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Behavior of Commutator Matrix Elements at Small Distances.
I. Existence and Structure of Equal-Time Limits
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The behavior of commutator matrix elements at small distances is investigated in the framework of
general quantum 6eld theory. The equivalence between current density commutators and the commutators
of a 6nite number of charge moments and a current density at equal times is proved by means of micro-
causality but without using the spectrum condition. If N is the (finite) order of the commutator, then the
equal-time limits of the commutators between all charge moments of degree higher than 2N+m —1 (m fixed
between zero and N) and a current density vanish. The equal-time commutators between the first 2N+m —1
charge moments and a current density exist if and only if the equal-time limit of the corresponding current
densities exists and is a sum of 2N+m —1 derivatives of the b function in the space variables x. The coefB-
cients of the individual b functions are identical to the equal-time limits of the charge moments and one
density. If the spectrum condition holds in addition, then m is equal to zero.

I. INTRODUCTION

"N the last decade, much effort has been devoted to
& - the analysis of the asymptotic behavior in space and
time of matrix elements of 6eld operators. ' ' Important
results such as the cluster decomposition, various
asymptotic conditions, "and (last but not least) the
weak asymptotic series of 6eld operators' have been
derived. All these results emerged from an ingenious
exploitation of a few general principles. On the other
hand, very little is known about the behavior of matrix
elements at small distances. The reason obviously is
that this region is much more sensitive to the unknown
dynamics of interacting systems than is the asymptotic
region, where these systems are greatly separated from
each other.

Successful investigations of broken symmetries are
based on the postulate of equal-time commutation rela-
tions between the electromagnetic and weak hadron
currents je (x) as well as their genera1ized charges' ':

Q (x')= d'x j' (x).

The following three sets of commutation relations
proposed by Gell-Mann' combine assumptions on the
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behavior of current matrix elements in small space-
time regions with algebraic structures related to an
underlying broken symmetry group:

»;, (+ILQ-(*'),Qt (o)jl ~&'= "(+IQ (o) IC'&,

»m (+II Q.(x'),jo,(o)jIe&&=sc-& &eIj,(0) I e&, (3)

» (+ILj'-(*) j"g(o)jlc&'

=ic t'r(+I jo,(0) IC»b(x). (4)

The assumption on the structure of the matrix ele-
ments in space-time is contained in the existence of the
limits and the ft function in Etl. (4). The algebraic
structures are represented by the structure constants
c» of the. broken symmetry group occurring on the
right-hand side. 0' and C are state vectors from the
Hilbert space of physical states. T means subtraction
of the vacuum expectation values of the commutator,
which removes all possible c-number terms.

A considerable amount of work has been invested in
the analysis of the algebraic aspects of this scheme, 4 '
whereas the analysis of the space-time structure has
been largerly ignored. Serious difficulties which occur
in the purely algebraic treatment of the relations'»'
seem to disappear if one takes into account also the
space-time structures —especially micr ocausality —of
these relations. '

The great success of this scheme rests on the occur-
rence of the charges Q (xv) on the left-hand side of (2)
and (3). They can be replaced via Gauss's theorem'v "

7 I. T. Grodski and R. F. Streater, Phys. Rev. Letters 20, 695
(1968).

8 S. F. Chang, R. Dashen, and L. O'Raifeartaigh, Phys. Rev.
182, 1805 {1969).

~ U. Volkel and A. H. Volkel, Nuovo Cimento 63, 203 {1969).
MB. Schroer and P. Stichel, Commun. Math. Phys. 3p 258

(1966).
» S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40A,

1171 (1965).
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by a four-dimensional integral over the divergences of
the corresponding currents r)„j" (x), which according
to Haag" can be considered as interpolating GeMs of
spin-zero particles. Partial conservation of axial-vector
current (PCAC) and dispersion relations finally lead
to scattering cross sections on the left-hand side of (2)
and (3). In order to treat the density commutators in
the same way, one would like to replace them by a
comp/etc equivalent set of relations containing a charge or
related objects like charge moments

Q.(~',m) =: d'*( II (*')"')j'-(*),
i=a

m;& 0 integer, m =:(mt, ms, ms),

where the equality sign with the colon means "is by
deGnition. "

