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The experimental meaning of coherent superposition of state vectors is analyzed. It is shown that the
involvement of the measuring instrument is of basic importance and that it is erroneous to study super-
position without it. From this analysis it is found that there are no such things as superselection rules. The
meaning of the sign change of spinors under 2w rotation is considered, and it is found to have experimental
consequences. The nonmeasurability of the relative parity of states with different s components of angular
momentum is shown. An appendix discusses the application of some of the considerations of the paper to
decaying states and elementary particles.

I. INTRODUCTION

'HE concept of a superselection rule was erst
introduced by Wick, Wightman, and Wigner'

(WWW) through an analysis of the behavior of wave
functions of different angular momentum under time
inversion, and hypothesized by them to extend to the
charge quantum number also. Recently, their conclu-
sions have been challenged by Aharonov and
Susskind, ' ' on the (implied) grounds that the experi-
mental meaning of superposition was not considered,
and that when it is considered the bases upon which
WWW rest their conclusions turn out to be irrelevant.
Some further discussion of this question has also been
given in other papers. 4 '

Although all the arguments have been given by AS1,
many of them have only been implied. It seems therefore
worthwhile to discuss the entire subject in complete and
explicit detail and to present a full analysis of the mean-
ing of the concept of superposition, in this context, and
to show why there are no superselection rules as the
term was used by WWW. We shall attempt to do this
here.

The basic conclusion of this paper is that, in principle,
from the point of view of superposition, there is no
difference between familiarly superposed quantities like
momentum, or angular momentum, and others such as
charge, baryon or lepton number, or univalence Lthat
is (—1)~, where Ii is an even integer for states of integer
spin, and an odd integer for states of half-odd-integer
spin). s

From this result, we find that there are no super-
selection rules, and that in this context all quantum
numbers have analogous properties.

* Work supported by a grant from Long Island University.
~ G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev.

88, 101 (1952), referred to as WWW. See also G. C. Hegerfeldt,
K. Kraus, and K. P. Wigner, J. Math. Phys. 9, 2029 (1968).

2 Y. Aharonov and L. Susskind, Phys. Rev. 155, 1428 (1967),
referred to as AS1.

3 Y. Aharonov and L. Susskind, Phys. Rev. 158, 1237 (1967),
referred to as AS2.

4 W. Rolnick, Phys. Rev. Letters 19, 717 (1967).
5 R. Mirman, Phys. Rev. 186, 1380 (1969).' R. F. Streater and A. S. Wightman, PCT, Spin and Statist''cs,

and All That (Benjamin, New York, 1964), p. 5.

In Sec. II the Aharonov-Susskind experiment is
analyzed in detail, the meaning of superposition is
discussed, and the nonexistence of superselection rules
is considered. In Sec. III we consider a closely related
topic, which illustrates many of our points, the sign
change of spinors under 2x rotation. In Sec. IV the
concept of the phase conjugate to particle number is
analyzed, in Sec. V we consider the error in the proofs of
the superselection rules, and in Sec. VI it is shown how
to construct the correlated containers needed for the
Aharonov-Susskind experiment. Section VII considers
the possibility of measuring the relative parity of states
with diferent charge. The paper concludes with an
appendix which studies another example of one of the
basic questions considered in the paper, the factorization
of state vectors.

II. AHARON0 V-SUSSKIND EXPERIMENT AND
ITS IMPLICATIONS

The basic instrument in studying the meaning of
superposition is the AS1 experiment. At first sight it
seems to have many odd features, and it may appear
that the ability to superpose coherently states of
different charge, or different univalence, for example, is
dependent on these oddities. In fact, it may appear that
these oddities destroy the conclusion that such super-
position is possible, as they seem to require different
definitions of such terms as superposition and sta, te in
the charge case than in the angular momentum case.
And that would mean that we are really discussing
diferent things when we talk. about superposition in the
different cases.

Actually, what we wish to show is that the AS1 ex-
periment is in fact exactly analogous to the correspond-
ing experiments for the other quantum numbers, and
that the apparent new features are present there also.
In other cases they were only implied and so perhaps
not fully noticed; AS1 simply made them explicit.

The idea of AS1 is to construct a system consisting of
two containers filled with mesons, such that the ratio
of the numbers in the two containers is undetermined,
although the total number may be fixed. Thus we can
describe each container by a quantum-number operator
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whose eigenvalue is the number of mesons in that box.
Conjugate to this quantum-number operator is another
which gives the phase (a concept which we shall discuss
in detail in Sec. IV). The containers are in a minimum
uncertainty state, so the relative phase is accurately
known. The total phase of the system can be unknown
since the total particle number is determinable.

If a proton is now sent into one box it emerges as a
combination of a proton and a neutron. AS1 claim that
the wave functions describing these two particles com-
bine coherently to describe the state of the beam
emerging from the first container. The states are
coherently superposed if there is a definite measurable
phase between them, and AS1 provide an experimental
prescription for measuring that phase.

The prescription is to duplicate the setup many
times, and in some of the setups to measure the relative
numbers of protons and neutrons emerging from the
first container, and in others to allow the beam to pass
first through the second container and then measure the
ratio. From these two numbers AS give a formula for
finding the phase while the beam is in the region
between the two containers.

It is perhaps clear why coherent superposition of

charge states is not as obvious as coherent super-
position of angular momentum states. For it requires
the transformation of one particle into another, and not
the transformation of one spin state into another. Hence
it requires considerably higher energy, and so experi-

mentally it can occur, at best, only under very restricted
conditions. Unlike angular momentum superposition, it
does not occur in "everyday" laboratory experience.

The two basic concepts of the experiment are that
the measuring apparatus is an integral part of the
definition o'f a coherent state, and that the number of
particles in each box must be undertermined. Let us

see the reason that these requirements must hold.

The coherent state is defined relative to the con-

tainers, so that if, while the particle is in transit between
the two, the second container is removed, then it would

be impossible to measure the relative phase, which

would become meaningless. Thus, what, is being
described is not the state of the particle, but the state of
the system consisting ot the particle and the containers.

Clearly, the number of particles in the containers
must be uncertain. Let us assume that before the proton
entered the first container the number of particles in it
was measured. Then after the particle left, the number
could be measured again without disturbing the particle.
But then from conservation of charge, the charge of the
particle could be determined. Thus it could not be in a
coherent state of two charges. Likewise if the number
of mesons in the second chamber were measured, then
the number in the first could be computed. and the
charge on the particle determined without disturbing it.
The superposition would be incoherent because the
Ineasurements make uncertain the relative phase

between the containers and, as can be seen from the
analysis of ASi, prevent the measurement of the relative
phase carried by the particle.

What we now wish to show is that these two
principles, that the system must be defined to include
the measuring apparatus and that the number of par-
ticles in each container is uncertain, hold for "normal"
situations like the superposition of different states of
momentum or angular momentum, or s components of
angular momentum. We first consider the question of
correlation starting with some general considerations
and then study some examples.

Let us consider the inclusion of the measuring
apparatus in the definition of the state vector. Given
any experiment whatever, the proper state vector to
study is that of the entire Universe. But, of course, in
order to make the analysis feasible we factorize the
state vector of the Universe into

I r) I s), where s refers
to the system (that part of the Universe) that we wish
to study, and r to the rest of the Universe. We now
assume that we can study each term in the product
separately, and that they have no effect on each other.
This factorization process is really fundamental, but it
is usually carried out without any thought. However,
it turns out to be by no means as obvious as it is
generally taken, and if not done carefully it can easily
be done incorrectly. The superselection rules arose
because the factorization was done incorrectly for
coherent states.

We shall assume (and it seems wise to state this
assumption explicitly, and perhaps not so wise not to
analyze it) without further consideration that we can
factor out into the rest of the Universe everything
except the particle and the apparatus acting on it.

It seems "obvious" that we can consider the experi-
ment done in a region of space far from all other matter
so that the rest of the Universe will have no effect on
the system. But what we have also factored out above
is the experimenter, the person who interacts with the
measuring apparatus to get the data, as well as the
instruments that prepare the measuring apparatus. It is
far less obvious that these can be factored out also.

