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the sum making up the total II, would not commute.
It seems unlikely that such a scheme" would be very
useful.

This result leads to the mass of the single-particle
state being the expectation value (properly defined, as
discussed in Ref. 11) of the total Hamiltonian, and not
the eigenvalue of a single-particle Hamiltonian.

In general, one must be careful in the factorization
process when unstable states are involved.

These considerations do not seem to have been always
throughly understood, and as a result errors have
occasionally arisen.

A more detailed discussion of the whole question is
given in Ref. 11.
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We show that scattering boundary conditions are incompatible with a monochromatic radiation field for
the case of nonlinear Compton scattering. We demonstrate this by showing that (a) in the monochromatic
limit, gauge invariance in a given order of the expansion of the S matrix is destroyed, and (b) the physical
(scattering) boundary condition, that of a pulse of radiation incident on a target electron, cannot be recon-
structed from the monochromatic limit of the S matrix. We then proceed to show by an example that the
frequency profile of the scattered radiation is a function of both the intensity and line shape of the incident
field. Another interesting feature of this calculation is that the profile of the photon scattered at a fixed
angle is significantly broadened in comparison with the incident line shape. The worked-out example is a
simple Inodel, that of a neutral, scalar "electron" interacting with a bilinear scalar, massless external field,
which contains all the important features of nonlinear Compton scattering. While from the point of view of
gauge invariance it is sufhcient to treat the external radiation field as a one-dimensional wave packet, for a
complete description of the problem it is necessary to describe the incident radiation (quanta) in terms of
normalizable states. An estimate of the breakdown of the plane-wave approximation is included.

I. INTRODUCTION

'HE generalization of the Klein-Nishina formula'
to include the eRect of an intense light beam has

been the subject matter of numerous articles."These
computations fall into two categories. The first group
of authors' obtains the scattering amplitude via the
Volkov4 solutions for incident and outgoing electron
states. Recall that the Volkov4 wave function is a
solution to the Dirac (Klein-Gordon) equation for a
charged particle in the presense of an external, trans-
verse electromagnetic field. The electromagnetic field

*Work supported in part by U. S. Army Research Once
(Durham) and administered by Lowell Technological Institute
Research Foundation.
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is restricted to be a plane wave. This excludes the use
of a three-dimensional wave packet in the description
of the external field. The second approach' makes use
of the adiabatic switching-on-and-oR technique and
covariant perturbation theory. The two methods yield
diverging results. BrieQy, the disagreements between
the two methods are twofold: (a) In the kinematics,
the scattering amplitude based on the Volkov4 solutions
yields an intensity-dependent frequency shift (IDFS),
while the other method' gives no IDFS, and. (b) the
two amplitudes differ in their functional form. The
merits of one approach versus the other have also been
discussed in equally numerous articles. '

Recall that it was demonstrated' that the imposition
of scattering boundary conditions on the Volkov4 solu-
tions is incompatible with unitary time evolution of
the state vector. There is also something wrong, how-

ever, with the second approach, ' viz. , the scattering

' T. W. B.Kibble, Phys. Rev. 138, B740 (1965);L. M. Frantz,
ibid. 139, B1326 (1965); O. von Roos, ibid. 150, 1112 {1966);Z.
Fried, A. Baker, and D. Kor8, ibid. 151, 1040 (1966); H. Reiss
and J. H. Eberly, ibid. 151, 1058 (1966); P. Stehle and P. G.
de Baryshe, ibid. 152, 1135 (1966).

