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The point-source limit is found for a previously proposed static model satisfying crossing symmetry
and two-particle unitarity below three-particle thresholds. A numerical solution for this limit is obtained,
and both renormalized and unrenormalized quantities are calculated. The renormalization constants are
found to vanish; the relation of this to compositeness of the neutron in this model is discussed.

I. INTRODUCTION
' 'N an earlier paper' (hereafter referred to as I), the
~ - equations for a variant of the charged scalar static
model were solved. These equations determined off-
shell scattering matrices for vr p~ sr p and sr+p —+ w+p

which satisfied two-particle unitarity below the three-
particle thresholds and were related by crossing sym-
metry. The srptt vertex was taken to be go(27rm/cr'k'+1)' '
where k is the momentum of the pion, n ' is a cutoff,
and o, =0 corresponds to the point-source limit. These
equations were solved in the bound-state region of the
energy plane for o. '=5 and the entire range of the
unrenormalized coupling constant go. The results of
this calculation are discussed in I.

In this paper the point-source limit o, —+0 of our
model is studied. The prescription for obtaining this
limit is given in Sec. II, while Sec. III is devoted to
explaining the details of computation. In Sec. IV the
nature of this limit is explored. In particular, we show
that both the neutron wave function and vertex re-
normalization constants approach zero. This leads into
a discussion of the nature of the neutron; i.e., whether
it is "elementary" or "composite. "

cog =+ tt (a)g" (2 1)

Figure 1 shows cubic its to the isobar bound-state data
for n '=30 and 0, '=90. Higher-order 6ts give similar
results.
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The point-source limit is computed as follows. First,
for Axed 0. we And the curve for the g++ isobar bound
state cott ——glott(g', u), where g' is the renormalized srprt
coupling constant. This eliminates go' as a parameter in
favor of the physical g'. Only then is o. taken to zero to
yield a point interaction.

Since we do not know the functional form of tott(g', cr)
for Axed cutoff, it is approximated by making least-
square fits to the data using polynomials in g' up to
6fth order. For each e,
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FIG. 1, Isobar bound-state energy cog versus renormalized
coupling constant g' for 6xed cutoff o..
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The main feature of interest in this paper is the
existence and nature of the point-source limit. It is
well known that the charged scalar static model is
renormalizable in the point-source limit; however,
since the model of I is only an approximation to charged
scalar theory, it is necessary to show explicitly that it
has a point-source limit.

We remind the reader that there are three parameters
in our theory: mo, the unrenormalized neutron mass,

ge, the unrenormalized srprt coupling constant, and the
cutoff o. '. The mass of the pion is fixed at unity and
the zero of the energy scale is tak.en at the proton mass.
The unrenormalized neutron mass is determined by
requiring that the physical mass of the neutron be
equal to that of the proton. Therefore, we have two
parameters left at our disposal.
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FIG. 2. Isobar bound-state
energy co~ versus renormalized
coupling constant g' for axed un-
renormalized coupling constant g02.
The point-source limit is explained
in the text.
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a;(n) =p~+q, /inn (2.2)

for small n. p; and q; are found by making least-square
fits to the a; obtained from Eq. (2.1) for several n's.
For purposes of comparison, the forms

a;(n) =p;+q;n (2.3)

a;(n) =p;+q;n' (2 4)

for small n were also used. . We believe that Eq. (2.2),

The point-source limit is obtained by extrapolating
the coeKcients in Eq. (2.1) to n =0. Since here we must
extrapolate rather than interpolate, our lack of knowl-
edge of the functional form of &as(g', n) is more serious.
Consequently we have used simple models to suggest
the form

when used to extrapolate, leads to a reasonable point.
source limit. Our reasons for this are discussed in Sec-
IV.

III. DETAILS OF CALCULATION

The numerical computation at fixed cutoff was per-
formed as indicated in l, with a few changes: (1) The
calculation of g' was improved by using a better
extrapolation to zero energy, and by calculating Z&

—'
and Z2 as the primary quantities. (2) Redundant
calculations were eliminated to reduce the running
time to 0.6 min per iteration. (3) The interpolation
parameter (see I, Appendix 8) q was set to 0.25 at the
strongest coupling used; this gave better convergence
than the much smaller values for q indicated in I.
(4) Up to 26 iterations were needed with the strongest
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FIG. 3. (a) Renormalized coupling
constant g~ versus cutofF n for go= 1.25. (b) Isobar bound-state energy
cog versus cutofF o. for go' ——1.25.
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coupling to obtain satisfactory convergence; the results
of I had larger errors than we realized.

For the above reasons, the exact numbers from I are
not to be relied upon. However, we have found no
reason to change any of the qualitative conclusions to
which they led us.