To study how, and why, the instruments affect our
description of the process, we consider, for simplicity, a
system consisting of a particle, the coherence properties
of whose states we wish to study, and two containers,
which may be the ones of AS1 filled with mesons, or
may be magnets, etc., depending on the experiment.

After the particle passes through one container and
is on its way to the second, we want the system to be in
a coherent superposition of states which, if we could
write the state vector as the product of state vectors
for the particle p and the two containers 1 and 2, would
be described as

(2.1)

Actually what is usuallv meant by a coherent super-
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position is the state

I 1) I 2)LI p)'+
I p)). (2.2)

It is at this point that the usually assumed factoriza-
tion breaks down, for the expression (2.2) is not the
same as (2.1). Further, (2.1) is not correct. Before
discussing these statements, we give an example to
show the former.

Let us take container 1 to be a magnet and the
particle going through to have its spin Ripped. Clearly,
by conservation of angular momentum, the spin of the
magnet is also changed so that states I1) and I1)' are
not identical. Of course, for a magnet it is a good
approximation to regard them as the same and go
from (2.1) to (2.2). But one cannot correctly get general
rules about quantum mechanics by ignoring the fact
that this is an approximation.

The only way in which we can get (2.2), therefore, is
if

I
2)'I 1)' and

I 2) I
1) are the same. But container 2

cannot be affected by the passage of the particle
through container 1. Hence we conclude that it is im-
possible to get (2.2) rigorously. There is no state
describing a coherent superposition of states of the
particle, with the measuring instruments factored out.
But (2.2) is, and must be, used in practice, so that the
real question is how to construct a state given by the
correct form of (2.1), such that (2.2) is a very good
approximation to it.

The requirements for this are that the state of con-
tainer 1 must be such that the passage of the particle
through it produces a change so small that it can be
ignored, and that either or both the initial or the final
state of container 1 not be determinable.

The reason for this last requirement, as discussed
above for the charge case, is that if they were both
determinable then we could determine the state of the
particle after it leaves container 1, and so it could not
be in a coherent superposition of states. To show that
this is where the indeterminacy comes in, we presume
that the relevant quantum numbers of the state of the
Universe (or, more particularly, that part which com-
prises the experiment) can be determined exactly before
the experiment begins. Thus the total charge or the
total angular momentum, for example, is known.
Further we assume that the particle is initially so far
away from the rest of the system that its quantum
numbers can be determined. (We shall not concern
ourselves here with the fact that this is a self-
contradictory statement, for if the particle is so far
away from the rest of the system, then it is not near
enough to any piece of apparatus to have its quantum
numbers measured. ) Thus, its initial state as well as the
quantum numbers of the system consisting of the
Universe minus the particle, that is, the two containers,
can be taken as known. Ke shall not consider here what
other conditions must)be satisfied in order to measure
the particle's quantum numbers.

The expression (2.2) now must be replaced by

2 I1)'I2)'Ll p)'+
I p)), (2 4)

which means that, for the conimonly accepted de finition
of a coherent state to be reasonable, the requirement is
that to a good approximation,

& I
1)''I2)''=P

I 1)'I2)' (2 5)
Let us now consider the implications of these results.

First we see that there must be some degree of correla-
tion between the two containers, since the sum of the
quantum numbers is fixed (whether the total value is
known or not is irrelevant, since it can presumably be
determined in principle without disturbing the system
by studying the rest of the Universe). Since one con-
tainer has a distribution of values of this quantum
number, so must the other, and the distributions are
related.

The state of the particle while in transit between the
two containers is also correlated with the state of the
containers, for it is the first container which determines
its properties (for a given initial state). Thus, when we
talk about a coherent state we are not discussing the
state of a single particle, but rather that of a system
consisting of the particle and the various instruments
used in the experiment. This last part can often be
ignored, but the fact that it is reasonable to ignore it
must be demonstrated in each case and not just
assumed

The state of the containers must meet certain require-
ments, because it is the state of container 1 which
determines the state of the particle, and on this state
we have put a very strong requirement, that it be a
coherent superposition. In addition, Eq. (2.5) must be
satisfied, to a good approximation. We shall not
consider here what class of states meets these require-
ments, but for the charge and similar cases there is one
such set, the coherent states~ used by AS1, as can be
seen directly from this latter paper.

7 P. Carruthers and M. M. Nieto, Am. J. Phys. 33, 537 (1965);R. Jackiw, J. Math. Phys. 9, 339 (1968), has shown that the
coherent states are not always the minimum uncertainty states.
There seems to)be little doubt, however, that they are suKcient
for our purposes.

The final quantum numbers of the container cannot
be uncertain, because they can always be measured
without affecting the particle. Thus, we conclude that
the initial quantum numbers of container 1 must be
uncertain while the quantum numbers of the system of
the two containers can be known (in principle). Thus,
it is the relative values of the quantum numbers of the
two containers which must be unknown.

Returning now to (2.1), we see that it should really
be a sum over different states, which are eigenstates
of the quantum-number operators with different eigen-
values:

(2 5)
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Note that these states have a very mell-defined

phase, which is necessary if the state of the particle is
to be a superposition of states with well-defined phase.

This, then, is a consideration of the correlation be-
tween the different instruments used in the experiment
from the theoretical point of view. We wish now to
consider some particular experiments to see whether
the correlation is actually present.

First we shall study angular momentum, essentially
the Stern-Gerlach experiment. Here we send a beam
through one magnetic field, causing the spin of the
particle to be aligned by the field; that is, the direction
of spin of the particle leaving the first magnet is along
the line defined by the first magnet. (Remember we are
dealing with a large number of particles, so their initial
phase averages to zero and can be ignored. ) Then the
particle passes through the 6eld of the second magnet,
and the direction of its spin is determined; that is, the
direction of the first magnetic field is determined. Now
if the state of the particle in transit between the two
magnets is coherent, then we must be able to show this
experimentally. This we do by repeating the above
experiment, measuring the relative intensities of the up
and down states, as the second magnet is rotated; that
is, we must repeat the experiment many times. Co-
herence is a property that cannot be shown by one
experiment, but requires a large number of repeated
experiments.

What properties are required of the two magnets?
These are that there be a rather well-defined angle
between them, and that this angle change in time in a
fairly well-defined way. These are necessary because
the experiment, carried out over a period in time,
measures the angle between the two magnets.

These requirements mean that the two magnets are
correlated, and correlated in such a way that the
knowledge of their relative angle and angular momen-
tum is close to a maximum. A reasonable approximation
to such a state is a coherent state. ~ This is exactly the
same as in the charge case. '

The question of the correlation between the two mag-
nets has been discussed somewhat further elsewhere. '

The situation is the same when we consider coherent
superposition of momentum states (that is, measure-
ment of position). Consider two infinite screens aligned
parallel to each other with holes in them. A particle
passes through the 6rst screen and an eigenstate of
position is created, with the position being defined by
the hole in the 6rst screen. The position is then measured
by the second screen. In order to determine if the par-
ticle is in a coherent (and not incoherent) superposition
of momentum states, the experiment must be repeated
many times to show the presence of interference terms.
But this clearly would not be possible if the relative
position of the two holes, or the relative momenta of the
two screens, were poorly known. Once again we see that
we are led to correlation between the two boxes, which
bere are the two screens.

There is a difference between the spin case and the
orbital angular momentum or momentum cases, that
is, between internal and external variables. Since the
state vectors for the latter are functions of a measurable
variable (angle or position), there is a possibility that
more types of experiments to measure coherence can be
developed for the latter than the former. Hence some of
our preceding statements may not impose requirements
for all the experiments in this group and must be used
with care. This does not affect the fundamental conclu-
sion of the paper, which is that the class of quantum
numbers for which superposition can be applied is larger
than previously believed.

We turn now to the requirement that the number of
particles in the container be uncertain and consider how
this applies to the situations we are familiar with.