' Z. Fried, A. Baker, and D. KorQ, Phys. Rev. 151, 1040 (1966).
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amplitude is not gauge invariant. In particular, the
amplitude is not invariant under the gauge trans-
formation

e„'(k') —& e„'(k')+Xk„',

where e„' is the polarization vector of the scattered
photon. (Incidentally, the scattering amplitude based.
on the Volkov solutionsv in the monochromatic limit
is not gauge invariant either in e„', in each order of the
fine-structure constant. It is gauge invariant, however,
if the amplitude as a whole is considered. From the
point of view of covariant perturbation theory, the
amplitude should be gauge invariant in every external
photon line in all orders of the expansion if we are to
obtain sensible results not only for the case when the
laser beam is in a "coherent" state, but also in the case
of an arbitrary multiphoton incident state. In the
absence of compel1ing reasons for the presumed failure
of perturbation theory, we shall look for the cause of this
difhculty somewhere else. )

It is our aim to show that all these difficulties are
due to the fact tha, t the intensity-dependent (nonlinear)
scattering amplitude does not exist in the monochro-
matic limit. Needless to say, scattering problems should
always be formulated in terms of wave packets which
do not overlap initially. What distinguishes the linear
(two-pa, rticle incident state) from the nonlinear problem
is that in the former it is legitimate to discuss the
scattering amplitude as a function of sharply defined
four-momenta. In the linear case, one can always
reconstruct the physical (wave-pa, cket) amplitude by
superposition. This cannot be achieved in the nonlinear
case. '

In Sec. II we discuss the problem of gauge invariance
and some of the additional reasons why the mono-
chromatic limit does not exist for the nonlinear scat-
tering amplitude. We also indicate that most (but not
all) of these objections can be overcome by describing
the external field as a plane wave, i.e., a one-dimensional
wave packet.

In Sec. III we develop and present results based on
a model interaction Hamiltonian, that of a neutral
scalar "electron" interacting with a bilinear scalar
massless field. The zero-mass field represents a scalar,
plane-wave solution of the Maxwell wave equation.
We believe, and so far there is no indication to the
contrary anywhere in the literature, that all the im-
portant and troublesome features of nonlinear Compton
scattering are included in this model.

In Sec. IV we point out that a plane-wave description
of a laser beam is a poor approximation. Specifically,

'L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705
(1964), especially Eqs. (3.12) and (3.22) and their discussion
pertaining to these.' The reader may wonder why any quantum system should be
nonlinear. While it is correct to say that S-matrix elements are
linear functions of the various particles in and out, the situation
here is different. Here we are describing a large (and sometimes
undetermined) number of incident quanta by a few parameters.
The problem becomes nonlinear in these parameters.

we estimate the breakdown of the plane-wave approxi-
mation by inspecting the most singular nonlinear
amplitude. We 6nd that the criteria for the breakdown
of the plane-wave approximation involve Planck's
constant. The implication of this result for the case of a
focused laser beam is pointed out.

In Sec. V we summarize our results. Some additional
features of nonlinear scattering are also discussed in a
qualitative fashion.

II. VOLKOV SOLUTIONS AND
MONOCHROMATIC LIMIT

To date, all semiclassical calculations of the intensity-
dependent Cornpton scattering amplitude have made
use of the Volkov' solutions. The "classical" intensity-
dependent frequency shift (IDFS) follows, but only
under either of the following two conditions: (i) in the
monochromatic limit, or (ii) when the plane-wave
describing the external vector potential has the shape
of a square pulse. Besides the criticism raised in Ref. 6,
there are other reasons why scattering boundary con-
ditions are incompatible with the monochromatic
(infinite extent) nature of the external field. We
enumerate a few of them.

(a) For obvious physical reasons, if the external field
is of infinite extent, the notion of scattering in the sense
that the electron is at some time decoupled from the
external field is untenable. Also, we already remarked
in the Introduction that, unlike the case of linear
scattering amplitude, the wave-packet (in the external
field) scattering amplitude cannot be obtained from
the monochromatic nonlinear amplitude.

(b) While this objection can be bypassed by the use
of a square pulse, ' this approach has its own difficulty.
The use of a square pulse for the vector potential yields
singular electromagnetic field intensities.

