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The problem of converting nonlinear realizations of SU(2) &&SU(2) has been approached in three dif-
ferent ways. Weinberg has introduced a matrix A(e) with well-defined properties under in6nitesimal chiral
transformations and has shown that it can be used to linearize nonlinear 6elds. Coleman, Wess, and Zumino
have achieved the same result by treating the pion 6elds as parameters of 6nite chiral rotations; and the
present author has made use of the fact that linear realizations are eigenstates of the Casimir operators and
close upon themselves under the action of chiral operators. Here we show that the three approaches are
equivalent to one another. We first calculate the most general expression for h. (e), and show that certain of
its matrix elements have the desired properties with respect to the Casimir and chiral operators. We then
show that the method of Coleman, Wess, and Zumino is a special case of h. (m). In the course of the analysis,
we find that h (sr) is manifestly covariant under redefinitions of the pion field. To illustrate the usefulness of
converting nonlinear fields to linear forms, we calculate ~-71- scattering lengths and construct weak currents
for meson decay.

I. INTRODUCTION

~ NE question that arises in the theory of chiral
symmetry is the relationship between linear and

nonlinear realizations' ' of SU(2)&&SU(2). Nonlinear
realizations are designed to take into account the dis-
tinctive feature of chirality, namely, the correlation of
processes involving different numbers of soft pions, and
to provide a method for constructing Lagrangians which
reproduce the results of current algebra. They differ
from the usual linear representations in that the action
of chiral operators upon any Geld is described by a
nonlinear function of the pion field. Nevertheless, it is
possible to construct linear realizations out of nonlinear
ones.

Working with infinitesimal transformations, Wein-
berg' has shown that there exists a matrix h. (er) which is
a function of the pion Geld and which can be used to
convert nonlinear realizations into linear ones. He
established the chiral properties of h. (es), but did not
determine its speciGc form. Coleman, Wess, and Zumino'
have considered more general groups from a global point
of view, and have shown that the construction of linear
realizations can be achieved by using the pion fields
themselves as parameters of pure chiral transformations.
The present writer, approaching the problem from
another point of view, has shown that linear realizations
can be constructed by redefining the nonlinear pion Geld
in a clearly prescribed way. Here we wish to show that
these three approaches are all equivalent to one
another.

We also wish to draw attention to two advantages of
working with linear realizations constructed from non-
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linear ones. The first is that linear realizations and all of
their space-time derivatives behave in the same way
under chiral transformations. Thus, when constructing
Lagrangians, we do not need covariant derivatives. ' The
second advantage is that linear realizations are mani-
festly covariant under redefinitions of the pion field.
Consequently, all physical results obtained from them
in the tree approximation are independent of the
specific form chosen for the action of chiral operators
upon the pion field. To illustrate these points, we calcu-
late S-wave m.-+ scattering lengths, and construct the
weak hadronic currents for both strangeness-conserving
and strangeness-violating decays.

Our approach to the problem of constructing linear
realizations can be illustrated in the following way.
Coleman, Wess, and Zumino' have proved that, if the
linear representations of SU(2)&(SU(2) are charac-
terized by the "spins" (j+,j ) of the two commuting
SU(2) subgroups, then the ones that can be realized
from a nonlinear pion field belong to the class for which
j+=j =j.A representation of this kind has an isospin
spectrum running from T=0 to T= 2j in unit steps, and
its Casimir eigenvalues are simple functions of j.When
isospin operators act upon any state of the representa-
tion, they may alter its T3 eigenvalue, but they cannot
change its total isospin T. Chiral operators, on the other
hand, act as raising and lowering operators for both T3
and T. Since the isospin spectrum is bounded at T= 2j,
the successive application of chiral operators to any
state must either reproduce the original state at some

stage, or annihilate it.
Now a set of "Gelds" with T=O, 1, . . . , 2j can

always be constructed from e-fold products of the pion
field with itself. Furthermore, the action of the nonlinear
chiral operator upon one of these "fields" with T=e
converts it to an admixture of "fields" with T= m —1, m,

and I+1.Thus it is possible for these product fields to
provide a basis for a linear representation of the type
(j,j).To ensure that they do in fact form such a basis,
we must force the products to have the correct Casimir
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II. PION FIELD

The algebra of SU(2)XSU(2) consists of isospin
operators T and chiral operators E, which obey the
standard conimutation rules

[T., Tb] =[K.,Eb] =ze.i„T„
[T.,Kb] =zest„K,

(2.1)

In general, linear representations are characterized by
the "spins" (j+,j ) of the commuting SU(2) subgroups

J.+= ,'(T.+Is.) . - (2.2)

The isospin spectrum for such a representation is given
by

T=(j++j ), (j++j 1), ",
l

j+ j l—, (23)—
and the eigenvalues of the Casimir operators are

Ci=T'+K'=2j+(j++1)+2j (j +1),
(2.4)

Cz
—=T K=K T= (j+—j-)(j++j-+1).

' C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966).

eigenvalues, and to behave as a closed system under the
successive application of chiral operators. This can be
achieved by multiplying each e-fold product by an
isoscalar function h„(zz ), which is determined by the
Casimir and chiral operator conditions. 4 We shall see in
Sec. II that the modi6ed products are manifestly
covariant under rede6nitions of the pion field.

Fields other than the pion can be converted to linear
realizations with j+&j in much the same way. Basis
"6elds" are constructed from the original 6eld and m-

fold pion products. They are then multiplied by func-
tions of +' in such a way that they have common
Casimir eigenvalues and close under action of chiral
operators. The process can be carried out in an eco-
nomical way with the aid of Weinberg's matrix h. (m).