That such an equivalent set of relations may exist
was indicated by a recent publication. ' There, among
other things, it has been shown by consistent use of
microcausality, current conservation (or what cor-
responds to it for nonconserved currents), and some
further technical assumptions (such as high-energy
behavior, as well as interchanges of limits and integra-
tions) that the density commutator between one-

particle states has the form

lIm (+ I Lj'-(*),j's(0)3 I
~)'

3 3 Qvi' " " II — 5(x) (6)
Vs=1 '=I (BX')"'

with

~"-s= l;, (+ II:0-(~', ),j's(0)] I
~)'

In the present paper we will give a proof for the equiv-
alence between the equal-time commutator of two
current densities and the equal-time commutators of a
jinite number of charge moments and one current
density. The number depends on the order of the
density commutator. The proof rests on the general
principles of quantum Geld theory, especially micro-
causality. Neither spectrum condition nor additional
technical assumptions will be imposed.

The proof emerges from the following two simple ob-
servations. (i) By inspection of the right-hand side of
(4), it is obvious that the equal-time limit of densities
is to be considered as a limit in the sense of generalized
functions. rs '4 This means that for every member h(x)
from a certain class of test functions, we have

Ilm ( Ir
I

d s j (x)h(x) j p(0) I
c')

= '"(+Ij".(o) I ~)h(0) (7)
"R.Haag, Phys. Rev. 112, 669 (1958)."L. Schwartz, Theoric des Distributions (Herrmann, Paris,

1957/59).
'4 I. M. Gelfand and G. E. Schilow, Verallgemejnerte Funktionen

(Distributionen) (Deutsqher Verlag der Wissenschaften, Berlin,
1960/62).

Now the main difference between (3) and (4) or (7) is
that in the case of the charge-density commutator one
demands the existence of the limit for only one single
test function h0(x)

—= 1, whereas for the density-density
commutator one requires the existence for a whole
class of functions h(x) with the same right-hand side.
Furthermore, we obtain the commutator of a charge
moment Q (xs,m) and a density by choosing the special
function

h.(.) =II (*')-
i=1

in (7). So the problem is reduced to whether the equal-
time limit of a current commutator is completely known
when we know its value for a finite number of functions
of the form

h (x)=&(m)(II (a')-'), m;=0, 1, . . . , M. (8)

This property we expect from microcausality and finite
order of commutator s. (ii) Microcausality tells us
that the current commutator vanishes for spacelike
arguments (x0)'—x'(0 (Fig. 1). For sufficiently small
values of Ix0I(e the commutator "sees" only the
local behavior of the test functions in the neighborhood
of the origin and is independent of their global be-
havior. In the neighborhood of the origin, we can
approximate the test functions by linear combinations
of (8) to arbitrary precision. If the commutator is not
too singular at the origin (is of finite order in the lan-
guage of distribution theory" "), we expect the limit
x0 —+ 0 to vanish for all h (x) with suffIciently high m;
since the support in x is reduced to the point 0 in this
limit.

In Sec. II we give a precise formulation of what is
meant by charges and equal-time limits, thereby making
more precise the meaning of Eqs. (1)—(5). We collect
some results of general quantum field theory and con-
struct a representation of commutator matrix elements
which we need for the proofs.

In Sec. III we first prove that the equal-time limit
vanishes for all C" functions h(x) with the property

lllll 0 t + h(EX)( eo (9)e~o

where E is the order of the commutator and m is a
certain number with 0(m&Z. All the functions (8)
with M'&2cV+m have this property. This fact is the
key to all our conclusions. Since every test function
h(x) can be split into a polynomial of degree 237+m
and a remainder I4(x) with the property (9),Is

2%+na . 1 3

h(x)= P —P*'
I h(z) +i(x), (10)

+=0 u! i I r)s~] s
'~ The expression

Q x'—

means to take the t4th power and apply (8/Bs') to the function
on the right.
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it immediately follows that if the equal-time limits of
the commutators between the first 2K+m —1 charge
moments and a current density exist, then the equal-
time limit of the commutator of two densities exists
and is a sum of at most 21K+m —1 derivatives of the b

function, and conversely. Of course, this is true for
arbitrary local fields of finite order.

Finally, in Sec. IV we draw some conclusions, for
instance, on the structure of one-particle contributions
to equal-time commutators.