(c) The monochromatic "scattering" amplitude is
not gauge invariant in a given order of 0,", o. being the
fine-structure constant. (Similar remarks pertain to
the square-pulse case.) Specifically, given the mono-
chromatic Volkov scattering amplitude" as a power
series in o, , the coefficients A„are functions of the
photon density p, the various four-momenta entering
the problem, the polarization of the external field e, and
the polarization of the scattered photon e'. These
coefficients are not gauge invariant in e . Symbolically,

A „(p,p, k, e, p', k', e')

AA „(p, p, k, e, p', k', e'+lk') . (2.1)

It is well known" that, at least in perturbation theory,
the scattering amplitude is gauge invariant in all orders

R. A. Neville, dissertation, Syracuse University iunpublishedl,
and Sec. III of this paper. We thank Dr. Neville for sending us a
copy of his thesis.

"See Ref. 7.' S. S. Schweber, Ae Introdlctioe to Relativistic Quanta Field
Theory (Row, Peterson, Evanston, Ill., 1961), p. 493.
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of the coupling constant, provided that the sums of the
four-momenta of all external photon legs in the
Feynman graphs add up to zero. (Thus, one could hope
to be able to use this information to see whether the
IDFS is a genuine effect. ) The results of our calculation,
which we omit here for the sake of brevity, show that
the coefficients

A „(p,p, k, e, p', k', e')

are not gauge invariant in ~', whether we use the
standard Compton energy-momentum balance formula

pl

~k~
k
===~k'

p+k =p'+k' (2.2)

or whether we use the intensity-dependent expression
for the "four-momentum" balance

ki—

PP(np/a&2P k)k+k=P'+(np/(o2P' k)k+k', (23)

where p and p' denote the incident and outgoing
electron momenta, k denotes the four-momentum of an
absorbed laser photon, and k' denotes the four-mo-
mentum of the scattered photon. cu=ko. All other
symbols have been defined previously. Equation (2.3)
leads to the IDFS.

This lack of gauge invariance in a given order of n"
is even more disturbing if one tries to understand the
diagrammatic basis of the intensity-dependent scat-
tering amplitude. From Eq. (3.2) of Ref. 10, we can
obtain the coeKcient of o.'. lt is

where

A 2 &sty'x'(Dt Ds+—Ds)+yx ~ (2.4)

while

= (P/2 )"'[(2 P'/p'. k) (2'P/P k)3—

s =( p/~4) ([1/'Pk)-(1/P k)j.
N„.q and N„q are Dirac spinors characterizing the final
and initial electron states. It shouM be possible to
obtain (2.4) from the set of Feynma, n graphs repre-
sented in Fig. 1, in the limit that ki, k~ ~ k, where k is
the four-vector of the monochromatic laser photon. It
is clear that before we take the limit, i.e., k~@k~, the set
of Feynman graphs of Fig. 1 are gauge invariant in aO
photon legs. In particular, if we replace

y e' by p e'+RA'

the matrix element remains invariant. After all, this
set of graphs also corresponds to a physical process in
which two photons are incident on a target electron and
two arbitrary photons are reradiated. Furthermore, for
this problem gauge invariance will be maintained if and

Dt=V e'(r'szt) (4ss —»'),
Ds 3y sky «'ky e(1/——2P k)(1/2P' k)(P/4to)st)

Ds=[(7'&7 e'/p' k)+(7 e'&7 e/P. k)1( p/~2)"'

Xs (st'+4ss),

+ (ka== k')

FIG. 1. Graphs representing two photons in and two photons out.
The target is an electron.

only if

p+2k t ——p'+ks+k', (2.5)

"Fried and Eberly in their paper (Ref. 3) used a procedure
based on Schrodinger-type perturbation theory for discrete energy
levels. Another procedure, suggested by T. W. B. Kibble /phys.
Rev. 138, 3740 (1965)j, is to integrate over the principal-value
part of the propagator singularity with one-dimensional wave
packets and take the monochromatic limit at the very end. We
performed such a calculation to first order in the nonlinear
parameter and obtained a result identical with Eq. {3.4).