To show that our approach is equivalent to the ones
of Weinberg, ' and of Coleman, Wess, and Zumino, ' we
first describe it in detail in Sec. II. We then determine
the exact form of h. (zt) in Sec. III, and show that certain
of its matrix elements are identical to the linear realiza-
tions obtained in Sec. II. We also find that A(zz) is
manifestly covariant under redefinitions of the pion
field. In Sec. IV we show that the result of Coleman,
Wess, and Zumino' is a special case of A(zz) with a
particular de6nition of the pion field.

In Sec. V we use the matrix h. (zz) to construct the
kinematic part of the pion Lagrangian; it is chirally
symmetric. The symmetry-breaking mass term is ob-
tained from the analysis of Sec. II. We then expand the
Lagrangian in powers of the pion Geld and thus obtain
the 5 wave of z-, x scattering lengths. Weak hadronic
currents are discussed in Sec. VI, and the Callan-
Treiman relation' is shown to hold under fairly general
assumptions.

In the particular class of representations for which
j+=j =j, the isospin spectrum runs from zero to 2j,
and the Casimir eigenvalues are

Ci——4j(j+1), Cz ——0. (2.5)

It can be shown from the commutation rules of Eq. (2.1)
that if we apply the operator E+ Ei'+——zEz to the
isoscalar member of this representation e times, we
obtain the state with T= T3——m. Since the spectrum has
an upper bound at n=2j, it follows that

(Ep)"+'5=0, (2.6)

where S is the isoscalar.
Equations (2.5) and (2.6) are the two criteria we shall

use to construct linear realizations out of a nonlinearly
transforming pion field. 4 For if we can find an isoscalar
function of the pion field which satisfies Eq. (2.6) and
whose Casimir eigenvalues are those of Eq. (2.5), then
the function must belong to a linear realization (j,j).
Since E+ commutes with C~ and C~, and since the
eigenvalues are independent of the pion 6eld, every
"field" obtained by applying E+ to the initial function e
times must also belong to (j,j).Thus we obtain all the
member fields with T= T3——zz (zz=0, . . . , 2j); the
remaining fields can be obtained from them by using the
isospin lowering operator T = T~—iT~.

Ta~b &&abc&c y (2.7)

but which transforms under chiral operators according
to the rule

E.zr t, i[8.bf(zz')+——zr.zr t,g (zz')], (2.8)

where zz'= P zr,zr, . In order for the commutator of two
chiral operators to yield an isospin operator, the func-
tion g(~') must be

1+2ff'

f—2 f'zz
(2.9)

where the prime denotes differentiation with respect to
~'. A useful form of this relation is

2f'(f+~'g) = fg 1—(2.10)

If we apply a succession of chiral operators to the pion
field using Eq. (2.8), we will obtain, in general, a
sequence of "fields" which neither terminates nor re-
peats itself. To avoid this difficulty, we apply the chiral
operators not to the pion field itself but to the modified
"field"

zr. =hi (zz') zr. , (2.11)

where h& is a function yet to be specified. We can then

A. Construction of Linear Realizations

Following Weinberg, ' we consider an isovector pion
field zr, (a= 1, 2, 3), which behaves in the standard way
under isospin,



3394 S. P. ROSE N

show from Eq. (2.8) that

('&+)"h ( ') +=h-+ ( ')(+)""
(+=1,2, 3, . . .), (2.12)

h„+i(~') =ugh. (~')+2h„'(f+m'g),

From Eqs. (2.17) and (2.8), we find that

S= ', (3—fh,+m'h, )
and

E.S= ',—i (-~'ha+ 5fh2 3—hi) m,

(2.21)

(2.22)

h„+,(~') =0. (2.13)

We can best examine the implications of Eq. (2.13)
for the function hi(m') by writing'

where n.+= (7ri+i7r2). In order that the "fields" in Eq.
(2.12) belong to a linear (j,j) realization, the sequence
of functions h„(m') must terminate at u= 2j. Thus

where h2 and h3 belong to the sequence of functions
defined in Eq. (2.12). To satisfy Eqs. (2.19) and (2.20),
we must have

m'h3+Sfh&+ (2j—1)(2j+3)hi=0. (2.23)

In terms of the functions v„of Eqs. (2.14) and (2.15),
this becomes a differential equation for z&.

d py tkj
(1—u') —5u +(2j—1)(2j+3)vi ——0. (2.24)

dQ dQ

h (m2) = v (u)/o" o = (f2+m )it u= —f/o. (2.14)

The recurrence relation in Eq. (2.12) then takes a very
simple form,

v„+i(u) = —v„(u),
dQ (2.25)v, (u)=Q b„u",

Solving this differential equation by a power series

(2 15) expansion

and the requirement of Eq. (2.13) becoines

v2i+i(u) = l(v)u=0.
dQ ~

(2.16)

we obtain a recurrence relation for the coefficients b:
(2r+ 1)(2r) b~,+i

=t (2r —1)(2r+3)—(2j—1)(2j+3)]b» i. (2.26)

S= ',i+ EP -h(im') .s]. (2.1'7)

Thus vi(u) must be a polynomial of degree (2j—1) in
the new variable Q.

In order to satisfy the Casimir eigenvalue conditions
of Eq. (2.5), we define the function S to be

When j is an integer, the coefficients of the odd powers
of Q terminate at n = 2j—1, but those of the even powers
continue ad infinitu. In order to satisfy Eq. (2.16), we
must choose the odd-power solution. When j is a half-
integer, the coefficients of the even powers terminate,
again at e=2j—1, and so we must use this solution
instead of the odd-power one. Thus the polynomial
solution of Eq. (2.24) is

Since hi(m')s. , is an isovector "field, " the function S
must be an isoscalar, i.e.,

vi(u) =P bg„ iu'"—', (2.27)

E S= itihi(~')—m, (2.19)

In general, p is a function of m', however, given the
definition of S LEq. (2.17)], we see that the simplest
way of satisfying Eq. (2.18) is to require that ti be a
constant with value

t = 4j (j+1)/3. —

T@=0 (b=1, 2, 3),
and hence it must be an eigenstate of C2 Lsee Eq. (2.4)]
with zero as its eigenvalue:

CPS=0.