The 6rst case is that of angular momentum, and we
consider the magnet as consisting of a collection of
atomic-sized bar magnets, each o& which have spin —,'.
If the spin of the traversing particle is Ripped, one of
the bar magnets must be Ripped also. Clearly, if we had
only one bar magnet, then we could tell the direction of
the spin of the particle after it left the first magnet, so
it could not be in a coherent superposition of states. We
would, however, have a coherent superposition of states
describing the particle and the bar magnet, but this
sum could not be factored into a product of sums. We
could not go from (2.1) to (2.2).

There cannot be an uncertainty in the number of bar
magnets, since the total mass of the magnet is not
altered by the particle passing through. The require-
ment is, in this case, that there be some bar magnets
pointing up and some down, and that the excess of the
number up over the number down be uncertain. If the
excess were known, then the reasoning of the preceding
paragraph would apply and we would not have
coherence.

To understand the reason for this uncertainty in a
more quantum-mechanical Inanner, let us again consider
the case in which the magnet consists of a single spin-
ning particle. Here one component of the angular
momentum is determined but the other two must be
completely uncertain. Thus, the direction of the mag-
netic 6eld is uncertain. Suppose that we try to use this
single particle as the first magnet in a Stern-Gerlach
experiment. If we could show that the particle were in
a coherent superposition of up and down states (with
respect to the second magnet) and find its phase, we
could find the direction of the magnetic field of the first
magnet and so the direction of its angular momentum.
In other words, we would be able to measure all three
components of the angular momentum simultaneously.

This is, of course, impossible; what is wrong with the
above argument is that in order to measure the phase
it is necessary to repeat the experiment many times.
But if the direction of the angular momentum, and thus
the magnetic field, is uncertain, the experiment is not
reproducible. The phase difference between the up and
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down states will be different tor each repetition, and
thus not measurable.

Thus, the requirements that the coherence be a
property of a set of experiments, and not just one, and
that there be an uncertainty in a property of the
measuring apparatus (the number of particles) are
closely related to an uncertainty principle, here that of
angular momentum. They are required in order that
quantum mechanics be consistent. Ignoring the measur-
ing apparatus leads to the danger of a basic error.

In order to get a well-determined magnetic field, it is
necessary to have more than one particle and to have
the direction of the total angular momentum of the
system well determined.

There is another way of considering the interaction
of the particle with the magnet, which brings out some-
what better the analogy with the AS1 experiment. The
particle does not interact with the magnet directly; it
interacts with the magnetic field which can be con-
sidered to be a box of photons. If the number of photons
having spins up and down were measured before and
after the particle passed through, then the direction of
the spin of the particle would be determined, so once
again an uncertainty in number is required.

Actually, the analysis of this situation is not quite B,s
straightforward as in the box of mesons, because the

magnetic 6eld is a static field which cannot be analyzed
into photons carrying angular rnornentum. When the
particle passes through, it changes the magnetic field
and in this way angular momentum is transferred.
Thus, the analogy is somewhat spoiled, but the basic
ideas are the same. It hardly seems necessary to present
here a detailed analysis of this way of looking at the
situation.

The next example is that of the coherent superposition
of states of different momentum. Once again we must
do a large number of experiments to show that the state
of the system before the position was measured was a
coherent superposition of different momentum states
and not merely a single-momentum state which was
changed to an eigenstate of position by the measurement
of this quantity.

In order to see where the number uncertainty comes
in, we consider an apparatus consisting of two screens
parallel to each other, which have holes in them. The
particle is put into a coherent superposition of rnomen-
tum states by passing through the first hole and then
it passes through the hole in the second screen and its
position is measured. The screen is made up of particles
each of which consist of a wave packet of momentum.
Each particle's wave function can now be Fourier
analyzed, and we arrive at a set of occupation numbers
for the different momentum states. These occupation
numbers must be uncertain, by the above arguments.
But this resulting uncertainty in the momentum of the
screen is, of course, what is expected, since something
is known about the screen's position.

Now that we have shown generally the necessity for
Our requirements, we note one point about our standard
example of coherent superposition: the addition of

states with different s components of angular momen-

tum. While this example is useful because of its
familiarity, one should be aware of a difficulty in using

it as a model: The magnetic field of the particle depends
on the direction of the spin, and hence on the phase

angle between up and down states. It may be possible
to use this fact to construct experiments which have no

analog in other cases, and hence are misleading. It is

therefore often worthwhile to test analogies with other
cases besides this one.

One such case would be a particle with zero angular
momentum and spin, and positive parity, which enters
a box filled with particles A which have spin 1, orbital

angular momentum 0, and positive parity. A reaction

may take place which produces a particle of spin 0, and

positive intrinsic parity, which leaves the box, and a
particle 8 with angular momentum 0, spin 1, and

negative parity, which remains. In order to get a
coherent superposition of orbital angular momentum 0
and 1 in the exiting beam, it is clear that the relative
number of particles A and 8 in the box must be
uncertain.

All of the above considerations are based on the
assumption that if the initial state of a system is known

and if for the final state all the quantum numbers but
one are determined, then the value of that quantum
number must be fixed. Thus, if we knew the initial and

final number of mesons in a box and the initial charge of

a, particle, then the final charge of the particle is deter-
mined. In other words, we assume that the quantum
numbers are additive.

However, this addivity of quantum numbers is not
always true. As an example, consider a spin-1 particle
which decays to give two particles o& spins 0 and 1.Then
the orbital angular momentum of the two particles is
either 0 or 2. (The parities of all the particles are taken
as positive. ) The wave function describing the final

state of the system is a coherent superposition of orbital
angular momentum 0 and 2. The state function factors
exactly, rather than just approximately as in all the
above cases, into functions describing the spins of the
particles, etc. , and a function describing the orbital
angular momentum, and the latter is a coherent sum.
Because this factorization is exact, the different orbital
angular momentum states are not correlated with other
states and so cannot be determined by measuring them.

Having shown the nonexistence of a superselection
rule for charge, we can ask whether there are, or can be,
any quantum numbers for which a superselection rule
exists. In the above discussion, and in the rest of the

paper, we are not using any property of charge; it was

just a label. Thus, we see that the states describing and
two particles can be coherently superposed, provided. it
is possible through some reaction to convert the
particles into each other,
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If the particles have greatly different masses, then
the phase difference between them will vary very
rapidly. There are other possible experimental difh-
culties of this type, but none in principle.

III. SIGN CHANGE OF SPINORS
UNDER 2~ ROTATION

The behavior of spinors under rotation affords
another opportunity for studying the importance of
including the experimental apparatus in the analysis of
experiments. We shall do this here.

In particular, we shall reply to the criticism by
Hegerfeldt and Kraus' ' of the study of spinor rotation
through 2m by AS2.'

The basic statement by HK is: "If, by some suitable
apparatus, a quantum system is prepared in a certain
state, then the rotated state is prepared by the rotated
apparatus. "

To clarify the error in the statement, we wish to see
where it leads, so we consider as an example the state-
ment that an inverted state has different properties
from the original state (when weak interactions are
considered). By the definition of HK, the inverted state
is the state produced by the inverted apparatus. Thus,
we can take a collection of spinning nuclei, apply a
magnetic 6eld in the up direction (by definition), and
align the nuclei along the field. This is how we prepare
the state. We next measure the ratio of the number of
electrons emitted by the nuclei along the field to the
number emitted opposite to it. The whole laboratory
(which is the preparing apparatus) is now inverted so
that the magnetic field is in the down direction and we
prepare the inverted state and perform the experiment
again. We Gnd that the relative number of electrons is
unchanged and so parity is conserved.

The thing wrong with the above discussion is that by
using the inverted apparatus to produce an inverted
set of nuclei, what we get is not the inverted state but
the sa,me sta, te. The state is (pictorially) a linear com-
bination of a spinning nucleus plus a nucleus with
electrons being emitted preferentially along the direc-
tion of the spin of the erst nucleus. The inverted state
is a spinning nucleus plus a nucleus with electrons
emitted preferentially opposite to the spin direction.
Because of parity nonconservation, the inverted state
does not exist.