i.e., the standard kinematic formula. What happens in
the limit as k~ —+ k2& Some of the amplitudes diverge.
The intermediate electron propagator approaches its
mass-shell value. Finite values for the principal-value
part of the propagator can be obtained if one uses some
limiting procedure. "Whatever limiting procedure one
chooses, however, gauge invariance is destroyed.
Physical considerations suggest that as long as we do
not change the nature of the problem (e.g. , from
scattering to bound state), all properties of the matrix
element should be continuous in the monochromatic
limit. We therefore conclude that the monochromatic
limit for the nonlinear amplitude is incompatible with

scattering boundary corldi ti ops.
Even if one adopts a purely semiclassical point of

view and considers the external field as a potential, the
scattering amplitude will depend on the spatial extent
of this potential. One may very well wonder why the
monochromatic limit (even if not exact) should not be
a good approximation to the exact result —say, of the
order of the ratio of the radiation wavelength to the
length of the wave train. The answer can be stated in
two ways. First, the eRective potential consists of two
parts: the sinusoidal part and a constant part. Both
are of finite range. Since both contribute to the scat-
tering amplitude, it is obvious that we cannot expect
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pl P pl

k

5

be of the following «rm:

f(x) =f(n x) ) (3.2)

k =-
=====kgl

P
(b)

k = — — -kg

kl—-- —— — -- -k~

P
(e)

where n=(1,0,0,1), n n=
'

o doP 't — ergy solutions of the Klein- or on equa-Positive-energy
'th F ynman boundary conditions or an

interaction of this type are given by Volkov- ypvt e

P

kg

k

k3
k~

( e'
f &+&(x) =exp iP x—i( ——

(

&2n pi ~„
f'(r)dr , (3.3)

and the probability amplitude for scattering one quan-
tum of momentum k out o e pthe acket is

(e)
T=E d4xf~. &

—&*(x)f(n x)P„&+'(x)e' '*, (3 4.)

Fxo. 2. Representative graphs to th'third order in coupling
constant for semiclassical problem. with

to the monochromatic scatteringthat the correction o e m
amplitude be o e orb f the order of the above-mentione ra io.

tential is the length of the wave train. A second way

ere 6nite, then the correction toturbation expansion were ni e,
ld' dthe monochromatic scattering p

'
am litude wou in ee

t andd r X/I. . (li is the radiation wavelengt anbe of the or er
L '

the length of the wave train. g ome o
iver ge, owg, h ever in the monochroma i

is e
atic limit. These

the shape of the wave pac e .et.terms are sensitive to e
~ ~ ~

The main part of ec. isS III is devoted to illustrating this
by a concrete example.

Substitution of (3.3) into (3.4) gives

T=Pe'&' d4x f(-n x)e'& *+pn~*~,

R(x) = f'(r') dr' f'(r') dr',

and

where q= p'+k' —P and

5=-' 'L(1/ p)+(1/ P'))
n

=-' 'L(1/ p') —(1/ p))

(3.5)

III. NONLINEAR SCATTERING AMPLITUDE
WITH ONE-DIMENSIONAL

WAVE PACKETS

Since all the difficulties encountered so far in non-
can be traced to the effectivelinear Compton scattering can e

thA A (the square of the vector pootential, term in e
fficient to illustrate the remedy oninteraction, it is su cien

c-ar edmodel that of the interaction of a c arge
scalar field (electron) with the square of a
dimensional zero-mass 6eld:

(3 1)

n dia rams to third order inRepresentative Feynman iagram
Fi . 2. As remarke ear ier,d 1the interaction are shown in Fig.

four-1
" hoton" legs have all the same our-

and hi her-order graphs containin infinities. ese
'

finities must be avoided by m
'

gmakin use of wave-in ni i
packet description of the incident raradiation. To ma e
contact with Volkov-type solutions, ' we take f(x) to

f'(r') dr'.

