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effectively discards the transverse modes of the vector
6eld and retains only the longitudinal ones.

V. SUMMARY AND CONCLUSIONS

We have shown that dynamical theory of currents of
the kind suggested by Sugawara is equivalent to a
canonical theory of massless scalar particles, provided
that the currents are associated with nonlinear trans-
formations of the field. These nonlinear transformations
arise naturally in the context of spontaneous breakdown
of symmetry, and it is interesting to note that in
Lagrangian models of broken symmetry the Goldstone
bosons fu1611 the Sugawara criteria. This allows for a
general procedure for obtaining canonical representa-
tions of Sugawara models for any group, and we have
exhibited this mechanism speci6cally for a SU(2) model.

Finally, we have shown that if the Sugawara currents
are coupled to gauge fields, the resulting theory is a
massive Yang-Mills one.

We conclude that Sugawara models as formulated
contain massless scalar particles and as such are un-
realistic. We also conclude that any attempt to resolve
the contradiction involved in associating a massive
scalar particle with a Goldstone boson must fail, since
this procedure removes the scalar particle altogether. "
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Methods are developed for constructing momentum-space amplitudes corresponding to nonpolynomial
nonderivative interactions of a real scalar field. The methods give rise to a supergraph technique and rules
for writing down matrix elements very similar to Feynman techniques. The methods are not established
rigorously; at several points the argument requires certain analytic properties of Feynman integrands
which, though plausible, can only be demonstrated rigorously for the zero-mass case. Asymptotic behavior,
both in spacelike and timelike directions, is discussed. Rough arguments are given that indicate that the
singularity structure of the amplitudes is likely to be consistent with unitarity.

I. INTRODUCTION

""I it is to have any future, Lagrangian 6eld theory
~ must learn to cope with nonrenormalizable inter-

actions. This becomes apparent when one examines

what we currently believe are Lagrangians of physical
interest.

1. These Lagrangians include the following.

(a) Chiral SU(Z) XSU(Z) Lagrangiazzs for strong in
teractiorIs. A typical example is Weinberg's Lagrangian
for m mesons:

(b) Intermediate boson mediated wea-k Lagr-angian. An

example is an intermediate neutral vector meson U„
interacting with quarks Q. As is well known in Stiickel-
berg's representation (U„=AP+x 'B„B),2; z can be
written in the typical form

2;„=fQy„(1+y)QA„+mQ(e'&"~t"& —1)Q.

~ Qn leave of absence from Imperial College, London, England.

(c) The grazzitational Lagrangian of Einstein expressed
in terms of the contravariant tensor g~"

L=" '(+ g)g""(i" "i' ' —i' "1' ')
where

pv 2g (~pgvp+~vgpp ~pgpv) '

The covariant components g„„whichenter the expres-
sion for g= detg p are expressed as a ratio of two poly-
nomials in g&".

The interaction Lagrangians in all these theories are
typically of a nonpolynomial form in 6eld variables.
These Lagrangians can be expanded in power series of
the type

(Here P is a scalar 6eld, and for simplicity we are ignor-

ing derivatives. ) The coefficients e(n) are proportional
to f", where f is a coupling constant. ' All terms in such

'In this paper we distinguish between the coupling constants
G and f: G will be called the major coupling constant and f the
rrzirzor. We shall be considering fixed order in G and all orders in f
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expansions with e&4 are nonrenormalizable. Thus,
barring quantum electrodynamics, the rest of Lagran-
gian particle physics apparently needs a closer study
with respect to nonrenormalizability.

2. Right from the very early days it was emphasized,
particularly by Heisenberg, that the perturbation ex-
pansions of the 8 matrix in powers of Gnf" for the case
of unrenormalizable theories suffer from two distinct
(though related) difhculties.

(a) Infiniities. The integrals in the theory become
more and Inore infinite in each increasing order of per-
turbation. In each order one needs new counterterms
containing higher and higher derivatives of fields if the
conventional subtraction philosophy of renormalizable
interactions is to be extended to these theories. (These
infinite-order higher derivatives are likely to produce
a nontocal counter-term Lagrangian. )

(b) Unacceptable high energy -behavior. Even after
a successful subtraction scheme has been carried out,
the high-energy behavior (of the finite parts) of integrals
is physically unacceptable. As external momenta be-
come large, the dependence of these integrals on ex-
ternal momenta increases polynomially with the order
of the approximation, unlike the case for renormalizable
theories.