Note that there is a difference between the initial and
the inverted, or rotated, states. If this were not so, then
the inversion or rotation process would be meaningless.

Returning now to the phrase "prepared by the rotated
apparatus, "we see that what is wrong is that only part
of the apparatus can be rotated, for the instrument that
performed the rotation must remain fixed. The assump-

' G. C. Hegerfeldt and K. Kraus, Phys. Rev. 170, 1185 (1968),
referred to as HK.

9 J. S. Dowker, J. Phys. A 2, 267 (1969), has considered this
question but his considerations are not relevant to our discussion.

tion that this instrument can be disregarded is incorrect,
for the statement that two instruments are rotated
through some definite angle with respect to each other
means that they are correlated. And it is the rotating
apparatus which provided the reference to compare
their correlation. Therefore, the phase of the two
instruments with respect to the rotating apparatus, and
thus with respect to the particle being studied, is
different. We shall study in detail below an experiment
which can in some ways serve as an example of this.

I"irst we briefiy discuss the "counterexample" given
by HK. They state that they show, by what purports
to be the argument of AS2, that a rotation through 0'
produces an observable effect on spinors. What they do,
however, is generate different mathematical state
vectors by applying rotation operators to the original
state vector. But this is not a rotation of the particle,
which is a physical process. The difficulty is that one
cannot draw physical conclusions about the set of
vectors they generate until these vectors are correlated
with physical objects. HK's result, that there are
different vectors which can be correlated with the same
object (an unrotated spinor), is different from AS2's
result, that two different vectors must be correlated
with two different physical objects, a rotated and an
unrotated spinor. The latter result has physical im-
plications and the former is not a counterexample to it.

HK also object to the "nonkinematical nature of the
AS experiment. "The problem here is that in quantum
mechanics we tend to use abstract states without being
clear about their experimental meaning. Thus, we can
talk about two states which are rotated with respect
to each other. But experimentally, how do we get two
such states? We could say, as do HK, that the "rotated
state is the state prepared by the rotated apparatus. "
But this statement only postpones the question —for
how is the rotated apparatus prepared? Clearly, at some
stage we must either take two instruments and prepare
them in states which are rotated, and coherent, with
respect to each other, or we must take one instrument
and rotate it. This one rotated instrument, or the two
correlated instruments, then either produce the rotated
states or the devices to produce the states. Why do the
two instruments have to be correlated? The answer is
by definition, since they have an angle between them
which is both definite and Axed, to a good approxima-
tion, and this is what we mean by correlation.

Is the AS2 experiment dynamical? Clearly, producing
two correlated instruments, or rotating one instrument,
involves dynamics. An instrument cannot be rotated
by applying an operator of the rotation group to it.
There is no such thing as a "kinematical experiment. "
There are only discussions of experiments in which the
dynamics is well hidden. AS2 were simply more explicit
in indicating the dynamics than is usual. But there is
not more dynamics in this experiment than in others.

As @p e'xample, consider an experiment in which it
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is the observer who is rotated. Suppose that we have a
large number of observers arranged in a circle observing
a spinor. As we interrogate each observer around the
circle in turn, we will get reports of an increasingly
rotated particle. Now consider two observers, one who
is the first whom we interrogated and who is at an angle
infinitesimally greater than zero, and the other, the last
one interrogated, who is an angle infinitesimally less
than zero. Will they report the same wave function
except for a difference in sign? It seems that this ques-
tion is regarded as the one that has to be answered
affirmatively in order to say that a spinor changes under
a 2x rotation. Despite the fact that the answer seems
to be obviously no, it is actually yes.

The observer cannot report on the properties of the
wave function unless he 6rst interacts with the particle.
This means that all the observers must be correlated
with the particle, and hence with each other. The
observers should be fermions, or else they will not get
complete information about the wave function. Thus,
we have a set ot correlated fermions strung out along a
circle By .this we mean that the fermion at position p
has a wave function !up)+e'&I'! down). Now how are
these observers to be produced? They are produced by
taking a set of observers all at 0' and rotating them.
But this means that the two overlapping observers
at 0 and 2x have been rotated with respect to each
other, and so their wave functions differ by a sign. But
they do not compare their wave functions with each
other, but with that of a. third object, the observed
particle, and so they disagree on the sign of its wave
function.

All these points are illustrated in the experiment
suggested by AS2. However, it would seem worthwhile
to consider another experiment in which these considera-
tions might perhaps be made somewhat more explicit.
The experiment is similar to that suggested by
Bernstein, "but there is no restriction to infinitesimal
magnetic fields here.

We consider a beam of spin--, particles, polarized in
the up direction along some s axis, sent into a magnetic
field along the x axis. When the beam emerges there are
both up and down particles, which we separate into two
beams, one all up and the other all down. We send both
beams (so that their history is the same) through
magnetic fields along the x direction, and then split each
emerging beam, once again, into up and down beams.
We now have two beams with particles polarized in the
up direction, with identical histories, except that one
has been rotated through 2x. The phases of the two
beams are compared, which we shall do mathematically
below, and which can be done experimentally by com-
bining them. The phases, of course, differ by a minus
sign.

In fact, we can split the two beams into two parts,

then recombine first the two subbeams from the same
beam, and then two subbeams coming from the two
different beams. The resulting interference pattern will
shift with the subbeams because of the minus sign.

The phase of the rotated particle is different after it
leaves the apparatus from what it was when it entered
because it traveled through a potential. However,
because the phase of the unrotated particle changed by
the same amount owing to travel through the potential,
we can subtract this change off and we thus see that we
have rotated a spin-2 particle through 2x and as a
result have changed its phase, in a measurable way,
relative to its original phase, by —1.

Note that the unrotated particle's presence is not
really relevant to this change of phase. What it does is
to provide a reference phase, 6xed throughout the
experiment, equal to the original phase of the rotated
particle, except for the phase shift due to the potential
which we have taken care of above, with which to
compare the final phase of the rotated particle. Clearly,
such a fixed reference must be present in any experiment
in which we consider the effects of a rotation. In many
cases such a fixed reference is a macroscopic body, like
a magnet, and so the present situation appears to be
different because we are using a quantum body. But if
we treated the magnet quantum mechanically, then the
analogy would be more evident, but not really more
exact.

We now solve the Schrodinger equation and show
that the statement about the change in phase made
above is correct.

For a particle of mass m moving along the y axis
through a magnetic field II along the x axis,
Schrodinger's equation is

( +&)0+l ( )4 =0, (3.1)

where cu= eII/mc. Writing the wave function as

(3.2)

(3.5)

Schrodinger's equation becomes

(1/2m) n"+En+-,'~aP =0,
(1/2m) P"+EP+ 2(an =0. (3 3)

Letting
g~kmy p

—Q p ~ikey (3.4)

we find the solution is (ignoring reflections at field
discontinuities)

H. J. Bernstein, Phys, Rev. Letters 24, 1102 (1967); Sci.
Res. (N. Y.) 4, 32 (1969).

where

kg = (2mE&ma) 'i'. (3.6)
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The boundary condition is So

)P„~= 4 expi(f V+ f l) cosg'l' cosgl,

{Pa,„„=—4 expi(f V+ f l) singV singl.

giving the state after the particle has traveled through
the magnetic field which has a length l to be

1 (e'""'+e"
')

2 ({cikil gck )— (3.7)

0
0 down

eik+l ei k—l

(3.8)

and )pa, „are the beams resulting from the
up and down components of the original beam.