K . 3.5 extends over theSince the integration in q.
lete space-time volume, we m y gma change t e

variables of integration to t sand t+—s, ob
' '

g

&=&~(q*)~(q.)~(q —
q )1(q ) '", (3 6

where

I(qp) = (2~)
—' f( )e~qor+ipR(r)

It can be s own ashown that the expansion of (3.6) in a power
erin am li-series in e gives con

tude from Feynman diagrams suc as a s
h t E . (3.6) includes such processes as

d ble absorption and double emission at a sing eou ea
sses where thethermore it includes proce

number of quanta in does not equal the numb er of
le the diagram shown in

Lectures ~rI, Physics, edited by
M. Levy (Gordon and Breach, New York, 1968), p.
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Fig. 2 (e) .All of these must be considered because, in the
semiclassical wave-packet description of the external
field, these amplitudes can add up coherently.

The kinematic constraints, q, =q„=e.q=0, require

q to be a multiple of n; q=pn, and since p, p', and k'

are on their respective mass shells and in the forward
light cone, we find

y=p k'(n p —n. k') '&~0,

and p'=yn+p k'—Us.ing these results, we obtain from
Eq. (3.6),

where
) =-,'e'n O'L(n p)(p. k'))—',

with k'=(1,k'), independent of the energy of the
scattered quantum.

The probability of detecting a "photon" scattered
in the direction k', in the frequency range d~' and solid
angle dQ' per pulse per incident "electron, " is obtained
from the amplitude, Eq. (3.6), in the usual way. We
find

d'I'/(d~') (dn') =4~e'q
~
I(q) ~'O(q)LE„(p k'))-', (3.7)

where On is the unit step function. Here

where

m Ly (2s+ 1) —p)p(2n+1))hz„„
=sin{Le(2s+1) p)p(2n+1))L},

and J„are the cylindrical Bessel functions of order e.
Thus, for L»1/p) p maxima occur for all values of the
strength parameter z. They occur for values of

p =p)p(2n+1)/(2s+1) .

Thus, from Eqs. (3.8)—(3.11), we see that the most
probable (and also the average) frequency of the
emitted quantum will show an intensity-dependent
shift, the IDFS.' For the unphysical problem considered
in our example, this fictitious square pulse may serve
us well enough. To predict from this, however, that in
scattering a real electron off a real laser beam one will
also encounter the IDFS is quite another matter. For
the real problem, it is the vector potential A„which
enters into the Dirac equation. A vector potential with
a square pulse shape yields singular electric and mag-
netic field intensities. Hence we are motivated to
pursue this question one step further and consider a
somewhat more physical arrangement, where the
potential is of Lorentzian shape. For this case, we have
approximately

I(v)=(2~) ' f(r)dr eirr+ivvR (r) (3.8) Rp(r)~A p L(1—e P~ '~) P (r)/2h
+(1/2p)p) sin(2p)pr —2n)), (3.12)

~'=~(n p)L(p k')+v(n k')) ' (39)

It is clear from Eq. (3.8) that the amplitude I(p),
and hence the frequency shift, will depend on the
pulse shape. In order to study this effect, we have
computed I(p) for two different pulses: a square pulse
modulation,

where the damping factor in the oscillating term has
been neglected. 'Substitution of (3.12) into (3.6) leads
to the result

2I(y)A=A, p LJ„(—~y/p)p)+I +1(—)1y/p)p))

)(eia(2n+1)g (3 13)
fi(r) =A 1 cos(p) pr n), L—& r&L—

and a Lorentzian modulation,

fp(r) =Ape ~'~ cos(p)pr Q).

For the first case, we find, for —L(x(L, erg(s; x) = ds cos$xs+-,'s(1 —e—"))e—',

where

g-=g(2 7/~; LV
—(2 +1) )/~)=g(;*)

g(s; x) is represented by the following integral:

(3.14)

Ri(r) =A12LT+(1/2p)p) sin(2p)pr 2n)+G),

where G is some constant. Let us set ~= &vA~'. Then,
from Eq. (3.8), we find

and s is defined as before. The function g(s;x) is
related to an incomplete gamma function of complex
argument, and shares some of the properties of the 8

function. For example,

(2s)I(y)e ""~g=A1

where

dT COS(M pT n) e'r i', (—3.10)
g(s; x)dx=1, xg(s; x)dx= —s.