3. Of these two types of difficulties, the first—con-
cerning the infinities of the integrals —has begun to be
seriously investigated recently. Three types of ap-
proaches have been considered.

(a) The conventional approach, where the Feynrnan
momentum-space integrals in each order G~f" are con-
sidered as they stand and a consistent subtraction pro-
cedure defined. ' It appears' that all three rigorous sub-
traction procedures used for renormalizable theories,
i.e., (i) the Dyson-Salam method, ' (ii) the Bogolubov-
Parasiuk-Hepp method, and (iii) the analytic renor-
malization method, 6 can be extended to nonrenormaliz-
able theories. To our knowledge, the second technical
problem of a systematic organization of the counter-
terms has not yet been examined for any of the theories,
nor has the problem of physical interest posed by finite
changes in the definition of renormalization constants.
(Since there are an infinity of renormalization constants,
such changes could reduce the predictive power of the
theory to naught. )

(b) The x sP-ace aPProach of EPmov and Fradhinr s for
theories with rational nonpolynomial Lagrangians.
Formally one can write the Eth order approximation
in the major coupling constant G in x space to a typical
amplitude in the form of a divergent series:

j ~(xi,xs, . . . ) =G~ (f)u+v+ a

Xhr" (xi —xs)A p'(xs —xs) . (1.2)

Efimov and Fradkin have described an elegant tech-
nique of carrying out Borel sums of such series in the
minor coupting parameter f Thes. e sums can be exam-
ined in the ultraviolet limit (xi—xs)' ~ 0 (xs —x4)' ~ 0
. . . . The important result of their investigation (ex-
tended in Ref. 8) is that if the Dyson index D of the
rational Lagrangians is less than or equal to four i.e. ,
the same as that for renormalizable theories —)the
Dyson index D is defined by the limit 1.(rb)& „P~], ——
only a few types of Borel sums exhibit any ultraviolet
infinities —again like the case for renormalizable theo-
ries. In particular, if the Dyson index D is less than two,
none of the Borel sums (including those representing
vacuum-to-vacuum transitions) is ultraviolet infinite.
Thus if in some sense the Borel sums represent the
physical amplitudes, all theories with D(2 (and for
these theories the Lagrangian mist be nonpolynomial)
are super renorm-alisable s.

This is a beautiful result. The important question to
decide is to what extent the Borel sums represent the
physical amplitudes. Do the p-space Fourier transforms
of these x-space functions possess the requisite analytic-
ity and unitarity properties? And, finally, is the high-
energy beha, vior of these p-space Fourier transforms
polynornially bounded, as it should be if physical ampli-
tudes are being represented?

A detailed study of the Fourier transform of the
Efimov-Fradkin two-point function in second order of
the maj or costpling constant G has been made by Lee and
Zumino, m who have concluded (with Efimov) tha, t (i)
the corresponding Borel sum does possess the requisite
analyticity and unitarity properties, (ii) it is not poly-
nomially bounded, and (iii) the well-known lack of
uniqueness of Borel sums of divergent series is rejected
in an arbitrariness of the amplitudes up to an entire
function.

2 The subtractions do not acct whatever causality and uni-
tarity properties the perturbation expansion may have.

' K. Hepp, International Centre for Theoretical Physics,
Trieste, Report No. IC/69/121 (unpublished).

4 F. J. Dyson, Phys. Rev. 'H, 1736 (1949); Abdus Salam, ibid.
84, 426 (1951).That this method carries through for nonrenorm-
alizable theories has been shown in a set of basic papers by W.
Zimmerman (unpublished).5¹ N. Bogolubov and O. S. Parasiuk, Acta Math. 97, 227
(1957); K. Hepp, Commun. Math. Phys. 6, 161 (1967).

6 T. Gustafson, Arkiv. Mat. Astron. Fysik 34A, No. 2 (1947);
C. G. Bollini, J. J. Giambiagi, and A. Gonzalez Dominguez,
Nuovo Cimento 31, 550 (1964); E. R. Speer, J. Math. Phys. 9,
1404 (1968).

7 G. V. Efimov, Zh. Eksperim. i Teor. Fiz. 44, 2107 (1963)
LSoviet Phys. JETP 17, 1417 (1963)];E. S. Fradkin, Nucl. Phys.
49, 624 (1963); H. M. Fried, Nuovo Cimento 52A, 1333 (1967);
S. Okubo, Progr. Theoret. Phys. (Kyoto) 11, 80 (1954) (this
elegant paper was unknown to the authors until its existence was
pointed out to them by Professor H. Lehmann); R. Arnowitt and
S. Deser, Phys. Rev. 100, 349 (1955).