The state vectors after the particles leave the field are

ack+'L'+ eik '('—
)( 1(~i7cy{y(,ck l)—

eik+'l' eik—'l'

hack+'l' gck—'('i

I
y 1(&ik+) eik —{)

~ik+'{'+eik '{'p—
The up components are

,), ~ ai( k+' 'i+k +)(+ei(k—'V+I—l)
Q UP

+ ei(k+'{'+k—l)+ ei(k+{+0—'l')

~ {i(k+'L'c+k+l)+((k—'{'c+ck—l)down

ei (k+' V+&-l ) ei (@+i+i—' l')

Now

(3.10)

(3.11)

(3 12)

Let
p, even )(k odd

p even p odd

(3.13)

(3.14)

Then the up components are

(P„„,a,„=e pxi(f V+ lg' +fl+gl)
+expi(f'V —

gV+ f l —gl)

+[expi(t'l'+ g'l'+ f'l —gl)

+expi(t i+gl+ f'l' —gV)]
= expi(t'l'+ f'l) (expi(g'l'+ gl)

+exp( —i(g'l+ gl) )
&[expi(g'l' —gl) +exp( —i(g'l' —gl))]j

= 2 expi(t'l'+ pl) [cos(g'l'+ gl) icos(g V —gl)].

The beams are now split and each enters a magnetic
field H' covering a distance l' and with corresponding

arid k~ .
The initial conditions on the two beams are

~ik+)+ ~ik —(

2 0

The phase of the wave functions is )P/I))! I
and differs

by —1, as stated.
Here, once again, we have an uncertainty in the

particle number of each beam. For suppose that there
were only one particle going through the apparatus.
Then if we determined which beam it was in, we would
know that the wave function describing the other beam
was zero and so there would be no interference. This is
exactly the same as the elementary double-slit experi-
ment, which emphasizes the generality of the concept
of number indeterminacy.

It seems unnecessary to consider the case in which
there is more than one particle. The point here is that a
measurement of the particle number of a beam will
require a force on the particles and thus will change
their phase. The more accurate the determination of
the particle number, the greater the uncertainty in
phase. And if the relative phase of the two beams were
indeterminate, the experiment would be impossible.

IV. PHASE

H = coo'm 6'y ) (4.1)

where cv is a constant and the o's are Pauli spinors.
The initial state is written as

~~ ~~

e'«' cos~0

ie i&" sin —'0

=e'""cos-,'0 I'1) It')„+ie '"'sin20 I$) It')» (4.2)

One of the basic concepts used in the AS1 experiment
is the phase which is conjugate to the number of
particles. It is this phase which determines the relative
phase between the proton and neutron states when they
are coherently superposed, and it is the value of this
phase which must be reasonably well determined for
the containers.

It would seem worthwhile, therefore, to study this
quantity in somewhat further detail, to show that it is
conjugate to the number o& particles, and to attempt
to get an intuitive understanding of its meaning and
the role it plays.

If the phase is conjugate to the particle number, then
it is indeterminate when there is a definite number of
particles. It will help to understand the concept if an
example of this is given. We shall do this next, first for
the angular momentum case, then for the charge. The
particle number is taken as 1.This one particle we shall
call the magnet, and the particle whose coherence
properties are being studied is called the particle. The
subscripts m and p shall denote their states.

We shall use the interaction Hamiltonian
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where y is the magnet's azimuthal angle and 0 is the
angle between it and the s axis, which is de6ned as the
direction of the spin of the initial particle. The arrows
denote the direction of the spin, and the spin direction
of the magnet can have any value, since the incoming
particle and the 6rst magnet of the Stern-Gerlach
experiment are uncorrelated.

Solving the Schrodinger equation and assuming that
the particle remains in interaction with the magnet for
a time T, we find that after the particle has left the
magnet the wave function is

Le'«' cos-,'ee—'"'
[ $)„[$)

+ ,'ie'«-' sin-,'8(1—e"" ) j $)„~$),J
+B~~ '""»n20(1+"")Il)-IB.l. (4.3)

Notice that this result is different from the simple
coherent wave function instinctively used in the Stern-
Gerlach experiment, because the state of the magnet
enters. Therefore, before we study the behavior of the
particle let us 6rst determine the state of the magnet,
which we shall take to be determined as up. Then the
wave function of the particle is given by the first term
in the above equation, which is indeed a coherent
superposition of spin up and spin down.

Now the phase difference between the up and down
states of the particle depends on the phase difference
between the up and. down states of the magnet, as given
in Eq. (4.2). This phase is, of course, the orientation of
the angular momentum, and it is more usual to write it
in such a way that this is implied, as in the 6rst line of
Fq. (4.2). But it is important to note that a state
representing a particle whose spin is not along the s axis
ca,n of course be written as a linear combination of
spin-up and spin-down states, as in the second line of
Eq. (4.2). This makes the analogy with the charge ca,se
clearer, and it is helpful to write it in this form since we
are studying such a coherent superposition.

Since the phase of the coherent superposition of the
states of the particle depends on the direction of the
spin of the magnet, which cannot be measured exactly,
what can be said about the phase? Very simply, it
cannot be measured at all. To show this we shall, for
simplicity, quantize the magnet along the s axis so that
the wave functions become

Note that they are not

because the component of the spin in the xy plane is
unknown, and so the phase angle must be put in. This
point is usually not important, but it is here. But since

the direction of the spin is not determined, neither can
the phase angle be.

So we immediately see that if the magnet consists of
one particle, then its phase must be undetermined and
it cannot produce a coherent superposition of up and
down states of the particle passing through it.

Let us now consider the charge case. In the angular
momentum situation, if we applied a torque the direc-
tion of the angular momentum chariged. Or, to put it
another way, if we put the particle in an angular-
dependent potential then the relative phase between up
and down states changes. For the charge case the
situation is exactly the same. If we put the particle in a
potential for a certain time, its phase changes. In fact,
if we use isotopic spin notation, then we put the particle
in a potential which depends on the (isotopic) angle,
that is, in an electric field, so that the potential is
different for up (positive charge) and down (negative
charge) states; then the rela, tive phase between up and
down states changes. Note that the phase gives the
direction of the particle's isotopic spin.

Consider now the AS1 Hamiltonian LEq. (5) of AS1],

II=g(0+a +o a+), (4.4)

and apply it as above, starting with a one-particle
magnet (here container) initial state given by Eq. (4.2),
with 0=+, to get the state after the particle leaves the
magnet:

where the subscript c stands for container.
Thus, we see that the state is an incoherent mixture

of plus and minus charge because the state of the con-
tainer enters. So we confirm our previous statements
that a container containing a single particle cannot
produce a coherent state.

The multiparticle state can produce a coherent
superposition of states, but it must be a mixture of
states of different values of the number of particles (or
excess of up over down). As remarked previously, this
is essentially because the phases of the various states
add to zero so that the average phase is determined
(as zero). Clearly, in order to do this a sum of states of
different phase is needed, and the form of this sum must
not depend on the phase. Since the phase of the in-
dividual terms must vary over all the quadrants, no
rnatter how small the individual phase is, an in6nite
number of terms is needed. Clearly, the coherent states
meet the requirement, for the phase of the different
states in the sum depend on n, and therefore take on
the required range of values of all q, since n goes to
infinity. Next we show that the phase is conjugate
to the number of particles. Consider an n-particle state

P = e '«'
( j,)„singt0,

-)0
+ie ' ~'

] [f)„cosgt, (4.5)k1,



whose phase we shall take as zero. Put it in a potential
for a time T, such that the energy of each particle
increases by E, so that of the entire state increases

by nE. After it is removed, its phase will be nET. A
state which is a sum of states of different n will have
the phase of each of them changed by a different
amount. Thus, an arbitrary function can be written

g„f(n)e'"&, analogous to Jf(p)e'&~dp, so y and n are
conjugate variables. Therefore, the uncertainty in the
phase increases as that of the number of particles
decreases.

At this point one can raise the question: What
quantity is conjugate to the charge (and remember that
the properties of charge here are irrelevant; charge simply
labels the particles)? It is the question that Rolnick4
has asked: What is the observable that does not corn-
mute with charge? The answer is that the phase does
not commute with the charge, as we have seen above,
and it is an observable since it determines the value of
the cross terms in an interference experiment.

The same discussion as above applies to univalence
also, where the phase is conjugate to the number of
fermions in the container.