II. POSTULATES AND MATHEMATICAL
CONSEQUENCES

We consider the currents j& to be members of a
polynomial algebra of 6elds which satisfy the usual
postulates of Wightman fields except for the spectrum
condition. '" 'r In detail, we require for the fields (I)
translational invariance; (II) local comm utativity
(microcausality); (III) that the fields

X

sk

R

' ~ J F

i
~

1 i I /y

" . '" I(x-d)'=-ctI
/

~pl

e

fp'

I(r-d)2=-c'I, ".''
t

~f/
~ .

pl /

X

i"-(f)= d'*f(x)i"-(x), FIG. 1. Support of F(x)(:—) aud i4(x) ( ~ ( ~
).

smeared with test functions f(x) from" S4," '4 are
operators with a dense domain in a Hilbert space H.
From this assumption it follows" '" that the matrix
elements of the fields are distributions of finite order
S.'3'4 They can be represented as a Sth-order deriva-
tive of a con.tinuous function p(x):

&+ I J(*)I
c') =D.""~(x)

gN—m

Since the matrix elements of the fields are distribu-
tions, neither of the charges (1), (5) exists as an opera-
tor with dense domain (because of misbehavior at
infinity) unless it is conserved; nor do the equal-time
limits exist in the usual sense (because of misbehavior
at 'the origin). 'o As is well known"0 the recipe is to
consider (1)—(5) as limiting processes of the following
smeared-out objects:

(r™/g (8 ')"')„( ), (12), (p . f (m))xo s=l

ImI =Q m, . d'x4"(x')( ll (x') ')f (x)i"-(x), (14)

p(x) is polynomial bounded: where (i) fii(x) is a C" function with the property

~(x)/51+ 2 (x')'j"&"
i=o

(13) fs(x) =1 for IxI &R
=0 for

I xI &R+AR,

for some finite integer x. The support of p(x) is contained
in an arbitrarily small neighborhood of the support of

(+Ii(x) I c).
If, in addition, the spectrum condition holds, then

according to Borchers, " m can be set equal to zero.
This is the only reason for the slight changes in our
results when the spectrum condition holds.

"R. F. Streater and A. S. Wightman, I'CT, Spin and Statistics,
and All That (Benjamin, New York, 1964).

~' L. Garding and A. S. Wightman, Arkiv Fysik 28, 129 (1964).
"For technical simplicity we restrict ourselves to tempered

distributions. By a slightly larger amount of technicalities the
proofs can be extended to D4 and even more general function
spaces characterized in Sec. IV.

' H. J. Borchers, Nuovo Cimento 33, 1600 (1964).

(ii) f, is a sequence of type 8, i.e.,

~.(")=:(1/)~(*/),

dx'P(x') = 1.
(17)

If we formally take the limits &~0 and R —+~ in
(14), we get back the charges {1)and their moments (5)
at the point x'=0.

where the P(x') are C" functions with the properties

supp&(x')&L —~, ~l B&L)i(~)j,
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Now the precise meaning of the equal-time limits (3)
and (4) is"

lim lim (O'
I Ij ' (ip„fa (.0)),j p(0)] I 4)r

=~~"(+
I
j"7(o) I

c'), (18)

in (18)—(22) and forget the cutoff in x. Moreover we
can admit arbitrary C" functions h(x) in (23).

Our final task in this section is to construct a repre-
sentation for F(iP, IE) containing microcausality and the
property of finite order Ã. A tempered distribution
F(x) vanishes for spacelike arguments x if and only
if" "it is the Fourier transform of the limit

F(f,y) =lim U(f, y, h) (24)

for all h(x) from S~. What we have to show is

lim lim (@IIj' Q„h),j"p(0)]IC') =0

for all h(x) &S3with the property (9);

(b) lim lim (4 I Lj' {P„f&(v)),j s(0)] I
I')

of a tempered solution of the Ave-dimensional wave
(20) equation

82 3 82 82
CI 5U(p, h) —= —Q — — U(p, h) =0 (25)

Bp" '-~ B(p')' Bh'

with the boundary condition

exists for all integers v;&0 with

Q v;&2cV+m —1

8
lim U(f,p—,h) =0.
X~O gy

(26)

if and only if

1,{~ILj'.(~.; ~),j"~(0)]lc)'

According to a theorem of Girding and Malgrange, "
every tempered solution of the wave equation has the
properties

2K+m —1 ~ v—~ cj(1,, J, P —1—J)EZ„=o;=p; o piji(i, —Z —j) I

&& h(z)
BZy BS2~BS3

(21)

dP' f(p') U(P', y, h) Lo~4,

d'pCh g(y, h) U(p', y, h) go,„,
(27)

for all f and g from S& and S4, respectively. Here 0~ is
the space of all C functions of polynomial increase. "

