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Equivalence of the Dirac Equation to a Subclass of Feynman Diagrams*
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The Dirac equation of an electron in a Coulomb Geld is shown to be equivalent to a certain subclass of
Feynman diagrams taken within the eikonal approximation. The result is obtained via analysis of a two-
body scattering amplitude, wherein the role of the heavier of the two particles involved is to generate the
effective external potential in which the lighter particle propagates. The poles of the scattering amplitude
are found to be the well-known relativistic binding energies.

I. INTRODUCTION

'HE present paper is concerned with a new deriva-
tion of the classical one-particle Dirac equation

which appears in the present context as a sum of a
certain subclass of Feynman diagrams taken within the
eikonal approximation. We propose an approach based
on the analysis of the scattering amplitude of a fermion
and a heavy charged scalar particle. By way of perform-
ing certain appropriate approximations upon the correct
Green's functions associated with those particles and
equating the above scattering amplitude to its spectral
representation, we can locate the corresponding energy
poles which are shown to agree with the well-known

energy spectrum of an electron in a Coulomb Geld.
This result, which makes substantial use of the eikonal
nature of the high-energy approximation, is the
consequence of an infinite mass (rtt' —+ oa ) limiting
process.

II. SCATTERING AMPLITUDE —GENERALIZED
LADDER GRAPHS

We are interested in the scattering amplitude of a
two-particle reaction pi+p2~ pi'+p2', where pi (pi')
and p~ (p~') are the initial (final) four-momenta of a
fermion and a charged scalar particle. Subscript 1 refers
to the fermion, mass ns, while index 2 denotes the
heavy charged scalar particle, mass ns'. We limit our
attention to incoming undressed particles which
exchange virtual photons in all possible generalized
ladder-type ways, i.e., we study the contribution to the
scattering amplitude T(p, 'p, ~pi'pi) arising from all

diagrams shown in Fig. I. Those Feynman graphs can
be formally evaluated in closed form by an exponential
operation that acts upon the Green's functions assoc-
iated with the two particles' '; i.e., if G(x2'x2~xi'xi)
denotes the four-point Green's function corresponding
to the exchange of all photons between the charged

scalar and fermion line, the quantity of interest is
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In the following we are mainly interested in a closed-

form solution of Eq. (2.3). In" order to proceed, we first

where G1 refers to the fermion and G2 to the charged
scalar Green's function.

It is easy to see that the expansion of the exponential
operator of (2.1) yields the sum of all ladder and

crossed graphs.
Formula (2.1) is an exact statement as long as

self-energy structure and vertex-type corrections are
neglected. D, (x y) represents th—e undressed photon

propagator taken in the Feynman gauge. The external
c-number field A„(x) is introduced to carry out the
combinatorics and at the same time appears as a test
source in the functional argument of the Green's

functions whose response upon A„(x) will reveal the

dynamics. Thus, we first write down the differential

equations satished by the Green's functions, without

approximation,
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sion under Contract No. AT (30-1)-2098.

H. D. I. Abarbanel and C. Itzykson, Phys. Rev. Letters 23, 2 z
53 (1969), and further references cited there.

2 G. W. Erickson and H. M. Fried, J.Math. Phys. 6, 414 (1965). FIG. 1. Class of all ladder and crossed graphs summed by Eq. (2.1).
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then yields

Gs( ) (ps'ps I A„) lim (ps"+m")
I
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I A.)

III. INTERMEDIATE MASS STATES

Our anal task is to introduce a spectral representation
for the scattering amplitude and set up a relation to the
result as expressed in Eq. (2.10). For this reason we
mrite

= (24r)
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BEY

where the index (E) is introduced to indicate that p
is now to be taken in its eikonal-approximation average,
i e, P: = s (P0'+ P0).

At this stage it is in order~to compare our approach
to the semiclassical derivation given in Ref. 3. While in
Ref. 3 as mell as in Ref. 1 the eikonal approximation is
performed on either line of the colliding particles, we
can improve the calculation by keeping only the
charged scalar particle on the mass shell and subjecting
it to the eikonal approximation. The fermion Green's
function mill be retained in its complete form. Needless
to say, me can reproduce the results of Refs. 1 and 3
by simultaneously subjecting both propagators involved
to the eikonal approximation.

Under those assumptions, me obtain for the scattering
amplitude

()

T(»'» IP0'P0) = (2n.)4 expl —4
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Inserting the expression for G, (s& into Eq. (2.9),
the exponential can be carried out immediately to
result in

T(»»lp0 p0)

(p +el(4(*)4(y))+I p ) = "* d~ *"*"'G(~), (31)

where q: =ps' —p, . In order to compute the masses of
the intermediate states which are de6ned by the
decomposition of the left-hand side of Eq. (3.1) into
a complete set of energy-momentum eigenstates, we
rewrite

(ps+ad I4(x)k(y) I ps)

=2 &p0+g l4(x) IA'+ps+ad)(A'+p0lu(y) I p0)
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Applying this spectral decomposition to our problem,
first notice that Eq. (3.1) can be continued to yield
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where the sum is taken over all fixed states 6' and the
causal arrangement is taken such that xo)yo. Then the
mass spectrum of those states is dined via

8
d's e'" —G, l x,'x, e2p„dn'

an m'
4 &( —()"/~') )), (3.3)

where (t: =P, ' —P0. The structure of Eq. (2.10) makes it
obvious that particle m can now be considered as moving
in an effective external potential created by the incom-
ing particle m'. Looking at the functional argument of
G~ in the rest frame of particle m', me learn that this
turns out to be precisely the Coulomb 6eld.

3 R. Torgerson, Phys. Rev. 143, 1194 {1966).

where the reduction to a three-dimensional integral
has been achieved by a change of variables in Eq. (2.1p):

s=s'+(p/m')p, s' p/4&4'=p=q p

and only the connected part of G~ has been taken into
account. Looking at the right-hand side of (3.3), we
observe that in P)'/4&4', for 4&4' ~00, only the time
component survives, leaving us with p)'/m' -+ 44)'= (0,1).
So, indeed, we obtain for the functional argument of Gq
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the Coulomb potential, since spectrum is contained in
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Solving with respect to G(h) then yields
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and inverting with respect to G(A) then yields the result
that the poles 14)0 of G(hv) coincide with the energy
spectrum as described by

Lm+y(8 —ieAc, „)))G1c. 1(x,y; xp yp)

=~'(x—y)~(*o—y ) (3 3)

The quantity of interest is the Coulomb energy

~= (L ') '(~—V)"= —(&/m')(~ p)

which is equal to Ap fol 82 ~(x), as shown by
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and all the information needed to extract the energy

This is the desired Dirac equation of particle m moving
in a Coulomb potential generated by an infinitely
heavy particle m'.

A more formal proof leading to the same answer
starts by introducing the Fourier transform of GI(x,y)
and performing a Lorentz transformation which takes
the four-vector qi„ into P0/m': L0"(P/m')qt„=P0/m'
Then we find

Inserting for 6'
p& the value found in (3.6), Eq. (3.2)

then leads to
2- I/2

ma=(m'+t) 0') &-
m'+t) 0'

(m'+ap') =m' —q. ,m' ~oo

where Ao' ———e„ is the binding energy given by the
system electron in a Coulomb field as defined by the
Dirac equation (3.5).
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