7. ANALYSIS OF PROOFS OF
SUPERSELECTION RULES

The position that there is no such thing as super-
selection rules in the sense generally used, and that
there is no reason to believe that it is impossible to add
coherently states differing by any quantum number
whatever, has been argued in detail above. However,
there are proofs of superselection rules (as in WWW),
and it is necessary to consider where we disagree with
these proofs.

The proofs are basically as follows. Consider two
state functions fq and f2 which differ in the value of
some quantum number (charge, univalence, etc.). Then
it is claimed that the coherent superposition f&+ f2 has
no meaning because by some transformation under
which the system remains invariant, time reversal,
rotation, gauge transformation, etc. , the superposition
becomes f~+e'&f2 From this it. follows that the phase
between the two state vectors is physically meaningless.

We agree that the superposition f~+ f2 is meaningless,
but we do not agree that this is the state function of
the system that we wish to describe. The correct state
function can be coherently superposed and does not
vary under the transformations which leave the system
invariant.

The definition of the proper state vector of the system
is discussed above. In this section we wish to consider
the examples we are using to show that the transforma-
tions leave the correct state vector invariant. The first
example we consider is the Stern-Gerlach experiment
with the particle between the two magnets. What is the
state function of the system? As we have discussed
above it is not

~
particle spin up)+

~
particle spin down),

which is what WWW have used in their proof, but
rather P L~1)'(2)')up)+ ~1) [2) [down)];, where the
numbers refer to the magnets, and this cannot be
factored.

Of course, this can be factored to a very good approxi-
mation, but it is just this small difference between the
approximation and the exact formula which nullifies
the proof. As an example, let us assume tha, t ~2)' and
~2) are identical and that the only difference for the
states of 1 are that a single dipole has its spin down in
one case and up in the other. Then, ignoring the
factored parts, the state function becomes ~magnet
down)

~

particle up)+
~
magnet up)

~

particle down). Now,
applying time reversal to this state, we see that each
term in the product changes sign so that the product
does not, and as a result the sum remains the same.

When we have something of the order of 10" atoms
in a magnet, we can usually ignore the behavior of a
single one. But this situation is an exception, for the
single magnet represents the difference between the two
states. Further, the use we put it to is not additive (as
would be the case if we were computing the change in
energy of the magnet, for example) but multiplicative,
where its sign, and sign variation, is crucial and the sign
depends not on the total number of atoms, but whether
that number is even or odd. We cannot ignore the
behavior of a single atom here, for it invalidates the
proof.

What about the charge case; is the relative phase of
the proton and neutron changed by a gauge
transformation?

The answer is that the relative phase between the
two charge states is determined by the relative phase
of the two containers in the experiments described. This
phase is determined by the phase of the mesons, which
in turn is changed by a transformation by an amount
which is the negative of the change in phase of the
charge states due to the transformation. The result of
the transformation is therefore not to change the
relative phase of the particles at all.

To show this, we carry out a gauge transformation
e", so that a state vector describing a state with
charge nQ is multiplied by e'"'@. Thus, the phase term
in the state vector of Eq. (4) of AS1 now becomes
e'"&' '@&. From their Eq. (9), the relative phase of the
two particles is 0—0', where 0 and 0' are the phases of
the two containers. Clearly, this remains unchanged
when the two phases are changed equally.

Or consider the same result as expressed by their
Eq. (7). We take Q of the mesons and the charge
difference of the superposed particles as both 1. Then
the phase difference between the two states is 0—q,
where p is the proton-neutron phase difference when

the particle is between the containers. Now q is in-

creased by s because of the gauge transformation. Again
the phase difference between the two states remains
unchanged by this transformation.
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Unlike several other quantum numbers, no super-
selection rules have been given for angular momentum.
Yet we have argued that aB the quantum numbers must
be treated identically. To complete the analogy, we
must therefore give a "proof" similar to the other
quantum numbers for a superselection rule for angular
momentum.

To "show" the impossibility of coherently super-
posing two states with different s components of angular
momentum, we take a spin-2 system arid use the wave
function given in Eq. (4.2), ignoring the magnet, with
tY= ~sr, q =0. Ke now rotate around the s axis by some

angle X, so the wave function becomes

(5.1)

Notice that the wave function is varied in exactly the
same way that a superposed wave function describing
positive and negative charge changes under gauge
transformations. Hence, if we were to follow the

analogy, we would postulate that there is a super-
selection rule for states of different m values. (Remem-
ber that %W% did not "prove" the superselection rule

for charge, they only hypothesized it. The only quantum
number for which a proof" was given was univalence. )
We should be able to conclude that the pha. se difference
between up and down states is arbitrary and so
unmeasurable.

The difhculty here is that the phase difference be-
tween the up and down states gives the orientation of
the spin with respect to the xy plane. But this orienta-
tion is changed by a rotation around the s axis. Thus,
the variation in phase does not rule out a coherent
superposition, it is required by it.

The xy plane is determined by the apparatus, and this
result is, therefore, a way of restating our previous
results.

There is a case noted above where we can factor the
state vector exactly into terms, one of which is a
coherent superposition of states of different angular
momentum. Is it possible to do the same thing in the
charge case, and then use gauge invariance to show
that the resulting superposition is meaningless?

The two states in the superposition differed in total
angular momentum, but they both had the same value
of the s component of angular momentum. The analog
in the charge case is a coherent superposition of two
sta, tes with different total isotopic spin, but with both
having the same charge. Under transformations both
states change by the same phase, and the coherent
superposition of different isotopic spin states is a
perfectly reasonable and accepted procedure. Hence
the analog is, in fact, exactly analogous.

Thus, again we can And no difference, in principle,
between the angular momentum and the charge cases.

7I. CONSTRUCTION OF CORRELATED
CONTAINERS

where the u's are the creation and annihilation opera-
tors, xo is a constant, and I" is the force. The ground
state of this Hamiltonian is then

~xoE/ra(//t g) ) P) (6.2)

which is clearly an eigenstate of the annihilation
operator a.

This shows the mathematics of obtaining a coherent
state; we now have to consider the physics. As the first
example, we again consider a. magnet. How do we
construct a magnet?

The magnet we consider will be composed of spin--',
particles, and before we construct the magnet these are
randomly oriented; there are as many up states as there
are down ones. Ke shall divide the particles into pairs,
each consisting of one up and one down particle. To
construct the magnet, we must take some of the pairs
and Qip their down particles to up ones. Thus the ground
state, the vacuum, " consists of zero Qipped pairs, and
the various excited energy levels are determined by the
number of Qipped pairs. If an external magnetic field is
imposed so that the energy of the Qipped pairs is lower
than that of the unAipped, the Hamiltonian (after sub-
tracting a constant due to the total mass of the system)
is just the number of Qipped pairs times their energy,
exactly a,s for the simple harmonic oscillator.

Physically, to construct the magnet we take the un-
magnetized specimen, impose an external Geld, and
subject the system to a beam of impinging particles
whose purpose it is to take up the excess energy and
angular momentum. These "particles" could, of course,
be the external motions of the spinning particles, in
which case the excess energy appears as heat. The
Hamiltonian can be represented schematically a,s that
in Kq. (6.1), where xoF is replaced by a coupling con-
sta,nt times the density of the impinging particles, and
the a's represent the creation and annihilation operators
for Qipped pairs. They are linear rather than quadratic
by dehnition, since when they create a flipped pair they
also annihilate an unQipped one.

Although it should now be clear that given two
correlated boxes of charged particles in coherent states
we can create a coherent superposition of charge states,
we have not shown that such a coherent superposition
is possible until we prescribe a means of getting the
correlated containers with coherent states. To this
question we now turn.

First we consider how a coherent state of a simple
harmonic oscillator is produced. As shown by Carruthers
and Nieto, v this can be achieved simply by subjecting
the oscillator to a constant force so that the Hamiltonian
becomes

(6.1)



Thus the formalism is identical, and a coherent state,
a magnet, is created. However, this is not quite what
we want in our experiment.

