

of families. A family usually consists of parent poles and

daughter poles of both parities. The singularities and
constraints for helicity amplitudes have been studied

extensively in recent years, ' and can be regarded as

completely understood. However, the problem of satis-

fying them simultaneously by a Regge-behaved ampli-
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tude has been discussed by few authors7 and remains
largely unsolved. A unique feature of the Regge model
is its ability to relate resonance data with scattering
data. Therefore, it is important to be able to extrapolate
from the physical region of the direct channel to that of
the crossed channel through the singularity points. Such
understanding is also important in the construction of a
more complete future theory, if it is to contain Regge
behavior as a part of its features.

One can mention two difficulties in the solution of this
kinematic problem. (i) Very little is known about the
behavior and structure of the representation functions
and the Clebsch-Gordan (C-G) coefficients of the four-
dimensional group. (In the analyticity approach, s'
which seemingly does not use group theory, the same
group-theoretical identities have to be used. ) (ii) There
is a lack of a set of amplitudes suitable for the four-
dimensional harmonic analysis. The usual helicity
formalism is useful only if the total spin introduced by
Toiler' and Freedman and Wang4 at 1=0 can be
generalized to all t values.

In this series of articles we attempt to give a general
solution to the problem of a Regge-behaved amplitude
satisfying all kinematical requirements. The present
article (Paper I) deals with the most general behavior of
a family of poles near t =0. This problem can be studied
separately from the vertex functions, because the posi-
tions of the poles of the 5 matrix do not depend on the
physical states used to represent the matrix. Therefore,
in this part we may, without loss of. generality, restrict
ourselves to processes in which the initial (and final)
state contains a spinless particle. This way the spin of
the remaining particle is the total spin, thus bypassing
the difficulty (ii) mentioned above. A covariant total
spin will be introduced when we consider the structure
of vertex functions in Paper II. The other difficulty is

7 K. M. Bitar, Phys. Rev. 180, 1477 (1969);S. A. Klein Clare-
mont College report, 1968 (unpublished).

8 D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967).
J. B. Bronzan, C. K. Jones, and P. K. Kuo, Phys. Rev. 175,

2200 (1968);D. DeVecchia and F. Drago, Phys. Letters 273, 387
(1968), and references therein.
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overcome by a method which we call the method of
composite variables. i

The key word of our approach is group theory. ln
genei'al tei'ms, our pr'oblem can be stated as follows.
Suppose that a symmetry of a dynamical system gener-
ated by a group 0 is broken by some external field VI,
transforming like a given representation of G. Let H be
the subgroup of 6 generated by those generators of G
which leave VI, invariant; then the symmetry of H
remains unbroken by VI, . The Casimir operators 3f; of
H can be diagonalized together with other good quan-
tum numbers. The dynamical parameters (eigenvalues,
eigenfunctions, etc.) will then depend on m, , the eigen-
values of 3f,, in an entirely general way. However, if we
require an analytic dependence on V& (physically this
means that the system responds smoothly to a small
disturbance Vk), then we obtain severe constraints on
the possible m, dependences of the dynamical quantities.
A simple example of this situation is given in Sec. II;
the example also serves to illustrate the method of
composite variables. The method of composite variables
is then applied to the problem of broken 0(4) symmetry
of relativistic scattering amplitudes in Sec. III, obtain-
ing the main results of this paper. In Sec. IV, we discuss
our results and compare them with results derived by
using different methods.

K(V) =Q H '(V')V'V '(V),
L, m

(2.1)

where H '(V') is an irreducible spherical tensor opera-
tor. H '(V') depends analytically on VP near zero if 3!
does on V. We shall assume this to be true. The eigen-
functions of BC(0) are chosen as a basis set, with angular
momentum quantized along V. Our method begins to
depart from the conventional perturbation approach
by considering the general dependence on m of the
matrix element of 3'.:

(jmn
l
sc

l
j'nz'a')

~ P v'&j~lol j'~)&j~l I&'(v')
l l

j'~') (2 2)

"A brief account of this method and the main results of this
paper have been reported earlier by us )Phys. Rev. Letters 22,
1025 &1969)j.