(c) Therefore, the limits (24) and (26) are well de6ned.
&(v) =lim lim (+I Ljo {iP„'fg(v)), j"s(0)]I

4)r. (22) Moreover, from (24)-(26) we obtain
e~0 A~co

&one of the indices fn, P,pi occurring in the expression
above are essential for our further investigations. Only
the order N depends on p,. We will drop them all and
consider the simple expression

82"
lim
X~O gp, 2n

g2n+I

~p' I'(P') U(p', p, h)

dp'f(p') U(p', y,h)=O,

(28)

F(y„h)—= d'x P, (x')h(x)F(x)

=:{~ILjQ.,~),g(0)]I4)'

From microcausality,

F(x) =0 for x'&0,

it follows that

F(P x) =: d'x' P,(x')F(x', x)

(23)

g2 g g2 n

dp'F(p)l — —2 j(p ).
&(~p')' '=' (&p')'

If F(x) is of the order cV, then Eqs. (24)—(26) have the
unique solution"

{x2)khmib

U(p, h) =
(2m)'~' k=o (2P) i

(x2) kh2k-

+0(x') cos(hex') —P (—1)&
i =o (2P) ivanishes for x') a', since the support of ip, is contained

in L
—a, a]. Therefore we can perform the limit R —+~

"In the present article we are not concerned with the charge
algebra (2).

(29)

"A. S. Wightman, Dzspersion Relations and Elementary Particles
(Hermann, Paris, 1960).

» V. S. Vladimirov, 3IIethods of tlze TIzeory of Functions of
Several Coznplex Variables (MIT Press, Cambridge, Mass. , 1966).
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Since
(X2)2) 22-

G(x ) ) = . 0(x') cos(XQX2) —Q (—1)2 — (30)
s=o (2k)!

is E-times continuous differentiable, the right-hand
side of (29) is well defined.

The next step is to represent U(p, )i) by its Cauchy
data on the spacelike surface p'=0. This representation
will later be combined with (29). The essential trick is
that in this way the smearing in x' in the commutator
F(|P,f) will be shifted in part to a smearing over the
space variables x—the key for our proofs in Sec. III.

The Cauchy representation reads' ""

dp'p(p') U(p, ) ) = lim d'p'd) ' dp'p(p')

with

8
Zo(p', p —p', )i—X') U(p", p', ) ')

l9

8
+ R(p', p —p', ) —) ') U(p", p', )i'), (»)

FIG. 2. Domains of integration for II (i') and II(//).

Introducing the Fourier transforms in the right-hand
side of (31), we get

Zo(P, X) = — d4XdS e'i2" "'ie(X )8(X S )
(22r) 4

4(/'/ :f«'* '" '4=(*')*

Because of the following Lemma 1,

(32)

U(x, s) =
(22r) "' d4pdh e '"* "'/u(p)j)

dpop(po) h(p) U(p, 0) = lim d'xds e'&'*'h(x)
(22r) '/2 „o-o

XQ oq, (x,s)go+a'q, (x,s)iU(x,s), (34)
with

0'a (p)) =: dpV(p')~o(p' p,))

is from S4 if |PCSi, it has compact support in (p, X) if i(

has compact support. Therefore, according to (27), the
right-hand side of (31) is well defined with the integra-
tions and limits in the order written.

Let us consider the functions

(xa, )=s: 22r2 dx—'(x') "p(xo)e(x') 6(X2 s')—
%2L(x2+$2)1/2jn —

lt it ((x2+$2) i/2)

(g2) 2 g22
—F(g) Q $($)+Q~(g2) (+X2)$(X2 s )

s=o (2k)! 8$'"

(X2)s rl 24

~(s) . (»)
/=o (2k)! 8$2"

Now (27) implies J'd'xds g(x,s) U(x', x,s) to be from
0&&', the space of strongly decreasing distributions
(Fourier space of Osri) "for every g(x,s)Q S4. Therefore,
the limit can be performed if we keep the prescription
that the x' integration has to be done at the end. Per-
forming the $ integrations by means of the 8 functions
in (35), we get

—(—1)"it (—(x'+s')'/') j (33) F(f h) =i d'g F(g)h(x)

For the special cases n=o, 1, these are the Fourier
transforms of the two expressions occurring in (31) after
the p' integration is performed. Since P"q,(x,s) is an
even function of (x'+s')"', the following lemma easily
follows from (33).