In order to see how close our numerical solutions are
to the so1utions of the actual integral equations of our
model, we varied our approximation methods and
checked for stability. %e changed the fixed set of
energies —~ (E;(1 (described in I) at which calcu-
lations were carried out by slightly varying the existing
points and adding others. All results of the two calcu-
lations agreed to within 0.3%.In addition, the accuracy
of our Gaussian quadrature was checked by replacing
the method used for the bulk of the computations,
based on a ten-point Gaussian, by one based on five
two-point Gaussians. Some hand computations have con-
vinced us that the latter is more reliable. Direct com-
parison indicates that g and cvii agree to within 3%,
and both are consistently larger in our more accurate
calculation. Ke therefore believe that our data, as
presented, have an over-all systematic error, and that
the true renormalized coupling should be slightly larger
and the E++ isobar slightly less bound. ' Because of

' This is for fIxed g02 and o.. The curves ~~ ——cup(g', a) will remain
the same shape but will be displaced slightly to the right.

the immense amount of computer time involved, we
have not redone the calculations.

I7. DISCUSSION

A. Point-Source Limit

In Sec. II we gave a prescription for the limit n —+ 0
in which all results are expressed in terms of n and the
renormalized coupling constant g', thereby eliminating
go'. %e mould now like to show that our prescription
gives a nontrivial limit in the sense that the scattering
matrix is not identically 1, to discuss the features of
that limit, and to indicate to what extent our numerical
results for it, indicated in Fig. 2, are reliable.

In discussing our results, it is convenient to consider
first the weakly bound isobar state (cog=1). In this
region, Fig. 1 shows that cv&(g', n) does not vary greatly
with n for cutoffs n '&30. This is consistent with the
intuitive notion that the short-range part of the
"potential, " or far-away singularities of the scattering
matrix, do not contribute signihcantly in weak-binding
situations. This is emphasized by the data of Fig. 2,
where there are two cases where markedly different
values of go~ and n give the same values of g' and ~~ to
better than 1%.We conclude that insofar as calculating
g' and cog is concerned, we have reached the point-
source limit. Since we have nonzero coupling and a real
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bound state in this region, this limit is not trivial.
Furthermore, any extrapolation to o.=0 in this region
should be satisfactory; in practice, Eqs. (2.2), (2.3),
and (2.4) did give very nearly equal results.

In this same weak-binding region the curves go'
=const (Fig. 2) are clearly asymptotic to the point-
source-limit curve. As 0, —+ 0, ~~ increases and g'
decreases. In Fig. 3 we see that for go'=1.25 and 0, ~ 0,
g

' and co& increase approximately as inn. Therefore at
the limit rr =0, the x pcs coupling vanishes, and the real
part of the pole corresponding to the g++~ ~, this is
clearly a trivial theory. Figure 2 suggests that the same
result holds for any fixed go', inasmuch as the fixed go'
curves show similar forms. We conclude that the pre-
scription go'=const, n ~ 0 leads to a trivial theory for
any finite go',' therefore, our point-source limit must
correspond to infinite go'.

Similar arguments show that in our point-source
limit, mo is infinite, and Z~ and Z2 are zero.' For
example, contours of constant Z~ '&~ on the co~-

versus-g' graph behave in much the same way the
constant go' contours behave. As 0. —+ 0 along a constant
Z& contour, we do not obtain any physically under-
standable limit. Since we do not obtain the point-source
limit, we conclude Z~ ' must be infinite in this latter
limit.

Outside the region of weakly bound states, we must
extrapolate to reach the point-source limit. As indi-
cated in Sec. II, this was done in three different ways,
corresponding to the use of Kqs. (2.2), (2.3), and (2.4).
These three methods gave markedly different forms for
&v~ ——co~(g') outside the weak-binding region, but had
approximately the same goodness of 6t to the poly-
nomial coeKcients. The limits based on Eqs. (2.3) and
(2.4) were quite close to the curve co~ ——ceil(g', n) for the
largest cutoff employed; that based on Eq. (2.2) lay
further away. We noted that the go'= const curves were
asymptotic to the point-source limit. Clearly the curve
go'=30 in Fig. 2 is only slowly turning up, and the
point-source-limit curve must be markedly displaced
to the left of it. Only our logarithmic extrapolation
satisfied this criterion.

Also, the results in Fig. 3 show logarithmic depen-
dence on the cutoff very clearly. We take this to be a
conQrmation of the predictions of our simple models. '
For these reasons we believe that the extrapolation
based on Kq. (2.2) gives the best result for our point-
source limit, shown in Fig. 2.