The requirement that S be an eigenfunction of Ci [see
Kq. (2.4)) with eigenvalue as in Eq. (2.5) is

CiS—= (P E,E,)S=4j (j+1)S. (2.18)

Now the action of a single chiral operator upon S
must give rise to a "field" with isospin equal to 1. Since
the pion field is the only isovector available, we must
have

O(T= T3 n) =h„(——~')(s—.+)" (2.28)

B. Rede6ning Pion Field

Suppose that we define a new pion field by means of
the relation

m*,=s,c(~').
The action of the chiral operator upon w* is then

Egr*,= —i@i„F(~*')+s.*gr*'G(m*')], (2.30)
where'

where b2„ i satisfies Eq. (2.26) and the summation over
r is 1, 2, 3, . . ., j, for j an integer, and -'„-,', . . . , j,
for j a half-integer.

We have now succeeded in finding the function hi(m')
= o. 'vi(u), such that S, the isoscalar function defined in
Eq. (2.17), satisfies Kq. (2.6) and has the Casimir
eigenvalues of Eq. (2.5). By operating on it with the
operators E+ and T, we can now generate a set of
"fields" which span the linear realization (j,j) for any
value of j. The fields" with isospin T=T3——e are
simply

We use this result to obtain another restriction on
hi(or, ') .

F(m*') = f(m')C (m'),
G(~ ') = Eae+2C' (f+~'g)l/C"

(2.31)
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We now define new variables o.* and I* analogous to
those of Eq. (2.14),

o*= (F'+~*')'I'= Ctr I*= F/—o *=I (2.32)

and 6nd from Eqs. (2.14), (2.29), and (2.32) that

h„(m')(n. )"=h„(m*')(m* )". (2.33)

Therefore the linearized "6elds" O(T=Tb ——I) of Eq.
(2.28) are manifestly covariant with respect to redefi-
nitions of the pion field. It then follows that all "fields"
of the linear realization are covariant.

As a special case, we may take z*, to be the field ~
of Eq. (2.11).The function C (~') is then hi(m'), and we
6nd from Eqs. (2.31) and (2.12) that

F (~') = fbi G(~') = h,/hi'. (2.34)

Using the relation between h, and hi in Eq. (2.12), we
can easily show that the functions F and G of Eq. (2.34)
satisfy a condition analogous to Eq. (2.9). Thus the
construction of the linear realization is equivalent to
rede6ning the pion 6eld as in Eqs. (2.11) and (2.34).
Furthermore, Eq. (2.11), together with the particular
case of Eq. (2.33) in which v=1 and m.*,=fr„ implies
that

where t is some matrix representation, not necessarily
irreducible, of SU(2), i.e.,

[t.,tb]= ~..„t,. (3.2)

Weinberg' has shown that in order for the chiral algebra
to be satisfied, the function o b(m) must be

V~g 'Z = 6~gg7l t;V

o(m') = 1/[f+ (f'+ m')'12) =1/o (1—I) . (3.3)

and
T.h. (m) = —[t.,A (~))

K.h. (~)= —X,h. (m) —h (m) V, btb,

(3.5)

(3.6)

we can easily show that

Suppose that there exists a set of matrices x which,
together with the set t, forms a linear representation of
SU(2) &(SU(2), i.e.,

[Zay&b) = &&a bctc y

[tg)Xb) = ZEgbgXg .

Then, given a matrix A.(~) which depends upon the pion
field and which satisfies the equations

hi(fr') = 1. (2.35) T,h. (m)%'= t,A (~)%,—K,A(~)%= —g,A. (.~)+. (3.7)

and hence that
f i(m') (2.36)

1+2ff'= f ~'f'=0— (2.37)

It follows from Eq. (2.9) that the function g(~') is
indeterminate; we are therefore free to choose it in any
way we please. In particular, if g is such that

fg= —(2j-1), (2.38)

then we obtain a linear realization (j,j) for all integral
and half-integral values of j except j=0.To show this,
we form the function S=-,'i(P K,~,) and then use
Eqs. (2.36) and (2.38) to prove that S satisfies Eq. (2.6)
and has the Casimir eigenvalues of Eq. (2.5). Thus we
have a linear realization which is not unitary, but of
finite dimension.

GI. OTHER FIELDS

Let 0 be any field other than the pion with trans-
formation properties

This equation serves to determine F as a function of x'.

C. Anomalous Solution

Up to now we have tacitly assumed that the quantity
o = (f'+~')"' does not vanish. Our justification is that
in order for the chiral operators to be Hermitian the
function f(~') must be real. If o is zero, f must be
imaginary, and the nonlinear realization is not unitary.
There is, however, an interesting solution to the
linearization problem in this case.

When 0- vanishes, we find that

These two equations imply that A. (~)% forms a basis for
the linear representation spanned by the matrices t
and xg.

Weinberg' has proved that h. (m) must exist, and here
we intend to derive its specific form. Before doing so,
however, we wish to comment on the linear realizations
which can be obtained from 0. We see from Eqs. (3.1)
and (3.7) that h. (~)4 has the same spectrum of isospin
as 4 itself. Since A(m)% is a linear representation, this
spectrum must be of the form given in Eq. (2.3).

Now there are two possibilities for the field 4:Either
it is an irreducible representation of SU(2) correspond-
ing to a single isospin t, or else it is reducible and con-
tains several diferent isospins. In the irreducible case,
the only linear realizations of SU(2))&SU(2) to which
h. (~)% can belong are those that contain a single
isospin, namely,

and
j+=t, j =0

+=0,

(3.8a)

(3.8b)

The corresponding matrices x, are

S~=+tg
for (t,O), and

X~= —
ttt,

(3.9a)

(3.9b)

for (O,t). In the reducible case, the matrices x„and
hence h (m) itself, exist only if the isospin spectrum of 0'
is given by Eq. (2.3). If the spectrum divers from Eq.
(2.3) then 4 cannot be converted to a linear realization.