Lemma 1: If |P(xo)QSi, then for any finite integer
22) 0, It "q,(x,s) is from S4. If It (xo) has compact support
in ixoi &a, then also +"q,(x,s) has compact support
contained in x'+s'& a' Llpoa, (x,s)go+a'a, (x,s)$

8$ a~0-
(36)

N 1 g2k

X P (x2)' LiPoa, (x,s)go+Pip, (x,s))
s=o (2k)! 8$2"

N 1
+o(x') P (x V'x')x'+It" (x V'x')-2 (*')'

/=o (2k)!
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The support of tu(x) is contained in an arbitrary neigh-
borhoood of the support of F(x) (Fig. 1):

F(x) is the Xth derivative of a continuous polynomial-
bounded function ls(x) Lsee Eqs. (12) and (13)j:

gN—m 3

&( ) =De "ls(*)= (~ / II ~(*')"*)l( )
(exp) ))(-m

(38)Suppls(X) (:(X—d) 2) —C2, d = (O,d) .

!m!=Pm;&1!).
Since the support of P"a,(xxs) is contained in x'+s'& a'(3/3

the region of integration in (36) is bounded by a
cylinder !x!&a (Fig. 2). Therefore the distribution

(g2) k g2)2

T(x') =: d'x ls(x', x)D: " h(x) Q LP'a, (x,s)x'+P'a, (x,s)j
&=0 (2k!) Bs' s=0

(x2) )'s A!2)s

+0(s')(ir'„(xgx')x'+ir's, (xV's') —r. -- [r's,(xs)x'+r's (xs)]
~=0 (2k)! Bsp"

(39)

has compact support in !xp! & b =a+& for all 2)& 1V and h(x) QC". For !x'!)b, the two sums over k in (39) cancel
each other whereas the support of the remaining term is given by pa, "(x,+x2) = 2ri(—xp) " 'f p(xp) —(—1)~p( —x')j.

If we furthermore observe that the Q~ function and the differential operator D," m can be interchanged for all
e&E, we Anally obtain the desired representation

Fg,h) =i(—1)" dX0
(g2))s g2)s

d'x ls(xp, x)D~, h(x) p — Lpa, (x,s)x'1$'a, (x,s)]
2( 2 ) =0 (2k)! rls2"

+i( 1)~— dx' d'x ls(xp, x)D.~ " h(x)! pa, (x gx2)go+ad'~ (x gg2)
X2( (~0) 2

(g2) )s

[ir",(x,s)s'+ir's, (x,s)] ) . (40)
2=0 (2k)! pls"

The important poin. ts in this representation are (i) an
integration of continuous functions over 6nite regions,
and (ii) the fact that the original smearing in the time
variable x' has been shifted in part to a smearing in the
space variable x. By means of this representation we
will prove our statements in Sec. III.

IIL STRUCTURE OF EQUAL-TIME LIMITS

We begin with some further properties of the test
functions characterized by condition (9).

Definition: A C" function h(x) is said to be from
class P3 if

hm 0
—h(ex)(~ .

&~0

From the definition it is obvious that

pm+pm —1

Moreover, developing h(x) in a MacLaurin series up
to a 6nite order, we obtain from the well-known esti-
mates on the remainder of this series"

Lemma Z: If h(X) gppm, then"

2 p! ) ss

(i) g g'
! h(z) =0 for 0&2)&m —1,

aZ') .=0
"R. Courant, Uorlesnngen aber Degerenteal nnd Integral--

recheeeg (Springer, Berlin, 1955), Vol. 2.

(ii) hl "l(x)=:D, l "lh(x)

for all n;&0 with

=(piss(/II ((lgi)sss)h(x)gp m n—
ei=g.

«mrna 3: If h(x) is an arbitrary C" function, then

m—1 3 rl ) ss

h (x) =:h(x)—P P g'
! h(z)

ss=p x=1 rig sJ x=0

belongs to P 3. Now our main theorem is
Theorem I: If the commutator F(x) is of order N,

then (the equal-time limit)

lim d4x p, (gp)h(x) p(g) =0

h(»n) =II (g')"'

for all h(x)gpp'~+ and a 6xed m with 0(m(g If
in addition the spectrum condition holds, then m is
equal to zero.