II. METHOD OF COMPOSITE VARIABLES

The method can be best illustrated through a simple
example of a linear eigenvalue problem in quantum
mechanics. Consider a system with rotational symmetry
being placed in a homogeneous external. vector field V.
The Hamiltonian K(V) is not an invariant under
rotations of the system except when V=O. However, 3'.
still transforms like a scalar if both the system and V are
rotated together. This means that (8/BV')K(V)lv p

transforms like a vector and (8'/8V;BV;)R(V)
l v p like

a tensor, etc. In other words, X has the expansion in
terms of harmonic polynomials of V:

where o. stands for quantum numbers other than jets.
Since m remains a good quantum number when V/0,
3C is diagonal in m and the dependence on m is speci6ed
by the C-6 coefficient, which has the following form:

(i &+~) )(i & »)
')

"—'
(jmto l

j'm) =
(j(+~) 0(—I)
X[nm' " ")+Pm' ~~"~ '+ j, (2.3)

where j& (j&) is the greater (lesser) one of j, j, and
n, P, . . . are independent of m. This form of the C-6
coeKcient allows one to absorb one power of V into each
power of m in (2.2) and to write the matrix element in
the form

( + )'(' — ) i"'
&j~15c I

j'm'~') =5...V)'-~')

(j&+m)!(j&—m)!l

XH;.,;.(V,~V) . (2.4)

Hj, j depends analytically on V and the composite
variable mV near V=mV=O. We see that if it were not
for the square-root factor in (2.4), we could have con-
cluded immediately that the eigenvalues of K must be
analytic functions of V and mV. In a simple case like
this, the square-root factors can be eliminated by
multiplying the columns and rows of BC by suitable
factors which do not aBect the eigenvalues. For the
purpose of a more general treatment, we prove that this
is true to any order in a Rayleigh-Schrodinger perturba-
tion theory. Let us denote by Hj;. the matrix element of
BC (suppressing the index o.) and by E, the eigenvalue
which approaches Hjj as V —+ 0. Then to any finite order
the equation which determines E, will have coeS.cients
composed of quantities like

Hjj) Hgj 1Hjlj ) Hgj&Hj1$2Hj 2)') etc. ) j1)j2)

It is easy to see that none of these quantities will contain
a square-root factor. Thus it follows that the eigenvalues
of K will be analytic functions of V and mV:

E, (U) =F; (V,mV). (2.5)

By expanding Ii; in a Taylor series of two variables, all
the results of the conventional perturbation method
follow immediately.

It should be noted that the above result is not true
for a degenerate level" because a secular equation would
have been solved and nonanalytic dependence may be
introduced. However, if the degeneracy can be removed

by a discrete symmetry, the method of composite vari-
ables can still be applied, as shown in Sec. III.

III. RELATIVISTIC TWO-BODY PROBLEM

A. Off-Shell Scattering Amplitude as Function
on Lorentz Group

In this section we turn to the main application of our
method of composite variables; namely, we discuss

"We wish, ty thank gabor Domokos for a discussion on this
point.
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some important properties of the relativistic two-
particle —two-particle transition amplitude.

To simplify the description of a scattering process,
one usually diagonalizes the amplitude in quantum
numbers which correspond to operators commuting
with the scattering operator. So, if the total four-
momentum of the two particles in the initial state is a
timelike four-vector, one can expand in eigenstates of
the total angular momentum operator. For zero total
four-momentum (or four-momentum transfer) E„=O,
the little group is larger; it coincides with the homo-
geneous Lorentz group. In this case the natural general-
ization of the angular momentum expansion is that in
terms of the eigenfunctions of the Casimir operators of
the homogeneous Lorentz group. The larger symmetry
at the point E„=O is reRected by the particle spectrum
as well. Regge poles are grouped together into in6nite
families. ' 4

Our aim is to study the behavior of Regge trajectories
belonging to a family at E„=O (unequal external masses
and/or E„'=t=0) by group-theoretical methods. How-
ever, if we want to go beyond the information obtained
from a simple little-group expansion, we are forced to
work with an off-shell scattering amplitude. In what
follows, we assume the existence of the inverse of this
amplitude satisfying the equation

if q11f q2)1 (pl+p2 ql q2)Eab(pl)p2)ql)q2)

X2 bc(ql) q2) ~1)l2) = & &'a(cPi 4) &'(—P2 t2) ) (3.1)

and the completeness relation

d'Pl~'Pol Pi,P2; a)&P1,P2; a I (3.3)

in the subspace of two-particle states of given type. We
often refer to E,b as the kernel of Eq. (3.1).