There is one other point concerning the irreducible
case. We can construct "fields" with isospin

T.% = t 4, K.@=—o.b(~)tb+, (3.1) t, t+ 1, . . ., t+n (3.10)
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by combining 0' with appropriate products of the pion
field. These "fields" will form a basis for a linear realiza-
tion with j++j = t+e and

~

j+—j ~

= t, provided that
they can be modified by functions of w2 in such a way as
to satisfy the Casimir and chiral operator conditions
discussed in the Introduction. One way of finding these
functions is to convert the pion field to a linear realiza-
tion, and then combine this realization with A(~)4 by
means of the usual Clebsch-Gordan techniques. Thus,
once the matrix A(~) is known, we can construct all the
allowed linear realizations out of 0' and the pion field.

then

where

T.(t.~)0= —t.(t ~)0,
T.(x m)%= —t.(x ~)+,

(3.11)

A. Determination of A. (m)

It is easy to show from Eq. (2.7) and the commutation
rules of Eqs. (3.2) and (3.4) that if

where X is a function of u Lsee Eq. (2.14)].From Eqs.
(3.16) and (2.9), we find that

(1 u2) i/2
(3.18)

The solution of Eq. (3.18) is

cosh = —u, sink = —(1—u')'"

and hence the general expression for A(m. ) is

A(m) = expLiP. /g~') (x ~)],

(3.19)

(3.20)

with X as in Eq. (3.19).Notice that the right-hand side
of Eq. (3.20) is manifestly covariant under redefinitions
of the pion field.

Having derived this expression for A(m) from Eq.
(3.14), we must now go back and show that it satisfies
our original requirement, namely, Eq. (3.13). To do
this, we first calculate the derivative of A(~) with re-
spect to w, .

(t m)=P t.7r. , (x m)=g x.~.. (3.12)
~X'c

=2im, —(x ~)A
~2

Therefore, if A (~) is not to alter the isospin of 0', it can
depend upon the matrices t and x~ only through the
combinations (t m) and (x e).

From Eq. (3.6), we find that

BA
i (8.,f+m, vr,—g)-= x.A Av. gt t—, . —

~X'c

iP
+ Q ——

L Q (x ~)"x.(x m)'] (3.21)
n=o g, ! ~~ r+s=n —1I i' 2

where the prime denotes differentiation with respect to
~'. We now write

*.—= (1/ '){ .( . )+LL*., ( )] ( )]) (322)

If we now multiply this equation by m and sum over a, and use this identity to reexpress Eq. (3.21) as
we obtain

BA.—i(f+~'g)ir; —= —(x ~)A,
87l ~

(3.14) =2kr,—(x ~)A+ —[Lx„(x ~)],A]. (3.23)
~2

where Eq. (3.3) has been used to show that P m v, t,

vanishes. The only way to ensure that Eq. (3.14) is
satisfied is to make A(~) a function of (x.~) alone, and
not of (t m).

We now assume that A(~) can be expanded as a
power series in (x 7r):

Using Eqs. (3.18) and (3.23), we can write the left-hand
side of Eq. (3.13) as

(1/~')( ~, (x ~)A+ fe.g,~.gi„A]). (3.24)

To show that this is equal to the right-hand side of Eq.
(3.13), we must use the expression for v, t, in Eq. (3.3)
together with the identity

A(~) = Q a„( r')(i7x ~)"
n-0

(3.15) sink
Ati, cosa~ ——(x——X~)~

Substituting this expression in Eq. (3.14) and equating
the coeKcients of equal powers of (x m), we obtain a
diRerential equation for a„:

2 sin'(2i X)
+— ~b(t ~) A, (3.25)

~2

(f+m'g) (2~'a„'+ma„) = —a„ i.
To solve this equation, we assume that

(3 16) which is proved in Appendix A. The required result then
emerges after some tedious algebra.

Since we have made no assumptions about the
representation spanned by t, and x&, the expression for

(3 17) A(m) in Eq. (3.20) is valid for all representations. How-
ever, we shall give two useful special cases. When 4' is a
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field of isospin t= —',, we have As an example, we consider the special case j=—,'. The
matrices t, of Eq. (3.28) are given by Pauli matrices

1— (x zz)
o (1—zz)

(3.26) "=1
fa 2Ta &

and h. (zz) is the Kronecker product

(3.32)

where x= ~ for the representation (—',,0) and x= ~ —for
(0,2). (~ are the Pauli matrices. ) When 0 is a field with
isospin equal to 1, we have

iX —iX
A(zz) =exp —~—zz Iaexp —~.zz ~. (3.33)

2+zr'

i (1+zz)
A= 1——(x zz) — —(x zz)'

0 2

The basis states are also Kronecker products

I
T Tz& C„„„z'-*X.(+)glX„(-i, (3.34)

where again x is either (+1) or (—1) times the isospin
matrices.

B. Relation Between A. (zz) and Pion Field

To investigate the relation between the inatrix A. (zz)

and the method used for converting the pion field into a
linear realization, we consider the special case in which
the matrices 1, and xb span a (j,j) representation of
SU(2))&SU(2). The matrices are

,'(t,+x,) =-t,sI, -', (z,—x,) =Inst, , (3.28)

where f,, are a set of (2j+1)&& (2j+1) spin matrices and
I is a unit matrix of the same dimensions. The basis
states of this representation are ~T,Tz), where the
isospin quantum numbers run from zero to 2j.