Since all charge moments



BEHAVIOR OF COMMUTATOR MATRIX ELEMENTS AT ~ ~ ~ 3383

of degree

l~l =P I'»Xym

are from class I'3' +, we obtain, furthermore,
Corollary: If E is the order of the (density) commuta-

tor F(x), then the equal-time commutators between the
corresponding charge moments of degree

l nl &2iV+m
and one current density vanish:

with

d'*a.(*')L rr ( ')" jF()
e-&0 i=l

commutators of the corresponding charge moments and
one current density. '4

Collecting these arguments, we obtain a further
theorem.

Theorem II: Let 1V be the order of the commutator
matrix element F(x). Then the equal-time limits of the
first 21V+m —1 charge moments,

lim d'x f,(x')h(x, n)F(x) =0.
c~o

(42) 0& lel =P e;&2m+m —1

If the spectrum condition holds, then m is zero.
Before we present the proof of Theorem I, let us draw

some conclusions from it. Theorem I, together with
Lemma 3 and Eq. (40), tells us that

(m fixed between zero and cV), exist if and only if the
equal-time limit of the corresponding density com-
mutator exists and is a sum of at most the first
2%+m —1 derivatives of the 8 function:

2N+m —1

lim d'x f,(x')h(x)F(x) =lim
e-+0 n=o

3 g n

h(z)
az'

d4x f,(x')

F(x) . (43)

lim d'x P.(x')F(x)h(x)

2&V+m i v v-—4 A(Z, j, p —Z —j)
v=O 4=O 4=O Z!j!(p—Z —j)!

However, on the right-hand side of (43) there occur the
equal-time limits of the commutators of only the first
2K+m —1 charge moments. Therefore the equal-time
limit of two current densities exists if and only if the
equal-time limits of the corresponding commutators be-
tween the first 2&V+m —1 charge moments and a
current density exist. Moreover, since the support of
the commutator shrinks to the point x=0 in the limit,
and the limit is unequal to zero only for the first
2K+m 1charge inoment—s, it is at most a sum of
21V+m —1 derivatives of the 8 function 8(x).

Last but not least, it is obvious from the structure of
the right-hand side of (43) that the coeKcients of these
8 functions are identical to the equal-time limits of the

X — h(z) . (44)
BZ BZ BZ

The coefFicients A (v) are identical to the charge
moments

A(v)—= lim d4xg, (x')L g (x')"')F(x). (45)
e-+0 i=l

If the spectrum condition holds, then m is equal to
zero.

All that remains to be done is to prove Theorem I.
In view of the representation (40) for the commutator
FQ „h), it is suflicient to show that the limit 3 -+ 0 of
the following two expressions vanishes for all h(x)
+F3 +~ and all 0&m& v&iV n) 0, 23'& 0'

'(~n) —n~.

n, n' (3) —~

(x2)2 g22

d*' d' p( ',x)(*')"'D."' 2 — 4'" ( )' h(x)
2( ~2 2=o (2h)! Bs22

Q 0—tS

dx' d'x y(x', x) (x') "' Dg "
X2( (~Q) S 8(x')

(46)

(x2)2 g22

&& h(x)I V~4(x,V'x')' —2 4"~4(xp)' l, (47)
2=3 (2h)!Bs2", ,)

with Pnz, (x,s) ' according to (16) and (33) given by

0"~.(x,~)'= —(~2/3)l:(x'+&') "2j" 'Lk(3 '(x2+&2) "2)—(—1)v(—3 '(x2+~2) "2)7
= 2n—2t4, (X/e, S/2) . (4g)

We restrict ourselves to demonstrating the vanishing of (47) for 2 ~ 0. The proof for (46) follows with exactly the

"A different rigorous argument for this connection under the assumption of the existence of the limit as a tempered distribution
in x has been found by Roepstorff and Stichel (private communication).
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b].es, we getrat~on variaChanging the &nsame a"gumen

xg2y(y&) n'p(ey )&y)
p), m'ay

b/e

n+n' —v+2(2) =e"
2(

(&J )b/s

x h(y) &"'+y
= (")"

I erst

y (y

2(b 2 ~

Sum over &

Therefore wave certa y) &a.For suf6c iently s

(,) ll-"'..-('»()—IIn" n, m 2
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v—m

')j0 nd'yl ('y 'y y
g(y')

with

0'—v+2n, n'(~) =:2"