Ii (T) =((1+2@)r+ (s/p)p) si11(2p)pr 2a)).
Performing the integration, we get

Therefore, the average frequency of the emitted
quantum will be fixed by a value of p given by

(2s+1)y, = (2n+1)p)p. (3.15)
2Ih)e """=2 L~-( ~7/~p)+I-+1( ~v/—~p))—

n=~
hei(pn+1)ag (3 11)

However, g is not symmetric about the average value,
but instead is somewhat skewed. To get a better idea
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FIG. 3. A plot of g(s; xl as a function of wavelength of the final
photon, detected at right angle to the incident beam. A plot of
the profile of the incident laser beam is also included.

of what this means, we show in Fig. 3 a detailed plot of

g(s; x) as a function of wavelength of the final photon,
detected at right angle to the incident beam, for the
parameters e'A'/4m'=10 ') dco/ops ——10 ' and ois/nz
=5)(10— appropriate to a high-intensity optical laser.
The IDI'S for this intensity is given by X =Xp+3Xo,
where )p is the central wavelength in the incident
Lorentzian packet, and Xg is the Compton wavelength
of the electron. The predicted shift is, indeed, small
here and could probably be described as "nonclassical, "
according to the criteria given by Kibble, "P «(A. p. The
IDFS is not small, however, when compared with the
standard Compton shift; in fact, it is three times larger
for the parameters we have chosen. Note that for these
parameters the incident laser packet has a spread at
half-maximum of only oriefifth the electron Compton
wavelength. The integral (3.14) was computed numeri-
cally and the results are shown in Fig. 3. As a check on
the numerical integration, asymptotic formulas were
found which agreed with the computed one to about
10% in the region of interest. Note that the line shape
has been broaderIed about ten times the incident beam,
and that the wavelength of the most probable photon
divers considerably from the wavelength of the average
(the IDFS value) photon.

As a partial summary of our results so far, we list
a few of the more pertinent ones. To begin with, we
have shown that the frequency spread of the scattered
photon depends not only on the intensity of the external

field, but also on the spatial (temporal) shape of the
incident radiation. Furthermore the correction to the
monochromatic scattering amplitude is rot merely of
the order (Aoi/cue). From a theoretical standpoint these
results are gratifying, in view of the fact that all this
can now be obtained from covariant perturbation
theory. There are no more ambiguities concerning
singular propagators. One simply integrates over the
support prescribed by the extent of the wave packet.
Hence (in the real problem with vector photons) ga, uge
invariance would be maintained with standard kine-
matic formulas. Furthermore, the questions of trans-
lation invariance and Hermiticity raised in Refs. 3 and

6, respectively, are also squared away, inasmuch as all

these requirements are satisfied by covariant per-
turbation theory. In passing we should also point out
that the spread and shift in the frequency of a non-

linearly scattered photon has been observed in the
interaction of pulsed laser light with liquids. " (The
dynamical response of atomic electrons in a liquid is of
course different from that for the free-electron case.
The essential features common to both are the pulsed
la.ser light and the nonlinea, r dynamics. ) Thus, these
results should not be too surprising. "For completeness,
we should also mention that other attempts" have been
made to estimate the effect of a one-dimensional wave
packet on the propagation of an electron through an
external field. These authors, " however„ focus their
attention on the momentum shift" of the electron
inside the external field, and not on the shape of the
scattered radiation.

IV. PLANE-WAVE PACKETS AND
THEIR LIMITATION

Although several of the difficulties, such as lack of
gauge invariance and translation invariance (as rnani-

fested in the IDFS), plus the incompatibility of the
scattering boundary condition with the monochromatic
limit, are eliminated by the use of one-dimensional
wave packets, for a complete description of the problem,
three-dimensional, i.e., normalizable, wave packets are
necessary.