Now the operators T and E, act only upon the pion
field and do not affect the matrices t and x~, or the
states ~T,T &. zConsequently, when we apply them to
matrix elements of h. (zz), we find that

T.&T,T,
~
~(~)

~

T', T, '&

=&T,T,
~
T.~(~)

~
T,T. &

=-&T,T, ILz.,~(~)jl T', T,'&, (3.29)

Z.&T,T,
~
~(~)

~
T,T, &

=(T,T, i
Z.X(~) i

T',T,')
= —&T, Tz~x.A(zz)+A(zz)v. bib~ T', T, '). (3.30)

When
~

T', Tz'& is the isosinglet state (i.e., T'= Tz' 0), ——
the second terms on the right-hand sides of Eqs. (3.29)
and (3.30) both vanish. From the completeness of the
states

~
T,Tz) in the space of the matrices t, and xb, we

then obtain

T.&T T l~( )100&
(T,T,

(
t,

~

T",T,")—&T",T,"
~

A(zz)
~
0,0) )

E,&T,Tz
i
h. (zz)

i
0,0&

(3.31)

(T,T,
i
x.

i

T",T,"&—&T",Tz"
i
A (zz)

i
0 0) .

Equation (3.31) implies that the matrix elements

&T,Tz
~

A. (zz) ~0,0) form a linear (j,j) realization of
SU(2)&&SU(2), each matrix element having isospin
quantum numbers (T,Tz). For T= Tz they are, in fact,
the functions h (zz') (zr+)" which were obtained in Sec. II
above.

where X are the usual spin- —,'column vectors. Using
Eq. (3.19) for X, we find that

&0,0~~(~) ~0,0&=f/(f+~) = —I
&1,a

~

A(zz) ~0,0)=zr /(f'+zz')'"= zr /o.
(3.35)

Thus the "fields" which transform according to the
linear realization (2,—',) are those on the right-hand side
of Eq. (3.35).

If we use the approach of Sec. II, we find from Eq.
(2.27) that vi is a constant for j= z and vz is zero. Thus
hi is proportional to 1/(f'+ zz')'~' and hz vanishes. From
Eqs. (2.21) and (2.11), we then see that S and z7, are
exactly the same as the quantities obtained in Eq.
(3.35) from the matrix h. (zz).

The particular case j= 2 corresponds to the nonlinear
o model of Gell-Mann and Levy. b The matrices A(zz) for

j&—,'therefore represent a generalization of the 0- model
to higher isospins.

IV. CONNECTION WITH GLOBAL
TRANSFORM ATION S

ei$. K ~i)' K~iu'T
gp (4.1)

The new fields p,
' and zzb' (a, b= 1, 2, 3) are functions of

g, and $„and the nonlinear transformation of g, is

(4.2)

If any other field 0' transforms under isospin according
to

@~eio t@ (4.3)

where i, are the isospin matrices of Eq. (3.2), then its
nonlinear transformation is

(4.4)+~ ~sll

where zzb' are the functions appearing in Eq. (4.1).

' M. nell-Mann and M. Levy, Nuovo Cimento 16, 705 (1900);
S. Weinberg, ibid. 18, 188 (1967).

In the global approach of Coleman, Wess, and
Zumino, ' nonlinear transformations are obtained by
writing the product of any element gp of the group
SU(2) &&SU(2) with a finite chiral transformation as
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Coleman, Wess, and Zumino have shown that the
fields g and 4 can be converted to linear realizations by
means of the matrix I.=e'&', where x, are the chiral
matrices of Eq. (3.4). For the field $, itself, they prove
that each column of I.yields a linear realization, and for
11/ they prove that L+ transforms linearly. If the $
represent the pion field, then this result is of almost the
same form as the one obtained from the Weinberg
approach. The only difference is that while the param-
eters of L are the fields p„ the parameters of A(22) are

(X/+222) 2r.

Lsee Eq. (3.20)]. What we now show is that L is the
special case of A(22) in which

((2)1/2 (4 5)

We begin by extracting the infinitesimal form of the
Coleman, Wess, and Zumino transformation' from the
finite transformations of Eqs. (4.1) and (4.2). From this
we obtain the functions F(P) and G($2) appropriate to
the case of Eq. (4.1); then with the aid of Eqs. (2.14)
and (3.19) we can calculate X, and hence the matrix
A(22).

For a pure chiral transformation, we have

(4.6)

Now we show in Appendix B that

~i) ~ Keir K eipk K~ihg Q$ 7
where

(4.7)

cosp= cosy cosy' —ll ~ 11' sing sing',

k= (1/sinp) {n')cosy sine/o

—n n' sing (1—cos2/0)]+n sin2/},

('= q'n', (=2/n, (n')'= n'= 1.
The function h is given in Appendix B.

Comparing Eqs. (4.8) and (4.1), we find that

p, '= pk, (/2= 1, 2, 3) .

(4 8)

(4.9)

BP
'

k.' =4+ kb',
gp 0

(4.10)

where the differential coefficient must be evaluated at
$2=0. From Eqs. (4.8) and (4.9), we obtain

I-
a

(411)

where
P ((2) — (g2) 1/2 cot (($2)1/2)

G((') = —(1+F(('))/V.
(4.12)

It is not dificult to show that the functions F and 6
of Eq. (4.12) satisfy the Weinberg condition of Eq. (2.9).

When P vanishes, $,' is equal to )„and when (' is an
infinitesimal vector, we have

The Coleman, Wess, and Zumino transformation is
therefore a special case of Eq. (2.8); it can, in fact, be
obtained directly from Eq. (2.8) by redefining the pion
field Lsee Eqs. (2.29) and (2.31)]as

].=2r.c (222), c (222) =X/+222. (4.13)

x=Qp, (4.15)

is consistent with Eq. (4.13). Thus the matrix L= e'&'
is a special case of A(22) corresponding to a pion field
defined as in Eq. (4.12).

7. m-m INTERACTION

The pion Lagrangian consists of two parts, a kine-
matic term and a mass term. The kinematic term
preserves chiral symmetry, but the mass term does not.
Since isospin is conserved, the mass term is restricted to
SU(2)&&SU(2) realizations of the type (j,j). Here we
assume that it belongs to one such realization rather
than an admixture of them.