where IC q is the inverse of the off-shell scattering
amplitude Tbc, pl, p2, ql, q2, and ll, l2 are the rnomenta
of scattered particles in the 6nal, intermediate, and
initial states, respectively. Similarly, a, b, and c stand
for the discrete variables. In what follows, we assume
the possibility of Wick's rotation and work in Euclidean
metrics. We merely remark that our general considera-
tions will not be affected even by the presence of com-
plex singularities. We use the terms "Lorentz trans-
formation" and "Lorentz group" for the corresponding
compact transformations and group (SU(2)SSU(2)

0(4)$ throughout this paper.
Equation (3.1) can be regarded as an operator

equation ET=I, where operators X and T are repre-
sented in the space of off-shell two-particle states
(Pl,P„a), satisfying the orthogonality relation

The two-particle state can be regarded as a function
on the group 0(4)0(4), 2

~

I 1,L2, a) = U'1(L1) &2(L2) ( plo, poo, a&, (3 4)

where only the time components of the vectors, Plo and
p„, differ from zero: plo=plo' and p22=poo'. The
Lorentz transformations L~ and L2 commute with each
other. The generators of these groups can be given in
terms of differential operators in the momentum spaces.
These operators are certainly well defined for matrix
elements which have a regular dependence on momenta.
Presumably the kernel A, b is such a regular function of
momenta (every Feynman diagram is a regular function
of momenta in the Euclidean region). Writing the two-
particle states in form (3.4), we regard E,b(pl, po ql q2)
as a function on the 0(4)0(4)80(4)80(4) group if
we write

(L„L„aiKiL„L„.g)

)1(pl+p2 ql q2)Eab(L1)L2) Ll)L2) . (3.5)

The I.orentz transformations Lj, L2, I-j, and L,2 are not
entirely independent, however, because of momentum
conservation.

Lorentz invariance implies

E.b(LL1,LL2, LL1)LL2) —Eab(L1)L2) Ll)L2) . (3.6)

The covariance conditions for E b(L1,L2, L1,L2) have
the following form (here we write out explicitly the spin
and helicity indices of particle 1 in the final state):

E„b,, ...(L1R,L2,.Ll,L2)

=Z D.»1"(&)E.)al, - (Ll)L2; Ll,L2) (3 &)
ital

Similar equations hold if we modify the other argu-
ments of E,b(L1,L2,L1,L2) by a rotation. One can
greatly simplify Eq. (3.1) by introducing the total
momentum E=P1+P2 ——ql+q2 and some different com-
binations of momenta pl and p2 and of momenta ql and
q~ as integration variables:

d'q K,b(P, q; E)Tb, (q, /; E) = f)„f')'(P l) . (3.8)—
To Gnd the covariance properties of the kernel
E b(P, q; E), we have to study the two-particle states

~
E) P; a)—=

~ Pl,P2, a). Similarly, for the Lorentz groups
acting on momenta pl and p2, we can define the Lorentz
groups acting on momenta p and E. We have to empha-
size, however, that the generators of this new 0(4))30(4)
group cceeot be expressed by the generators of the
0(4)I30(4) group transforming pl and p2. This is
trivially shown by the fact that the invariants of this
group are different (p', E' and p12) p2'). There is an 0(4)
subgroup, however, which is identical in both groups,
namely, the one which corresponds to the simultaneous
Lorentz transformation of p and E or pl and p2.
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We remark. that the defnition of the two-particle
state vectors as functions on the group 0(4)30(4),
acting on p and E, is not a trivial question and the
equality

~
E; p; a)=—

~ pi,p„a) is, generally speaking,
not enough for the definition of this function. To
simplify matters, in the first part of our paper we study
the simple problems in which particles with momentum
vectors po and qp have zero spin. Such a special choice of
processes certainly enables us to discuss any family of
Regge poles. In addition, we use the freedom in the
definition of p and q, choosing p =pi and q=qi, For this
simple case, it is comparatively easy to define the state
vector Uz(Lz) Ui(Li)

~
Ep, pp', S,A) as a function on the

0(4)0(4) group consistently with the group pro-
perties, the equation

~
E;p; s,X) =

~ pi, pp, s,X), and the
invariance and covariance properties of the vector
Ui(LI) Up(L2)

~ p»)popj s,&).
We represent Lorentz transformations in the form

L =R (&)R.(+)II(k)R.( )R.(P)R*(7),

where R, (rp) is a rotation around the i axis by an angle

p, while 8(&) is a boost along the z axis by a hyperbolic
angle $. We denote by A. the following type of special
Lorentz transformation.