The problem is that each state with different numbers
of Ripped pairs n is correlated with different states of
the beam. Thus, if we measure the number of particles
impinging on the sample and the number of particles
leaving, then we can compute n from such conservation
laws as those of energy and angular momentum. Like-
wise, if the magnet is produced by thermal means we
can find n by measuring the initial and final
temperatures.

Clearly, this is not satisfactory and what we want is
a correlation between two magnets. Here we must be
careful, for we can get correlation by allowing the
magnets to interact through their magnetic fields. The
direction of the magnetic field of the magnet depends
on the phase, but this seems to be essentially an acci-
dental property and we shall avoid this method so that
our results can be extended to other situations.

What we shall do is send a beam of particles through
two samples. Then by studying the properties of the
beam we will be able to find the total number of pairs,
but we shall not be able to tell how the pairs are
distributed between the two magnets. Thus, we can
produce coherent states which are correlated with each
other.

Consider a beam of particles with average spin in
some direction going along through the specimen. The
Hamiltonian will be of the form of Eq. (6.1), with the
@op replaced by a term depending on the coupling con-
stant and the particle density of the beam. Let us
assume that the interactions between the particles in
the beam and those in the box have a very small effect
on the beam. Then the beam will be essentially un-
disturbed after passing through the specimen. The
specimen will be magnetized in the direction determined
by the direction of spin of the particles in the beam.

When it reaches the second specimen the average
spin of the beam will be in the same direction as it was
when it passed the first specimen. Hence the effect on
both specimens will be the same and the result is that
two correlated magnets will be created.

Clearly, the spin of the beam can be rotated while it
is in transit between specimens, which will result in two
correlated magnets at an angle with each other.

To create two correlated boxes of charge, we shall
consider them filled with neutrons (only for simplicity;
stable nuclei can be used) and protons, and in the AS1
experiment the incoming proton may scatter off the
neutrons and exchange charge, coming out either a
proton or a neutron, and, if done properly, a coherent
mixture.

The container will be in an electric field (only to
make the discussion analogous to the case of the
oscillator) and the ground sta, te will consist of all
neutrons. We now send through a beam of protons, some

of which will undergo charge-exchange collisions so that
the state of the container will be transformed to one
describing a mixture of neutrons and protons: an
excited state.

The situation here is then exactly analogous to the
case of a magnet, and it is unnecessary to repeat the
above discussion. Likewise, to get two correlated
containers we let the beam enter the second container
after it leaves the first, just as above.

In practice, the above experiment can be carried out
by taking a crystal whose nuclei are isobars of some
stable nucleus, placing it in a reactor to cause some
conversion of one nucleus to the other, and then cutting
it. This then supplies the correlated containers.

Of course, we do not discuss here the question whether
it is feasible to carry this out in practice, but there are
no reasons, in principle, why it cannot be done.

VII. MEASUREMENT OF PARITY

The major conclusion that WWW drew from their
postulation of superselection rules is that it is impossible
to measure the relative parity of two particles of
different charge, or of different univalence. We have
argued above that such superselection rules do not
exist, and that in this regard charge is exactly similar
to angular momentum. Since we know that we can
measure the relative parity of different angular momen-
tum states, we should therefore be able to measure that
of different charge states, and in order to complete the
analogy we must exhibit an experiment to measure it.

Actually, we can exhibit no such experiment, and the
reason is that the above argument is incorrect; for we
cannot measure the relative parity of different angular
momentum states, although one of the possible conven-
tions, the one which is actually used, is far more esthetic
than any other. Such a convention can, of course, also
be used in the charge case, and usually is. But there it
is clearer that it is a convention.

When we say states of different angular momentum,
we mean states which differ in their s components
(nz values), and we do not consider here states of
different total angular momentum. The situation is the
same as in the charge case, for the m value determines
the charge and there seems never to have been a claim
that it is impossible to measure the relative parity of
two states only because they have different isotopic
spin; for example, the p and the Z+.

Although the idea that states with different m values
have arbitrary relative parity may not seem too strange
for spin, it does seem to conRict with what is known of
orbital angular momentum wave functions. And if the
orbital angular momentum m values have their relative
parity determinable, and not just definable, then since
spin can be converted into orbital angular momentum,
the wave functions with different m values for spin
have theirs determinable also.

In order to prove the statement that parity is a
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convention, we define the wave function as p
where the I 's are spherical harmonics and the p's are
functions of the m's whose only properties are a phase
which may change under a parity transformation,

p *p =1, and are otherwise arbitrary except that
they are subject to the constraints arising from the
relations I',I', Y,+,.

There are two questions about such a procedure:
Does it violate inversion invariance, and does it violate
rotational invariance?

As far as parity conservation is concerned, it should
be noted that m is conserved in all reactions. Thus,
given any system, the parity of a state of the entire
system with any s component of the total angular
momentum is determined by definition and, since that
m state can never be converted into any other m state,
it is not necessary that these definitions be related.
Thus, there are no reactions which do not conserve
parity because of this definition, which would conserve
parity if all the p's are taken to be 1.

Parity conservation means that it is possible to define
consistently a set of parities for different states and that
once having been defined by means of one reaction,
there will be no other reaction for which this definition
will not result in the total parity after the reaction
equaling the total parity before the reaction. Let us
assume that this is possible for all the p's equal to 1
(so that parity is conserved using the standard conven-
tion for the p's). The requirement of conservation of
parity then becomes that the product of the intrinsic
and orbital parities times that of the p's remain con-
stant in the reaction. By the above statement the
product of intrinsic times orbital parities is constant,
so that the requirement reduces to the requirement that
the product of the p's remain constant. But since the
product of the p's is defined to be equal to the p for the
total m, and since m is conserved, this follows. Thus,
using arbitrary p's does not cause a viola, tion of parity
conservation if it is not violated for all the p's equal to 1.

By inversion invariance we mean simply conservation
of parity. Of course, we may speak of it as meaning that
if we rejected the system in a mirror we would see the
identical system. But it is impossible to reQect a wave
function in a, mirror. Thus, a definition with all the p s
equal to i would give a simpler formalism, and nicer
mirror reQection properties, but there would be no
experimental distinction between this convention and
any other, or any experimental way of determining
the p's.

And it is likewise to an analysis of experiment that
we must return to determine the rotational properties
of a wave function with nonunit p's.

First let us consider how we determine the time
dependence of a state of mixed m, since it does not
appear to satisfy the Schrodinger equation, which is
formally rotationally invariant, while the state vector
is not. The answer is that the state function for each

m value obeys the equation separately, and since all
nz values have the same energy and time dependence,
so does the sum of terms. Note that the requirement
that the state vector obey the rotationally invariant
Schrodinger equation does not necessitate rotational
invariance; it just allows it. Clearly, a universe con-
sisting of one free particle with spin up is not rotation-
ally invariant, for there is a universal s axis, along the
particle s spin direction. Likewise, consider a universe
consisting of the interior of a box containing two
particles of diferent mass and opposite spins. Define
the s axis at each point as pointing along the spin of the
particle whose probability density is larger at that
point. Thus, the direction of the universal s axis varies
in space, and if we wish to consider traveling waves,
we could have it varying in time. Thus, the fact that
we use as the wave function p

Y' rather than Y does not
prevent it from satisfying the Schrodinger equation.

To determine whether this convention violates
rotational invariance, we must ask two questions. First,
is each component of angular momentum conserved in
every reaction, and second, will two experimenters
rotated with respect to each other get the same experi-
mental result? The affirmative answer to the second
clearly implies the affirmative answer to the first
question.

To answer the first question, we consider some inter-
action Hamiltonian which consists of a product of
creation and annihilation operators, times products of
the p's, possibly. These operators annihilate and create
various angular momentum states, and the products
must be such that the various angular momentum
components before and after application of the Hamil-
tonian are the same. But the types of operators that
appear in the product are not going to be altered by the
fact that the product is multiplied by the p's. So angula, r
momentum will continue to be conserved in all
reactions.