For a nonlinear pion field, the isoscalar member of the

(j,j) realization is given by the function S of Eq. (2.21).
In general, 5 contains terms of the first and higher
orders in ~'. In the tree approximation, the first-order
term corresponds to the pion mass, and the second-
order one accounts for x-m scattering. Higher-order
terms describe processes involving larger numbers of
pions.

The kinematic term can be derived from the matrix
A(22) of Eq. (3.20), and like the function S, it can also
be expanded in powers of the pion field. The quadratic
term is identified with the kinetic energy —,B„~ B„~,and
the quartic term contributes to m-~ scattering in the
tree approximation. Higher-order terms correspond to
higher-order processes, for example, 2x —+ 4x.

Putting the mass and kinematic terms together, we
obtain the general pion Lagrangian. From it we can
then calculate ao and a2, the 5-wave scattering lengths
in the T=O and T=2 states, respectively. Because 5
and A(22) are manifestly covariant with respect to
redefinitions of the pion field Lsee Eqs. (2.29) and
(2.31)], the formulas for gb and a2 are the same for all
choices of the functions f(222) and g(222) in Eq. (2.8).
They do, however, depend upon the parameter j which
describes the way in which the mass part of the
Lagrangian breaks the chiral symmetry. '

A. Symmetry-Breaking Mass Term

We can show with the aid of Eqs. (2.14), (2.15),
(2.21), and (2.24) that S is a function of u obeying the

Since the function ) is covariant with respect to
redefinitions of the pion field, we can write Lsee Eqs.
(2.14) and (3.19)]

cotX=u/(1 —u')' '= F/g—P. (4.14)

Given the form of F in Eq. (4.12), we find that the
expression for X obtained from Eq. (4.14), namely,
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differential equation

d'S dS
(1—I') —3u—+4j(j+1)S=0.

dQ dQ
(5.1)

dS du
S=[S]+-

-dQ d'Jc

To obtain the terms of first and second order in ~', we
develop a Taylor series for Snoting that [see Eq. (2.14)]

Q = —1 wlien m~= 0 (5 2)
Therefore

Now it follows from Eq. (5.6) that the quantity

U(m)= —(o~u&u~o& (5.7)

(where f denotes Hermitian adjoint) is invariant under
SU(2)&&SU(2). The quantity U(A) is of no physical
interest because

(5.8)

[see Eq. (3.20)], but U(B„A) does provide us with a
chirally symmetric function of the pion field and its
space-time derivatives. We shall therefore assume that
the kinetic energy part of the Lagrangian is given by
g U(B„A), where g is a coupling constant yet to be fixed.

To calculate U(B„A), we use

1 d'Spdg)' dS d'u
(5.3)

2 dN'kdm'1 du d(~')'
BA.

~p,m'c ) (5.9)

where quantities in square brackets must be evaluated
at m'=0. From Eq. (5.1) and its first derivative with
respect to u, we find that

4j(j+1)
[S),

3

where BA/Bn; is given in Eq. (3.23), and

(oi~. io&=o,

(0)x,xp(0&= —B, (0(x'(0&=-', j'(j'+1)B, .

We then find that

(5.10)

3X5

d'S (4j(j+
[S].

2

(5.4) 4j'(j'+1) 1 —u'
CU(BA) =g (B+O'Bp 7c)'

3

We now choose [S]in such a way that the coeflicient of
~' is —-'m ' thus

3m-'
~m 2~2

8j (j+1)~'
nz. -4j(j+1)—3

+— — (I')' —u" (m')', (5.5)
4u' 5

where u' and u" are the first and second deriva-
tives of u at ~'=0. The constant term in Eq. (5.5)
represents a zero-point energy and has no further
physical signi6cance.

B. Symmetry-Preserving Kinematic Term

To calculate the symmetry-preserving kinematic part
of the Lagrangian, we use the form of A(~) appropriate
to a (j',j') realization (see Sec. III B).In such a realiza-
tion the matrices t, and x, are given by Eq. (3.28), and
the basis for the space spanned by these matrices is a
set of column vectors

~
T, T&& (T=o, 1, . . . , 2j') which

are independent of the pion Geld. From Eq. (3.7), the
matrix A(m) and its space-time derivative B„A(m)
satisfy the property

2',m~o&= —~,m~o&, z.m~o&= —*,m[o&,
3E=A, B„h. (5.6)—

where ~0) is the isoscalar column vector.

[I"—(I')']
gU(Bp+) =

g B+c' B+c i~ (Bp&' B~%)
4Q'

[u"+(I')']
(~ Bpc)'+, (5.12)

2Q

where u' and u" are again the first and second deriva-
tives of u evaluated at ~'=0.

C. ~-~ Scattering Lengths

Omitting the constant term in the expansion of S
[see Eq. (5.5)], we can now write the pion Lagrangian
as

'2m 'm' —', B-„~ B„m—+-2
7 L. Bessler, Phys. Rev. 184, 1523 (1969).

(5.13)

du) ' (1—N2)-

+ i

— —(~ B„m)' . (5.11)
N2 d~2j (~2)2

The only dependence of gU(B„A) upon the representa-
tion to which t and x have been assigned occurs in the
factor 4j'(j'+1) on the right-hand side of Eq. (5.11);
the remaining factor is a universal function common to
all (j',j') representations. It is not difficult to show that
this function is exactly the one obtained from the
method of covariant derivatives. ' '

We now expand gU(B„A) in powers of the pion Geld
and choose g so that the coeflicient of B„~ B„m is (.—2).
Vp to fourth order we obtain
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u'= 2n', n '= 2fp1 (5.15)

where fp is the value of f(222) at 222=0. Equation (5.14)
then yields exactly the same formulas for ao and a& as
those of Weinberg' ' and of Bessler:

ap= [j(j+1)+1/(mn2/22r),

a2 ——
p [j(j+1)—2](mn2/22r) . (5.16)

Since the method we have used to derive Eq. (5.16) is
covariant under redefinitions of the pion field, these
formulas for ao and a~ are valid for all definitions of the
pion field and all choices of the function f(222) in Eq.
(2.8). However, the numerical value of fp is determined
by the ratio g~/gv for neutron P decay, ' " and so our
freedom to redefine the pion field is subject to a prac-
tical limitation: The redefinition must always be such
that F(22*2= 0) is equal to fp. Consequently the function
C (222) of Eqs. (2.29) and (2.31) must have the property
that

e(222= 0)= 1. (5.17)

This result is equivalent to the recent argument by
Bessler concerning the uniqueness of the S Inatrix.