Applying the transformation Uz(Az) 'U„(Ai) ' to both
sides of Eq. (3.10), we obtain

Uz(Ri) U, (Ro) I Eo,p», s,X)

=P ~Ep,p», s,p)D„i,'(Ro). (3.12)

The state

I Lz,L„,s,X) =
~
Az, L~,s,X) = Uz(Lz) Uy(L„) ~

Eo,pio; sX)

is completely determined by Eqs. (3.9) and (3.12). As
the operator E is diagonal in E, the reduced matrix
element K,i., i (p, q,E) is defined as a function on the
group 0(4)0(4)0(4) with the invariance property

K,i,.i.(LL„,LL„LLz)=K,i,;i;(L„,Lo,Lz) (3.13)

and the covariance property

K,)„),(L+„LoRo,LzRz)

=2 Dpi'(Ru)Dp i,"(Ro)K „"u (L L Lz) (3 14)

Using Eq. (3.12), we can write the completeness
relation of two-particle states in the following way:

A= R(y) R„(8)B(&).

A four-momentum vector p uniquely determines a
Lorentz transformation A, which "reconstructs" p from
a "normal" vector pp

——(g(p'), 0,0,0). With the help of
this fact, one can define uniquely Uz(Lz)Ui(L„)
X

~

E,; p»,.s,X) on the subset of the group 0(4)80(4) in
which Lz =A+, L„=A.„by

Uz(Az) U, (Ai)
~
Eo,pio,' s,I )

= Ui(Ai) Uo(Ap) i pip, p2o, s,X), (3.9)

where the Lorentz transformations A~, A~, and A.2 are
not pure rotations. To extend this definition, we apply
an arbitrary simultaneous Lorentz transformation to
Eq. (3.9).As we mentioned, simultaneous Lorentz trans-
formations are well defined on both sides. Using this
fact and the covariance property of the state vector
U, (Li)U, (L,) ~ pio, p2p, s,X), we obtain, after the repeated
use of Eq. (3.9),

Uz(Az) U, (Ai)
~
Eo,pio) s,V)Di,,'(Ai-'LAi)

= Uz(Az) U„(Ai) Uz(Az 'LAz).
XU„(Ai 'LAi) ~Eoj pio, s,I), (3.10)

where L is an arbitrary Lorentz transformation, A~ and
A ~ are the Lorentz transformations belonging to the
transformed pi and E vectors, while Ai 'LAi and
h.g

—'Lh.~ are signer rotations. Our basic requirement
on the function Uz(Lz)U, (Li)~Ep&pip', s,X) is the
relation

I=+ d4Ed4p iE,p; sX)(E,p; s,Iii

E'dE 'dp'
dAzdL. Uz(Az) U.(L.) I Eo,Po; »)

X 32~2

X(Ep,pp, ski Uz (Az)U„t(L ). (3.15)

We close this part of the paper with the description
of the method applied below for the derivation of
several properties of Regge traj ectories and residues.
Let us write Eq. (3.8) in the angular momentum repre-
sentation. Using the conservation of angular momentum
in the c.m. system (E„=(E,O,O,O)], we obtain

Koo'(po, p; qp, q; E)To'(qo, q; lp, l; E)dqoqodq

=~..~(po-l.)(1/p')~(p-l), (3.16)

where we have introduced the notation p, q, and l for
the absolute value of the three-momenta p, q, and 1. A
pole of T&,~ in the variable j at j=n has a contribution,
using the factorization theorem,

To.'(qp, q; lo, /; E)= . (3.17)

It is easy to conclude that the Regge vertex P"i, or, as
we shall often call it, the wave function, satisfies the
homogeneous equation

Uz(Lp) U„(L4)Uz(Lz) U„(I,) ~
Ep,pip,'S,A)