We are thus led to the question of whether two
experimenters, rotated with respect to each other, will

get the same results.
To answer this, we have to show that the matrix

elements of any operator are rotationally invariant.
Any state can be written as a sum of terms, each of
which is the product of angular momentum eigenstates,
and any operator can likewise be written as products of
creation and annihilation operators on these states. We
now redefine the operator by substituting for a creation
or annihilation operator the same operator times the
proper p. Thus, a,ny matrix element is a sum of terms
each of which contains an even number of p's and thus
which contain no p's. Remember that for each creation
operator for state m in the matrix element, there is an
annihilation operator, and vice versa. Therefore, the
matrix elements are rotationally invariant if they are
when all the p's are defined as 1.

Therefore, no experimental results are altered if the
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different eigenstates of the s component of angular
momentum have arbitrarily different parities, and so
their parities are a matter of definition. Clearly, defining
all the p's as 1 is the simplest possible choice, both for
angular momentum and for charge.
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APPENDIX

One of the major points of this paper is that the
factorization of the state vector of the Universe into a
term describing the system under consideration and
another term describing the rest of the Universe, which
can be ignored, is of basic importance in analyzing the
system. We should like here to describe another
situation which will illustrate this point again. This has
been discussed elsewhere, "but it seems worthwhile to
discuss it from the present point of view.

Consider a Universe consisting of the decay products
of some unstable state. Then, if we wish to study the
subsystem consisting of one of these decay products, we
have to factor the state vector of the Universe into a
term describing the system under study and another
term for the rest of the Universe. We should lik.e to
examine here the circumstances under which this
factorization can meaningfully be carried out, and what
restrictions it places on our description of the system.

The quantum-mechanical description of a system
requires a complete set of operators whose eigenstates
are the states of the system. The operators and the
eigenstates are those of the whole Universe, and the
questions of the preceding paragraph amount to
the question of whether it is possible to carry out the
factorization so as to define a complete set of diagonal-
izable operators for the subsystem, and for which
operators is it possible to carry out this factorization.

The details of the analysis are given in Ref. 11.Here
we shall only describe how the results of that paper can
be viewed in the context of this one.

We consider erst the hydrogen atom for which, unless
we wish to limit our studies to the ground state, the
Universe must consist, at a minimum, of the electron,
the proton, and the photons making up the radiation
field. Of course in many cases it is convenient to factor
this into a term describing the electron-proton sub-
system, and a term describing the photons and ignoring
the latter. And it turns out that we can indeed find a
complete set of diagonalizable single-particle operators
(the single particle being the electron-proton sub-
system) such as the spin of the single particle. But the
important point is that the Hamiltonian is not one of
these operators. There are no single-particle states
which diagonalize it. When we talk about the mass or

"R. Mirnran, Progr. Theoret. Phys. (Kyoto) 41, 1578 (1969).

energy of the atom, we actually mean the expectation
value of the Hamiltonian between single-particle states.
The so-called "unperturbed Hamiltonian" is, of course,
not a Hamiltonian but an operator whose eigenvalues
are equal to these expectation values of the Hamiltonian.
The single-particle states are not eigenstates of the
Hamiltonian because they do not remain single-particle
states. The Hamiltonian connects them with multi-
particle states, that is, excited states of the atom decay.

Next we consider elementary-particle physics, where
it is customary to regard the elementary particles as
being eigenstates of the Hamiltonian, even if they decay
as they all do twith, of course, the exception of the
ground state(s) j. Further, the use of sets of opera, tors
to describe the particles is widespread, particularly
when group and algebraic descriptions are used. Often,
however, these operators are not clearly defined. For
example, when we talk about the isotopic-spin operator,
what operator do we mean? It may seem trivial to say
that it is the operator operating on single-particle
states, but if we consider the angular momentum
operator and apply the same definition of it, we cannot
then conclude that rotational invariance requires this
operator to be conserved. Thus, consider a Universe
consisting only of a single resonance. This then decays
into a proton and a pion. If we now define the single-
particle angular momentum operator for a pion, this is
clearly not conserved, and if the pion were to decay
while it was still in the vicinity of the proton, this
nonconservation of angular momentum would have
important consequences concerning the properties of
the decay.

It turns out that, for elementary particles, it appears
to be reasonable and useful to factor an operator into a
single-particle operator and a background operator,
provided that the factored operator is the generator of a
semisimple I.ie algebra. Thus, the single-particle spin
or isospin operators seem both useful and meaningful,
and the eigenstates of this (still incompletely defined)
complete set of operators can be correlated with the
elementary particles. This allows the elementary
particles to be labeled.

However, while the semisimple operators can be
diagonalized by the single-particle states, those opera-
tors forming Abelian subalgebras of the algebra de-
scribing the elementary particles (assuming that such
an algebra exists), or at least of the Poincare algebra,
apparently cannot be.

In particular, there is no such thing as a single-
particle Hamiltonian (disregarding situations where we
ignore the entire system and just study one state, the
ground state, in which case we would give up almost
all of the information about the system). Consider the
above example and write H, as that Hamiltonian which
acts on both the single-particle resonance state and the
single-particle proton state. Then the factorization
would be time dependent as the pion joins the back-
ground, changing it. Thus II, and H q, the two terms in
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the sum making up the total II, would not commute.
It seems unlikely that such a scheme" would be very
useful.

This result leads to the mass of the single-particle
state being the expectation value (properly defined, as
discussed in Ref. 11) of the total Hamiltonian, and not
the eigenvalue of a single-particle Hamiltonian.

In general, one must be careful in the factorization
process when unstable states are involved.

These considerations do not seem to have been always
throughly understood, and as a result errors have
occasionally arisen.

A more detailed discussion of the whole question is
given in Ref. 11.
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We show that scattering boundary conditions are incompatible with a monochromatic radiation field for
the case of nonlinear Compton scattering. We demonstrate this by showing that (a) in the monochromatic
limit, gauge invariance in a given order of the expansion of the S matrix is destroyed, and (b) the physical
(scattering) boundary condition, that of a pulse of radiation incident on a target electron, cannot be recon-
structed from the monochromatic limit of the S matrix. We then proceed to show by an example that the
frequency profile of the scattered radiation is a function of both the intensity and line shape of the incident
field. Another interesting feature of this calculation is that the profile of the photon scattered at a fixed
angle is significantly broadened in comparison with the incident line shape. The worked-out example is a
simple Inodel, that of a neutral, scalar "electron" interacting with a bilinear scalar, massless external field,
which contains all the important features of nonlinear Compton scattering. While from the point of view of
gauge invariance it is sufhcient to treat the external radiation field as a one-dimensional wave packet, for a
complete description of the problem it is necessary to describe the incident radiation (quanta) in terms of
normalizable states. An estimate of the breakdown of the plane-wave approximation is included.

I. INTRODUCTION

'HE generalization of the Klein-Nishina formula'
to include the eRect of an intense light beam has

been the subject matter of numerous articles."These
computations fall into two categories. The first group
of authors' obtains the scattering amplitude via the
Volkov4 solutions for incident and outgoing electron
states. Recall that the Volkov4 wave function is a
solution to the Dirac (Klein-Gordon) equation for a
charged particle in the presense of an external, trans-
verse electromagnetic field. The electromagnetic field
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(Durham) and administered by Lowell Technological Institute
Research Foundation.
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is restricted to be a plane wave. This excludes the use
of a three-dimensional wave packet in the description
of the external field. The second approach' makes use
of the adiabatic switching-on-and-oR technique and
covariant perturbation theory. The two methods yield
diverging results. BrieQy, the disagreements between
the two methods are twofold: (a) In the kinematics,
the scattering amplitude based on the Volkov4 solutions
yields an intensity-dependent frequency shift (IDFS),
while the other method' gives no IDFS, and. (b) the
two amplitudes differ in their functional form. The
merits of one approach versus the other have also been
discussed in equally numerous articles. '

Recall that it was demonstrated' that the imposition
of scattering boundary conditions on the Volkov4 solu-
tions is incompatible with unitary time evolution of
the state vector. There is also something wrong, how-

ever, with the second approach, ' viz. , the scattering
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