It is interesting to note some of the properties of the
scattering lengths in Eq. (5.16). The combination

2a p
—Sap ——6 (mn2/22r) (5.18)

is independent of the symmetry-breaking parameter j,
and the combination

4a p+5a2 6j (j +1)——(mn2/22r) (5.19)

is directly proportional to it. When j= I, a& vanishes';
by contrast ap can never vanish. Since (mn2/22r)
=0.115m ', the scattering lengths for j= 2, namely,

ap=0. 20, a2= —0.06, j=-', (5.20)

are the same as those calculated by Weinberg. '

VI. WEAK CURRENTS

As another example of the use of linear realizations,
we construct the weak strangeness-conserving current
for the pion field, and the strangeness-violating one for

' S. Weinberg, Ref. 6; Phys. Rev. Letters 1'l, 616 (1966).' F. T. Meiere and M. Sugawara, Phys. Rev. 153, 1702 (1967).
These authors calculate ao and a2 by means of dispersion theory
and fInd that am is very small. Within experimental error their
value for ao is consistent with Eq. (5.16) for j=1.

From Eqs. (5.5) and (5.12), the pr-pr interaction is

,=~iu'(pi[4j(j+1) —3jm 2(222)2+222(B„22 B„pp)

—2(22 B„pp)2}—(u"/4u')[m 2(222)2

+222(B„22 B„22)+ 2(22 B„.pp) 27. (5.14)

The coefficient of I" is proportional to the four-
divergence of 222(22 B„pp) and hence it makes no contri-
bution to ~-w scattering. ~ Thus the scattering lengths
are proportional to u'. From Eq. (2.14), we Gnd that

the E-meson Geld. We then Gnd that para. meter fp is
related to the pion decay constant, and that the Callan-
Treiman relation' holds for @~3 decay.

A. 3 8=0 Current

The weak strangeness-conserving current transforms
according to the (1,0) representation of SU(2) XSU(2).
Since linear realizations constructed from the pion field
are of the type (j,j), the only way in which we ca,n
obtain a (1,0) current is to take the product of two such
realizations and carry out the reduction

(6.1)

From Eq. (5.6) we find that this process leads to a
current of the form

(6 2)

where A, t„and x, are matrices appropriate to the (j,j)
representation (see Sec. III 3), and G is a constant to be
determined below.

Evaluating the matrix element in Eq. (6.2) with the
techniques described in previous sections, we find that

f2+2r2

X[(22XB„22),+fB ir, 2r, B„f]—. (6.3)

As in the case of the kinematic pion Lagrangian (see
Sec. V 8), the only dependence of the current on the
representation (j,j) occurs in the factor 4j(j+1); the
remaining factor is a function of the pion field common
to all such representations. Furthermore, we can show
that the axial-vector part of J„can be derived from the
kinematic Lagrangian gU(B„A) of Eqs. (5.7), (5.11),
and (5.12) by means of Noether's theorem" and Eq.
(3.13). If we use this property to fix G, we obtain

ifp
[(pp XB„22).+f—B„2r. 2r.B„fj, (6.—4)

2+222

where fp is the value of f(222) at 222=0.
On expanding J in powers of thepion fiel, we find

that the leading term in the vector current is i(22 X B„pp),
and the leading one in the axial-vector current isi fpB„2r,.
We therefore choose

(6.5)

where f is the pion decay constant. With this restric-
tion, the current of Eq. (6.4) is valid for all definitions
of the pion field. In particular it yieMs the same current
as the 0- model of Gell-Mann and Levy' " when
f» (f 2 ~2)1/2

I S. Weinberg, Ref. 1, Eq. (4.11)."W. A. Sardeen and S.W. Lee, in Nuclear and Particle Physics,
edited by S. Margolis and C. S. Lam (Senjamin, New York,
1968), p. 273.
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B. A.S=1 Current

The strangeness-violating current belongs to the (-'„0)
representation of SU(2)&&SU(2). Now, as shown in
Sec. III, a nonlinear E-meson field with isospin equal to
~ can be converted to the linear realizations (-,',0) and
(0,2). Since a linear realization and its space-time
derivatives behave in the same way under chiral sym-
metry transformation, we can immediately write down a
current

where g"z is the E-meson decay constant and g& is
another coupling constant.

To determine g2, we note that in the tree approxima-
tion, the matrix element of J„(AS=1) for K» decay is

( .gl J.(~s=o) l&,P)
= (fx/fo) Lg2(P+ C).+ (1—g2) (P—V).3(kr.)+x, (6 14)

where p„and q„are the four-momenta of the K meson
and pion, respectively. From Eqs. (6.14) and (6.5), we
see that g2 is related to the usual form factors y'~,

C~
——1/(1+&), f= f /f~ (6.15)

where 0'~ denotes the isospin- —', K-meson field and
&(2,0) is the matrix of Eq. (3.26) with x= z, where ~ are
the Pauli matrices.