=Uz(LpLz)U„(L4Li)~Eo, plo S,P). (3.11)
K.o (po,p; qo, q;

Envoi"

(qo, q; E)dqoq'dq=0 (3.18)



3420 P. K. KUO AND P. SURANYI

Equation (3.18) can be regarded as an eigenvalue
equation for n, where the eigenfunction iP is the Regge
vertex. If we diagonalize E,~& in its indices and in its
continuous variables, the zeros of the diagonalized
matrix elements will give us the eigenvalues n, . The
eigenvalue problem defined by Eq. (3.18) is certainly
much more involved than the one discussed in Sec. II.
The main trouble is that the zeros of the kernel IC Lthe
solutions of Eq. (3.18)] do not lie at physical values of
the angular momentum, j, for arbitrary values of
E„2=«.So Eq. (3.18) has to be "solved" in two steps. In
the first step we define an auxiliary parameter X and we
solve the equation (K—X)/=0, by expanding K and P
in representation functions of the homogeneous I orentz
group and diagonalizing the resulting ms. trix (that is to
say, we solve the characteristic equation for X). The
eigenvalues X will depend on t and the diagonalized
"angular momentum" variables p., jp, j, and m (actually
X does not depend on m because of the signer-Eckart
theorem):

&=I (~,j„j,«). (3.19)

B. Expansion of Kernel and Wave Function

The above-defined function on the 0(4)0(4)30(4)
group can be expanded in representations of the group
0(4) owing to the analyticity of K and 1« in the Eu-
clidean region:

In Eq. (3.19), o, j, and jp have the values correspond-
ing to unitary representations of the group 0(4):
o —j=K&~0; j—

l jpl =q/~&0; both /~ and 2/ are integers;
jo is an integer or half-integer.

However, as we are interested in the solution of the
equation Kp =0 instead of (IC—X)1« =0, we have to find
such values of parameters for which P vanishes. This
can be accomplished by an analytic continuation in j,
keeping ~ fixed. The solution of the eigenvalue problem
will be

F(j +aj pj «) =0,

where j is some complex number, depending on jo, z,
and ].

where

!
/ /, 'j,'

op)
&jm j'22«' «j

K./, /, (L„L„I)
«" 'Dj, / 'o(L„)D, /, "'"(L, ')

o jp jmo'j0'n

gKajpa'jp'n(p2 q2 «)

2(~+jp) 2(~ jP)—
2~ 2(~' —jo') 2(~'+jP')

where we have used the explicit expression of the C-6
coefficient in Eq. (3.20) in terms of the 6j symbol for the
case 1=@=0'.

Similarly to K, we can expand the wave function P
as well:

4"i(q,~)=4.i(Lq, L~—)

0jp jm

Using the completeness relation (3.15) and expansions
(3.22) and (3.23) and the orthogonality properties of the
functions D, i,, '&p(L), we obtain 'from the equation
(K—X)/=0

dq2q2 P K ajPa'jP'(P2 q2 «)
& jo

where

~~(p' —q') 'j"(q', «) =0, (3.24)
2

is a C-6 coefFicient of the 0(4) group. Kajpa'o'0'"(p', q', «)

is a regular function of t.
In the rest of our discussion we select a special frame

by choosing L~ ——I, the identity transformation. Then
Eq. (3.20) simplifies to

Kox o' v (Lgo Lqo L8)
«n/2Kj, , ajpa~jp'n(p2 q2 «),

K ajpo'jp'(pq q2 «).
—P «n/2

n

0', j0,jm 0', j0', j',m' n, t„/I

XD; .i,"'(L,)D;),; "'"(Lq ')Dl 00 '(Lz).
(3.20)

The special values for the lower indices of the D
functions, s, X, s', V, and 0, 0, follow from Eq. (3.14). It
is easy to prove that Ej j. &„'jo"j0'"does not depend on
the helicities X and X'. The I.orentz invariance of the
kernel expressed by Eq. (3.13) requires

ajpa'jp'n(p2 q2 «)

0 jp 0 jo s0
Kajpa'jp'n(p2 q2 «) (3 21)

jm j'ties lp

j 2(~+jp) 2(~ jo)—
Kaj pa'j 0'n(p2 q2 «)

2(~' i') 2(~'+-jq')

In what follows, we suppress the variables p' and q',
because they are irrelevant from the point of view of our
subsequent considerations.