3 It is widely believed that any solution to a realistic Geld
theory has infinite go', F0, Z~ ', and Z2 '. See L. D. Landau, in
Theoretic/ physics je the TmeNHeth Century, edited by M. Fierz
and V. F. Weisskopf (Interscience, New York, 1960).

' 4 In connection with this it is interesting to note that while the
physical quantities have attained their point-source-limit values,
the unphysical quantities te0, Z&, and Z2 have not. In particular,
when o, ' and g0' are increased so that co~ and g' remain approxi-
mately constant, mo, Z& ', and Z& ' increase.

' The limit involved is not the same as the point-source limit,
but we nevertheless expect that it indicates the correct asymptotic
dependence on cutoG.
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Fic. 4. Isobar bound-state energy co~ versus renormalized
coupling constant g': comparison of point-source limit with two
approximations to charged scalar theory (see text).

It is not easy to estimate the error in our point-
source-limit curve, except in the weakly bound region,
where we know it to be small. Thus, it is possible that
there is a large error in the mean slope of the limit
curve; it is almost certain that some details of the
shape are incorrect. However, these are not our primary
interest'; rather, we concern ourselves largely with the
properties discussed above, which we are confident are
true for our model independent of numerical uncer-
tainties in our work.

We also mention a second limiting procedure that
gives a nontrivial result: go' —&~ for n&0, followed
by n —+0. The first step gives g'=g, '(n) and co&=0,
independent of n. (See I for a full discussion of this
limit. ) The second step yields g'=g, '(0) =g,„' and
~~ =0; this is simply one point of our point-source limit.
Some features of this second limit are discussed below.

6 Of course the limit could in principle be reached directly by
the use of very large cutoQs, if such matters were of interest;
however, the expense in terms of computation time would be
prohibitive.

B. Comparison vrith Charged Scalar Theory

Figure 4 shows, in addition to our point-source limit,
two approximate solutions to the charged scalar static
model with point interactions. The one-meson approxi-
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mation provides a rigorous upper bound. The strong-
coupling approximation takes a result of Goebel, 7 valid
asymptotically in g', and extends it to the range shown.
The comparison is discussed at length in I. Briefly, the
strong-coupling calculation includes inelastic effects
omitted in our model. The fact that our model shows
stronger binding for most couplings means that the
inelastic binding effects we include are greater than
those of the exact theory.

C. Structure of Neutron

It is of some interest to examine the behavior of the
neutron-propagator renormalization constant Z2 and
the rrprs-vertex renormalization constant Zq. The
vanishing of these constants is a much studied criterion
for the compositeness of a particle. ' In our model there
are two limits in which Z~ and Z~ vanish: infinite go
for fixed o., and the point-source limit.

V „(E)= —Xf(or') f(or),

X= lim gp'/mp,
go ~no

(4 &)

then the solution of Eqs. (2.3)—(2.6) of I will give just
our go' —+~ limit. Two points support our conjecture:
First, Eq. (4.1) clearly makes the direct and cross
channels identical, since U=U~. This is observed in
our computations, as noted above. Second, a Born
term such as given in Eq. (4.1) presupposes a Fermi
rrprrp coupling in the interaction Hamiltonian. The
replacement of Yukawa coupling by Fermi coupling is

r C. J. Goebel, Phys. Rev. 109, 1846 (1958).
8 See the review articles by K. Hayashi et at. , Fortscln'. Physik

18, 625 (196tI'); and H. Osborn, Ann. Phys. (N. Y.) 47, 308 (1968).
~ This implies Z2Z~ ' vanishes in this limit.

M. Ida, Progr. Theoret. Phys. (Kyoto) 34, 92 (1962);34, 990
(1965).

Finite Cutofj

For fixed cutoff, the vanishing of the renormalization
constants as go' goes to infinity is very similar to the
behavior of the usual field-theoretic models used to
study compositeness. ' In I it was shown that for fixed
cutoff in the infinite-go' limit: g' is uniquely determined,
g'=g, '(o.),s the cV++ isobar and the neutron become
degenerate, and the scattering in the cross and direct
channels become equal. Since the E++ is a bound state
in our model, this equivalence argues strongly for the
neutron being a bound state of a p and a rr, the
intuitive meaning of composite. Ida's definition of a
composite particle'" as having Z~=O, Z2=0, and its
mass and coupling constants uniquely determined is
also satisfied here.