Equation (6.6) is not the only current we can con-
struct. Another possibility is to take the (0,—,) linear
realization of the E-meson field and combine it with the
space-time derivative of the (—,'P) linear realization of
the pion field:

(6.7)

To do this, we note from Eq. (3.33) that the (-,', -', )
realization of the pion field can be written as the
Kronecker product

(6 8)

where A(0, -,') is given by Eq. (3.26) with x= —~, and
the state

I 0) is the T= 0 state of Eq. (3.34). We can then
write another current as

(6.9)

where denotes transpose, C is the charge conjugation
matrix ir2, and the inner product in Eq. (6.9) is taken
with respect to the (OP) representation. After some
tedious algebra, we obtain

J„&»= -',%2(a„x(-,',0)
+~(2 0)L~~~(2 0)3~(0 k))+~ (61o)

If we expand J„("and J„("up to second order in the
pion field, the currents become

and that the Callan-Treiman relation' is satisfied, "i.e.,

f++f =fx/-f- (6.16)

Further applications of these methods to weak
interactions will be considered elsewhere.

VII. SUMMARY

We have shown that the methods developed by
Weinberg, ' by Coleman, Wess, and Zumino, 2 and by the
present author' are all equivalent to one another. As a
by-product, we have also derived the specific relation-
ship between steinberg's treatment of nonlinear fields
and that due to Coleman, Wess, and Zumino. The main
feature of our approach is the introduction of the
variable I= —f/(f'+m')'" In terms of u, the differ-
ential equations we have to solve take relatively simple
forms, and their solutions are independent of the
definition of the pion field.

To illustrate the usefulness of our approach, we have
considered the examples of x-x scattering and weak
currents for meson decay. Other examples are not hard
to find and we hope to discuss them in a later publication.

We anticipate that the nonlinear theory of chiral
SU(3)XSU(3) can be approached in much the same

way as above. The practical details, however, are much
more complicated" because the product of two octets
contains two independent octets, and because there are

, two invariants in SU(3) as opposed to one in SU(2).
Thus the analog of Eq. (2.8) for SU(3) may contain
more than two terms, and the invariant functions as-
sociated with them will depend, in general, upon two
variables instead of one."

ACKNOWLEDGMENTS

+ (~ 8pc)%++ 8'„+x, (6.11)
4f 2 8f 2

(|:.B„m)@lr+ —(~ ~)(|: 8pc)%rr (6.12)'.
ufo 2%2f '

Part of this work was done at the University of
Sussex, England. The author is grateful to Professor
R. J. Blin-Stoyle arid his colleagues at Sussex for their
kind hospitality. He would also like to thank Professor
M. Sugawara and Professor T. K. Kuo for interesting
conversations.

J„(M=1)= —fx(J„&')—&2g2J &») (6.13)
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APPENDIX A Using standard properties of the Pauli matrices, we can
express I' in the formIn order to prove Eq. (3.25), which gives a closed

expression for A.t,A ', we use the formula for the P= a+ibm n+ice m+fde nXm,
rotation of a vector o erator:

(B3)

where n is a unit vector, J, (a=1, 2, 3) is a set of
SU(2) generators, and r is a vector operator.

Using the matrices t, and x, of Eqs. (3.2) and (3.4),
we can construct two sets of SU(2) matrices which

where
commute with one another:

cos(-,'h sin%') =R ' cosQ,

sin (~2h sin+) = It. ' sin—+ sin28 sin —',C,

p
where the coefficients a, 5, c, and d are functions of 0, C,

e" Jre " 'J=cos8r+(1 —cos8)(r n)n —sin8rXn, (A1) h, and n.m. We now choose h so that the coefficient d

vanishes; this means that

(A2)

With the matrix A given in Eq. (3.20), we find that

giC m" t+] +g—iC m't+~g —iC m" t ] —gite'ta a

cos% =Il m

cosQ = cos-', 0 cos-', 4 —cos%' sin-', 0 sin-', 4,
R'= cos'0+ (sin%' sin28 sin2C)'.

With this choice of h, we 6nd that

C =X/g~'. (A3) P=cos-,'p+i sin-,'p e k,
We now apply the general formula of Eq. (A1) to each cosp= cos8 cosC —cos+ sin8 sinC,
term in Eq. (A3), and on recombining them we obtain

—cos%' sinC (1—cos8)]+m sinC ) .(1—cos'A) sinX
At+ '=cosh t,+ -(t m)s..—— (xX~).. (A4)

(B7)&i8n JtpiC'n J &ip& J&ih, nXm J

It follows from. Eq. (B6) that for the spin--', repre-
sentation of J, we have

This result leads to Eq. (3.25) because (1—costs%.)
= 2 sin'(2X). In the same way, we can also show that

(1—cosh)
Ax jL '=coslI. x,+ — (x ~)ir,

m2

sinX
(tX~),. (AS)

APPENDIX B

In order to prove Eqs. (4.7) and (4.8), we consider the
product

where h is given by Eq. (B4). Since both sides of Eq.
(B7) are products of group elements of the SU(2)
generated by J, (a= 1, 2, 3), the equa, tion must be valid
for all representations if it is valid for one. We have
shown that it is true for the spin--,' case, and hence it
must hold for all spins.

In order to apply this result to the left-hand side of
Eq. (4.7), we express E. in terms of the operators J,~
of Eq. (2.2) and use the fact that J,+ and J, commute
with one another. We then find that

p i8n J&iCm J&—ih(~) J
7 ei$ ~ Keir K

(erat J+ei$ J+)(e it J e i—$ J )—(B8)
where n and m are unit vectors, 0 and 4 are two angles of
rotation, and h is an as-yet undetermined function of
these quantities. We consider the special case of I' for
which the operators J, are represented by Pauli
matrices:

(B2)

Applying Eq. (B7) to each factor of Eq. (B8), and then
recombining them, we obtain the expression on the
right-hand side of Eq. (4.7). The variables 8, C, n, and
m of Eq. (B6) are, of course, replaced by the corre-
sponding ones of Eq. (4.8).