Before we start with the discussion of the properties
of the solution of the characteristic equation

IIK """"(«)—all =0,

we have to discuss the question of discrete symmetries.
Parity will play an important role, because parity con-
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servation requires

K ajo.a'jo'(t) —K a j.o—,a' jo'—(j)

At t=0, K,""""(0)=K"—28„.8j„, is diagonal and the
equality of the "unperturbed eigenvalues" E ~o=E -~p

introduces an accidental degeneracy. To resolve this
degeneracy, we introduce states and wave functions
with definite parity. This can be done most easily in the
angular momentum representaion. The partial-wave
projection of K,z, z (L„,L„I) can be given if we choose
L~=A„and L, =A, (then K,x;z is the helicity ampli-
tude). Using the addition theorem for the functions
D .'(R), we obtain

P D,-,x'ja(A„)D;g';„"'"(A, ')

=d,","(&,)Du (~)djv""'"(&.)
where S„and 8, are the boost parts of the I orentz
transformations A„and A„respectively, while R is a
rotation transforming the three-vector p into the three-
vector q. The partial-wave amplitude is given by

,jg3 g I) P jn/2d, ajo(g)Kajoa'jo'n(j)
o

gapa'j

p'n

l(.+j.) —:(.-j.)
Xd ., "'"(&2)

2~ 2(a' j—o') 2(a'+j')
(3.25)

where M~&0, 3f'~&0,

aM(+&(&) d. aM(~)~d. &
a—M(&) (327)

and

The parity-conserving partial-wave amplitudes are
defined by

&&&ps'$ ~ sos —X

where p= (X) and p'= ~X'). Using the symmetry rela-

tion d, &„ajo(~)=d, z,' jo(n) and the expansion (3.25),
we arrive at the expansion

j('&(g p I) g d aM(+&(g)
0 Mo'M'

XK aM'aM(+&(~)d, , 'aM(+&(g ), (3.2Q)

-',(a™
, rr M'rr'Mr n(j)

2(a+M)
KaMarMr(+&(j) P jn/2

-', n -', (o' —M') -,'(o'+M')

—:(-+M) —:(--M)
KaM'a' M'n(j) (3 2g)—

—,'e 2(o.'+M') -', (o.' —M')

We can diagonalize K,' "'"'&+&(j) and K,'M"M'' &(t) independently Lthe functions dj,x''o&+&(n) and dj,x"«&(n)
are orthogonal7, so that the accidental degeneracy is resolved. In the following part of the paper we shall discuss

the determination of the eigenvalues of matrices K, ' "M'&+&(~) in detail.

C. Diagonalization of Kernel and Equations for Trajectories

As in the example of Sec. II, we start with the investigation of the structure of the C-G coefficients. By the

recursion formula" for the 6j symbol, one can establish their j dependence:

j -,'(a+M) —',(o —M)

—,'e —',(a' —M') -', (o'+M')

F(o +j+2)F(a —j+1)I'(j—M +1) F(j+ M&+1)'&/2
&~'" """(j(j+1)) (329)

F(o&+j+2)I'(o& —j+1)F(j—M&+1)I'(j+M&+1)~

j —,'(o+M) —,'(o —M)

-,'I ', (a'+M') ——',(o.' —Mr)

I'(a&+jj2)F(a —j+1)I'(j—M&+1)I'(j™~1)~/ F(j+M&+1)'&—i~ '" ""'"(j(j+1)) (3 30)
F(«+j+2)F(a&—j+1)F(j—M +1)F(j™~1) F(j —3II +1)2

where "2=
I
a —a'~+ ~M —M'(r &o'=

(
o' —a'( ™Mr,and 8 (x) stands for an mth-order polynomial in x. With

these relations, we see that the two composite variables are

t~=tj(j+1) and tM(=™)F(j+M&+1)/F(j—M&+1)7.