To demonstrate the importance of normalizable
wave packets, one should compute the scattering
amplitude in the presence of an external field of limited
spatial extent. The resulting integrals cannot be easily
expressed in simple analytic terms. Hence they are not
too instructive. We therefore resort to simple estimates,
which, though not accurate, are at least transparent.
Before we do this, let us digress a bit to put the develop-

' F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L.
Kelley, Phys. Rev. 164, 312 (1967).

"J.D. Childress and C. G. Hambrick, Phys. Rev. 136, A411
(1964). In this paper the nonlinear interaction of two acoustic
wave packets is considered.

"H. Reiss, Bull. Am. Phys. Soc, 11, 96 (1966); J. H. Kberly
and A. Sleeper, Phys. Rev. 176, 1570 (1968).
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ments of the previous sections in their proper
perspective.

The T-matrix element for an arbitrary (linear) scat-
tering problem is a product of two parts: a four-
dimensional 6 function of the kinematic variables times
an amplitude. If the amplitude function should vary
considerably over a small energy range (e.g., near a
resonance), a monochromatic description of the
physical scattering process might be inadequate. In
this case one integrates the product of wave packet
times T-matrix element. The integral is over the
momentum-energy variables which appear as argu-
ments both of the 5 function and of the amplitude. In
contrast to this, in nonlinear scattering, as in the
presence of an external "Maxwell field, " in the mono-
chromatic limit one obtains a 8 function which depends
on the intensity of the external Geld. (This gives rise to
the IDFS.) The physical problem of colliding wave
packets cannot be obtained from this monochromatic
amplitude, however, because the problem is nonlinear.

Retaining the wave-packet description of the
external field throughout the computation, we have
shown that the integral (3.6) has a power-series ex-
pansion, the terms of which are in agreement with the
corresponding terms obtained from covariant per-
turbation theory. These terms are integral represen-
tations over monochromatic multivertex Feynman
graphs with standard kinematic constraints in their 5

functions multiplied by wave packets. All this would
have been mere "nit-picking" if the result of a wave-
packet analysis had yielded an expression identical
with the monochromatic result except for a correction
of order A(o/ppp. (D(o/(op is small even in the case of a
pulsed laser. ) This, however, is not the case. The plot
of the frequency profile for the scattered photon in
Fig. 3 shows that the wave-packet calculation yields a
result qualitatively different from the monochromatic
result. (If the monochromatic description were to be
accurate, except for a Ace/ppp correction, the graph in
Fig. 3 would be a Lorentzian centered around the
IDFS value. )

From this vantage point, it is only natural to ask
the following question: How good is a plane-wave
description for a light pulse emanating from a laser
rod& The answer depends, of course, on the problem
under consideration. For any process which can be
adequately described by the lowest-order (non-
vanishing) terms, such as the linear Thomson ampli-
tude, harmonic production, etc., the plane-wave
approximation is excellent. If higher-order (in the
intensity parameter) terms have to be included, how-
ever, for an adequate description of the problem, the
answer is no longer obvious.

We now proceed to estimate the limit of validity of
the plane-wave approximation. In Fig. 4 we depict the
two singular Feynman graphs corresponding to an
interaction quartic in the field amplitudes. The ampli-

FiG. 4. Second-order singular Feynman graphs. Th e thick lines
depict three-dimensional wave packets.

tude is given by

T=1V 8&'&(m+q~+qp qp p' —1p')—Fd'q—~d'qpd'qp, (4.1)

where

and

1'= p»L2~ygpp'(g'j —~&p (4 2)

F=~(q )Il(q )1l(q )—
2m (qyp

—
qpp)

—2qg ' qp+z p

(4.3)
2p ' (qp

—
qy)

—2qy qp+zp

B(q) represents a three-dimensional packet. The nor-
malization is as follows:

2qpla(q) I'd'q=u, (4.4)

M being the number of photons.
In contrast to this, the corresponding plane-wave

packet amplitude is given by

( 1 1 1
G=~(& )~(h)~(k )I(2' 2p' e b b+ip—

(4.6)

A represents a one-dimensional (plane-wave) packet.
The normalization is as follows:

2&I ~(&) I'df=(1lf/L') (4.7)

where (M/L') stands for the photon Aux per unit area, .
(Recall that c=1.)