At this point we would like to indicate a conjecture
about our model in the limit we have been discussing:
If we replace the Born term, Eq. (2.7) of I, by its
limiting form,

a well-known feature of the Z~=O limit in simple
models. '"

Point-Source Limit

We now turn to the point-source limit. Since this
describes a theory without cutoffs, we expect it to be
closer to a realistic field theory and hopefully also to
the real world. As noted above, in this limit Z~ and Z~
vanish and go is infinite. However, the isobar bound
state is not degenerate with the neutron, except at the
point of maximum coupling, and the renormalized ~rrp
coupling g' remains a free parameter of the theory, with
the restriction g'(g, „'. Insofar as we can determine,
in the range g'&g, ' the neutron does not fit into any
of Ida's classifications. "Z~=O and Z2=0 in the usual
models fixes both the mass and coupling of the particle
under consideration, and gives a Lagrangian with the
neutron removed and no compensating Fermi inter-
action present. In our model, the neutron coupling g'
is not fixed; moreover, the Yukawa coupling through
the neutron is the whole of the interaction, so that its
removal would yield a trivial theory, in contradiction
to our results. Again, Zs ——0 (ZrWO) in the usual models
yields the Fermi coupling mentioned above. However,
as discussed for our go

—&~ limit, this makes the direct
and crossed channels identical, and the neutron and
E++ isobar degenerate, again in contradiction to our
results.

We now indicate on general grounds why we do not
expect the usual classifications to be helpful in treating
our model. The treatments of Lagrangian models set
Z& =0, and Z& =0 for finite cutoffs and only then go to
a point-source limit. The justification for such a pro-
cedure is the hope that the results obtained at finite
cutoff are independent of the cutoff, and hence the
limits can be taken in this order without doing violence
to the theory. Our model leads us to believe that this is
not the case: This procedure gives a single point (the
intersection of our gs ~~ and point-source limits)
with g'=g ' and ~g=0, i.e., the E++ isobar de-
generate with the neutron. While the classifications
seem to treat this single point adequately, it seems
clear that they cannot apply to our model for g'&g, '.
Dispersion-relation calculations seem limited by as-
sumptions about the convergence of integrals along
the left-hand cut. The assumption that the discon-
tinuity across the left-hand cut is "sufficiently bounded"
is an assumption about the short-range forces and
therefore through crossing about the multiparticle
intermediate states along the right-hand cut. These
states have not received a satisfactory treatment and
our model indicates that their effects are large. Al-
though our model overestimates such effects, we believe
it to be a reliable guide to their importance. We con-
jecture that the same objections to the use of these

' M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961).
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classifications hold for any point-source theory with
"realistic" features such as crossing.

It should be noted that even if our neutron is in some
sense a composite particle, our solution is not a boot-
strap solution, since the proton is never modified. An
extension of our model in which the proton and neutron
are treated identically is now in progress.

V. CONCLUSION

The model of I has been shown to have a point-
source limit. The main features of this model are that
it satisfies oR-shell two-particle unitarity below the
three-particle thresholds and that it is crossing sym-
metric. These properties mean that the elastic scat-
tering amplitudes have intermediate states containing
large numbers of particles. This feature is not included
in most nontrivial soluble models studied to date and
provides us the opportunity to examine the eRects of
these states. The main drawbacks of the model are that
it is a static model and that it fails to satisfy unitarity
above the three-particle thresholds. We believe these
drawbacks do not vitiate the insights into "realistic"
field theories gained from our model.

In particular, certain features of the point-source
limit of our model lead us to question the cogency of
much of the work previously done on the question of
compositeness of strongly interacting particles. The
force of many of these investigations has been to show
that the vanishing of renormalization constants is a
sufficient condition to ensure that a particle is com-
posite. We have discussed the conclusions that our
model suggests in Sec. IV C.

Obtaining an adequate definition of compositeness
seems to be the main difhculty. For example, it is
generally argued that the vanishing of the propagator
or wave-function renormahzation constant (Z2 in this

paper) is a reasonable criterion for compositeness in
that it corresponds to the intuitive notion of a particle

composed of elementary constituents (we avoid the
additiona1 subtleties of bootstrap situations). This is
formally stated through a sum rule for the spectral
density function. "This argument is certainly valid for
the simple models whose cogency we have questioned;
it seems necessary to establish that this connection is
useful in general. That is, is it possible to measure the
spectral density function& This appears to be a non-
trivial problem. "

It is sometimes argued that the renormalization
constants will always vanish for a "realistic" field
theory. If this is true then it is difficult to see that
vanishing renormalization constants is a useful defini-
tion of compositeness, since it is simply a statement
about the solutions to "realistic" field theories.

There seems to be some possibility that various
definitions of the wave-function renormalization are
inequivalent. For example, in the neutral scalar static
model" Z~ is defined as the overlap between the bare
and physical nucleon state, and its vanishing in the
point-source limit has nothing whatsoever to do with
compositeness in the intuitive sense of a particle corn-
posed of physical elementary particles. Furthermore,
it seems that the definition of Z2 based on the spectral
density should give Z2=1 since in the point-source
limit this theory is trivial.
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