' A. R. Edmonds, Angu4r Momentum in Quantum Mechanics (Princeton U. P., Princeton, N. J., 1957), p. 98.
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Just as in the case in Sec. II, the j dependence of (3.28) can be summarized as

I'(o &+j+2)I'(o &
—j+1)I'(j—M&+1)I'(j+M)+1)

Q,o M()'M' (+} ]nO/2 [A(t, tl)atsr(B(t, tl)], (3.31)
I'(o &+j+2)I'(o &

—j+1)I'(j—M)+1)I'(j+M&+1)

where A and 8 are arbitrary analytic functions of t and
t~. It is tedious but straightforward to check. that the
product E; ~"' "(+}E;"~" '~'+} has just the same

j dependence as (3.31), It follows that the quantities

J1 )

g .&r3fo'll'(+}+.a'M'o" 3f"(+}g.0"M"&rM(+} +
) etc. )

will all be free from the square-root factor in (3.28) and
depend analytically on t, t&, and &t~. Barring the chance
of accidental degeneracy, we may conclude that after
diagonalization the elements of E will be of the form

F'~(+) =F(o, M, t, tl, &t2r) . (3.32)

We may now continue j in the complex plane, keeping
0.—j=~ 6xed, to seek. the solution of F=O. Let the
solution be j=n„'+};we can write

n, (+)+K=s(t, tl, atsr),
or, equivalently, since 1~2 can be expressed as a poly-
nomial in t and tj,

This agrees with results obtained by more elaborate
calculations. ' ' For M =2, (3.33) becomes

n„&+&+K=f(t, tl) +tltsg(t, tl) . (4.3)

In terms of E=gt, it takes a simpler form because
tl ——tn„(+)(n„(+)+1) can be expressed in terms of
tits

—=E(n„&+&+-,') and t:

n &+&+K=h(E' +E(n„(+)+-')). (4 4)

By expanding h, we obtain the previously reported
result' ":
n„&+&(E)= o.—K+hol(o. —K+-,')E

ythlo+t 01'(~—K+-,')+h02(O —K+-2')']E'+ . (4.5)

A similar result for M =, I is also given below":

n„(+)(t) =0' K+Lflp—+(fpl&gpp)x]t
+(f20+(fll+glo)&+(fos~gol)&'+(for~goo)
Xt fto —(for~goo)+](2o —2K+1))t +', (4.6)

n„&+&+K=f(t,tl)atsrg(t, tl),
where f and g are regular in t and tl near zero.

IV. DISCUSSION OF RESULTS

Equation (3.33) gives all the results implied by
analyticity on the behavior of energy levels. The
functional forms of f and g are, of course, dynamical
questions. Once they are known, the trajectory func-
tions n„(+) can simply be solved as functions of t (or E).
However, even without any knowledge of f and g, the
fact that they are analytic still gives all the constraints
among o.,(+}.

Let us first examine (3.33) for some special values of
3f. If M =0, we have, since to= j.,

(4 7)n (+)(E)—n (—)( E)

for fermion trajectories also follows immediately from
(3.33).

Recently, some general formulas for o,„have become
available: Durand, Fishbane, and Simmons" have con-
sidered the I orentz expansion of scattering amplitudes
of spinless particles and suggest that the M=0 trajec-
tory should behave like"

(3 ) with X—= (o —K)(o —K+1). In general, opposite-parity
trajectories are degenerate to order t~ ' for boson tra-
jectories (integer values of M) and to order E2~ ' for
fermion trajectories (half-integer values of M), as is

implied directly by (3.33). The MacDowell symmetry,

n "'+K=f(t,tl)~g(t, t ) =g"'(t, t ) (4.1)

n„(t) =o —K+pglp+gpl(o —K) (o.—K+1)]t
+(g20+gll(0' K)(o' K+1)+gp2(o —K) (o —K+1)
+gpl(glp+gol(o K) (o' K+1)]

X(2o —2K+1))t'+ . (4.2)

We see that the two trajectories of opposite parities are
completely unrelated (no conspiracy); we shall see that
this is not so for all other values of M (conspiracy). If
g(+) is expanded in a Taylor series (suppressing the
superscript),

g(t&tl) =&r+glpt+gpltl+g20t +gllttl+g02tl + ' ' '
&

then the Taylor series for n„can be obtained by
iteration:

I'(K+1)I'(2n„+K+2)
n.+K =Q t'a, (t,), (4.8)

&=0 I'(K —j+1)I'(2n„+K —j+2)

where a, (t) are arbitrary analytic functions of
Bronzan, " on the other hand, has approached the
problem by the method of enforcing Mandelstam
analyticity term by term and has derived" trajectory

3 P. K. Kuo and J. F. Walker, Phys. Rev. 175, 1794 (1968);G.
Konisi and T. Saito, Progr. Theoret. Phys. (Kyoto) 41, 108 (1969).