A comparison of Eqs. (4.3) with (4.6) immediately
reveals the basic differences between the plane-wave
and three-dimensional-packet cases. We list the dif-
ferences in order of importance.

T'=1V 8 "&I m+m(&(+&p —
&p)

—p' —0'j

)&Gdtgd/pdb, (4.5)
where
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(a) In the plane-wave case the nonlinea, r part of the
amplitude is zero for forward scattering (when
m =p rs), whereas (4.3) does not vanish in this limit.

(b) In the plane-wave case, only the Cauchy prin-
cipal part of the integral contributes to the differential
scattering cross section; the orb terms sum up to an
over-all phase factor Lsee Eq. (3.5)], whereas in the
three-dimensional case the iz6 terms stand for multiple
scattering in which the electron can suffer a momentum
change. (Our estimates indicate that these terms do not
modify appreciably the frequency profile of the scat-
tered photon. ) The most important difference stems
from the following.

(c) If the frequency spread Aqois small in comparison
to the transverse momentum spread Aq~, then (4.3)
may differ significantly from (4.6). A simple estimate
is the following: When

(4.8)

or smaller, the plane-wave approximation is not valid.
Ap stands for the magnitude of the momentum transfer
to the electron. Such a situation arises in the case of
almost forward scattering, or alternatively when Aq&

is large, as may be the case for a focused laser beam.
We should mention here that classical arguments also
indicate that for a focused beam the plane-wave ap-
proximation fails." Our estimate, however, involves
Planck's constant.

Another dividend of (4.3) comes from the recognition
that for certain experimental configurations, such as
crossed laser beams, q~ q3 can be made larger than
m(bio —

g3Q)) obtaining thus an effective nonlinear
parameter which is approximately e2p/aP. (p stands for
the photon density. ) In contrast, the plane-wave non-
linear parameter is e'p/m'". Such an experiment has
been proposed recently. "

V. CONCLUSION

tained in the monochromatic limit is thus irrelevant.
The relevant thing is the frequency distribution (center
and profile) of the scattered photon at a given scat-
tering angle. As we have shown in Sec. III, the fre-
quency distribution is a sensitive function of the
intensity and line shape of the incident radiation.
Furthermore, in the wave-packet case it is dificult to
disentangle the classical from the quantum aspects of
the problem. Thus, the marked broadening displayed
in Fig. 3 may not show up at all when the electron is
treated classically. We have also explored the limit of
validity of the plane-wave approximation. Here we
were forced to conclude that when the transverse
extent of the wave packet has to be considered in the
computation, the problem has to be done semiclassi-
cally. A classical calculation based on the Lorentz-force
equation will give erroneous results.

Finally, we would like to mention at least one im-
portant omission in our discussion of this problem. We
have assumed that the radiation was in a "coherent"
state. For only then is it permissible to use the semi-
classical equations. When the radiation is not in a
coherent .state, there is no substitute for the fully
quantized theory. Since the frequency profile of the
scattered photon depends on the coefficients of the
higher-order terms, and these coefficients in turn
depend on the (photon) density matrix, the ordering
of the photon operators is an important aspect of the
problem. In principle, one could carry out the calcu-
lation to a given order as a function of the multiple
correlation values. These unknown parameters could
then be determined from empirical data. This additional
work would be premature, however, for the obvious
reason that the nonlinear terms in Compton scattering
are still extremely small for unfocused lasers. For the
focused case the computations are even more involved
since the plane-wave approximation is then no longer
valid.

We have obtained the following results. In the case
of nonlinear scattering, the shape and extent of the
external field are fundamental aspects of the problem.
The monochromatic limit, while it may exist as a
mathematical exercise, is not germane to the physical
scattering problem. Whether or not an IDFS is ob-
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