„—m N I
0 lm —

'~h(&y)d2 p(6y &y)(y )
o) v—m a=o (2h)y

b/c

gy0

g2k

p-„(y,~)~o itI y &
~ 2a

+ n'—v+2,n'(2) = 2"
y'& a

I ig. 2)
~~ ~~ ~ ~

~of integra ion is given bv (~) the exa«r gio"d;ng to the suppo

.
(h~ )(y( min{ h/2~o

term:
0 —m»

(50)

(52)

(53)p(y) =:p(y) I)-'™~(—»
d 0 tti mean di~eeO I I an

f).i(y) =:0,~ "~f(y) .
use the abbreviation

rm inrm in e is given' y. The leading term inLet us rs cfi t consider (52). e
'

rm in

w~ll also) In the followingt iny'(& —I,f(to«l) deg"' ' yt,.al opera«rs o

n, n'(2)— 0 n'+2N —v+md'y P(y', 2y)(y')"
y9( aR

g2N

0 "~,(y,~)'~(2y)l

con

n2n" "'
2) =limlim IIv, m"'

@~0

b m
~" (y, )0 0 n'+2N —v—m

! 2=o «) aS
d'y P(y', 0)(y )dy0

y2( 2 s=G

2N—n—1+t

x~ py*

( 1V +222).

s to p 'N+' ' ".Sinceii h~
—

'~(y) belongs to E2 ——. S~ toLemma 2 ii,P32N+m —1—n then OWingIf h(y) is from I'22, in~
tinuous, we can take t e i

s=G
(54)

(55)

P 2N+m —ih y) belongs toIf moreover,
'N+' 'and this express'

that

)
2N+/( P 2

a one shows a. In the same wayoLemma2 (i. n

all h y)CP2
the spectrum coIf in addition,

e Borchers" m canbecause of orc

everywhere in (40) and (46—nd therefore also everywhere in
theorem.5). This proves our

IV. CONCLUSIO

ofms-only for the case o
t this is the

p
d distributions. T e retemper e is
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simplest case from a technical point of view. However,
the proofs can be extended by a slightly larger amount
of technicalities to functionals on other spaces, like
D4, or more generally to any test function space 3f
with the two properties: (i) M contains the space
K(b)4 for arbitrary small b as a subspace"; and (ii)
there exists a one-to-one correspondence between the
functionals on M vanishing in the open spacelike cone
and the Fourier transforms of the solutions of the five-
dimensional wave equation.

Property (i) guarantees that the functionals on M
have a 6nite order. "The test function spaces introduced
by Jaffess for nonrenormalizable local theories, how-

ever, do not share this property.
Our results have some important consequences in

the applications to current a1gebras. As we have shown,
thePnfte set of relations

lim (%l

for vi+0 integer and

The reason for this is that the space integration causes
an identification of the (total) three-momentum of the
intermediate states with the three-momentum of one of
the external states.

Furthermore, one can apply Gauss's theorem to the
charge moments in (3) and (56)."After this step, one
can make either a local one-particle approximation""
in the resulting expression or one can introduce dis-
persion relations first and make a naive one-particle
approximation in the absorptive parts of the dispersion
integrals. ' ' In both cases, '" owing to microcausality,
the result is a frame-independent, finite set of linear
differential relations between form factors.

This result has to be compared to the nonlinear
algebraic relations of the Gell-Mann —Dashen program
of saturation in the infinite-momentum frame»" with
all its serious difficulties. ' ' Our results indicate where
the source of these deceases has to be sought —in the
destruction of microcausality even in the case of an
inlnite number of discrete intermediate states (for a
Qnite number of states and nonconstant form factors
it is bound to occur).

0(Q e;&2'—1

together with (3) is completely equivalent to the local
current algebra (4). We can forget about the local
algebra (4) and insert (3) and (56) for it.

I.et us consider this Qnite set of relations for the
special case of one-nucleon states. Because of the
integration over x space, the contribution of the one-
nucleon intermediate state (or any other state with the
mass of the nucleon) is always a product of a coupling
constant with a form factor or one of its derivatives
with respect to the invariant momentum transfer. "

"E(b)4 is the space of all C" functions with support contained
in (x (

(b~ and equipped with a natural topology (Ref. 14).
"A. M. Jaffe, Phys. Rev. 158, 1454 (1967).
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