"Second paper in Ref. 9."L. Durand III, P. Fishbane, and M. Simmons, Jr., Phys,
Rev. Letters 22, 261 (1969). Note added jrI, rnarINscript. See also
Phys. Rev. Letters 23, 201 (1969).

"The same expression has also been suggested by J. C. Taylor
(unpublished) .' J.B.Bronzan, Phys. Rev. 180, 1423 (1969);181, 2111 (1969).



REGGE TRAJECTORIES AND RESIDUES. I 3423

functions for integer values of 3f:

1 (8
!n„&+&+»=o+Q

~=o (v+1)!~Do.

evaluated by partial integration. Substituting this back
into (4.11), we have

n„&+&+»=o+A (n„&+&+», t, «)

at~B(n„&+&+», t, ») for MAO, (4.13)
r (o»+ iV.

—+1) —"+'
A(o, t,»)&t B(0)fq»)'

I'(o.—» —35+1)
where

»!I'(2o —»+2)
t'Q A, «

(»—i)!I'(2o —» —i+2)
(4.10)

Q »!I' 2o —«+2

A(o, t,») = Q.
@=1 (4.15)a, (t) =g «-JA,„

a=i

( )«gB;,
(» i)—!I'(2o- —« —i+2)

and if the A's are independent of o. (More about the
o dependence of the A's and B's later. ) We now intro-
duce a new variable o„=n„&+&+»and use it to eliminate
» from (4.13) and (4.14). We further recognize that

B(o,t,») = P
q=p

and the constants A;„8;,may be dependent on r but
not on t or z. It is then an interesting question whether
these results agree with our general formula (3.33),
because quite different basic assumptions are involved
in deriving them. Bronzan based his calculation on the
analytic 5-Lnatrix theory, while one of our basic assump-
tions is that the scattering amplitude may be con-
tinued oR-shell in the mass variables.

In what follows, we show that Hronzan's formula may
be summed to a form, of which the formula of Durand
et al. is a special case, which in turn may be recast in the
form of our general expression. We further show that to
a given order in t (or E) the same number of independent
parameters is required from both Bronzan's and our
expressions, thus establishing the equivalence between
them.

»!I'(2n &+'+»+2)

(»—i)!I'(2n&+&+» i+—2)

so that A(o-„,t,») and B(o„,t,«) are rea.lly analytic func-
tions of o„, t, and t&

——tn„&+&(n„&+&+1). Assuming we
can solve (4.13) and (4.14) for o„ in terms of I, t&, and
t~, the solutions would be

o„=n„'+&+»=f(t, t&)at~g(t, t&) for MAO;

o.=n.&+&+»=f '+& (t, t&) for 3f=0.

(4.9)
n„&+&+»=o &+&+A &+&(n„&+&+» t ») for M =0. (4.14)7

We see that (4.8) is equivalent to the above if we
identify

Let F(o) stand for the square bracket in (4.9) and let
8=o p be the solution of

s—o —F(s) =0, (4.11)

which tends to o as t~0; we can rewrite (4.9) as

1 &t'8)"
n. ' '+»=n+ 2 I

—
I LF(~)1"+'

=o (++1)!&Bol

It would be difficult to start from these forms in the
derivation of (4.13) and (4.14), because there is some
arbitrariness in the latter, in that it is possible for
different implicit functions to possess the same explicit
forms. The o. dependence of the functions A and 8 of
Bronzan is the consequence of such an arbitrariness. In
fact, no generality is lost by assuming that they are
independent of o.'~ With this assumption, it is relatively
simple to count the number of independent parameters
required to determine to a given order in t (or F) from
both expressions and find that they indeed agree.

s —o —F(s)
=o ——— ds ln =o o, (4.12)

27ri s o

where, to maintain analyticity at 1=0, the contour
must be chosen to enclose both o- and o.p but to exclude
any other zeros of (4.11). The cut of the logarithmic
function extends from o- to o-p., hence the integral can be
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~' This is only true for M&0. I'or M =0 one should replace 0
by 0 (+), A by A(+), and leave out the 8 term.