'R. Delbourgo, Abdus Salam, and J. Strathdee, Phys. Rev.
18'7, 1999 (1969).This paper will be referred to as I.

~As shown in Ref. 8, for the chiral x-meson Lagrangian the
Dyson index is zero; for Einstein's gravity theory it equals Inly
)see R. Delbourgo, Abdus Salam, and J. Strathdee, Nuovo
Cimento Letters 2, 354 (1969)g.

B. W. Lee and B. Zumino Nucl. Phys. 813, 671 (1969).
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FrG. 1. Four-point supergraph. Heavy lines represent super-
propagators each of which corresponds to the collection of func-
tions A~", n=1, 2, 3. . ..

(c) The p space m-ethod. Since it is the momentum-
space Fourier transforms of the amplitude (1.2) which
are the quantities of primary physical interest, it is
valuable to have a summation method which works
directly within p space. The present paper is devoted to
the development of such a method, following a pro-
cedure first discussed in this context by Volkov" and
which in its essentials goes back to a discussion (in the
appropriate region of x and e) of the Fourier transform
of (—1/x')" by Gel'fand and Shilov. "In particular we
show the following.

(i) The amplitudes appear to possess the analyticity
structure associated with the unitarity requirements.

(ii) The method immediately gives the asymptotic
behavior for large values of external momenta; and, in
particular, for the two-point amplitude in the second
order in G' studied by Lee and Zumino, we reproduce
their result very simply.

(iii) The discussion of ultraviolet infinities of Sorel
sums in x space is closely parallelled by a similar one in

p space.
(iv) One can develop a graph technique of Feynman-

like diagrams with supertiues representing superpropa
gators $Di (x)j" replacing normal lines corresponding to
Feynman propagators t!,&(x). In p space, the closed-loop
integrations for supergraphs can be performed with the
help of Feynman's auxiliary parameters in exactly the
same fashion as for conventional polynomial Lagran-
gians. Insofar as there is (essentially) just ore super-
graph in each order G~, the topological analysis of
supergraphs is simpler than Feynman diagrams for
polynomial Lagrangians.

4. It would appear from the above that for non-
polynomial interaction Lagrangians with index a&2,
one can construct amplitudes with no ultraviolet infini-
ties and which (if one can extrapolate from the limited
experience so far) are likely to satisfy the correct

'~ M. K. Volkov, Ann. Phys. (N.Y.) 49, 202 (1968).
M. Gel'fand and G. E. Shilov, Generalized Functions

(Academic, New York, 1964), Vol. I.

analyticity and unitarity requirements (unitarity veri-
fied to each order in the major coupling constant G).
There are two remaining problems:

(a) The arbitrariness in the amplitudes which the
Borel-summation method in x space allows or, as we
shall see, its weaker analog, which still exists when the
p-space method is used. The problem is analogous to the
problem of arbitrariness of 6nite renormalization con-
stants in renormalizable theories.

(b) The more serious problem on nonpolynomial
bounded high-energy behavior of the amplitudes. We
believe that any inference in this respect on the basis of
order-by-order calculations in powers of G is likely to be
misleading, and a 6nal verdict on the true asymptotic
behavior of these theories can only be given after a sum-
mation of the series in the major coupling constant G
has been performed. For renormalizable theories, as is
well known, this summation has been carried out for
certain sequences of graphs for the four-point function
and for a number of production amplitudes. The result
is the emergence of Regge behavior for large values of
energy, unsuspected if one had only considered indi-
vidual terms of the perturbation expansion. We believe,
on the basis of certain indicative considerations, that
a similar (drastic) change in the high-energy behavior
also occurs in the present theories when the summation
in G is carried out. The p-space method is extremely con-
venient for summing the supergraphs insofar as the
analytical expressions for the supergraphs resemble
those for conventional polynomial Lagrangian theories.

5. To make the plan of the present paper clear and
to bring out the parallel sets of ideas involved in the
x-space and the p-space methods, we set down here
a brief and nonrigorous summary of the paper.

(2) Supergraphs. Consider

La(u) contains the minor coupling parameter f". The
factor (—)" is included for later convenience. )

It is easy to verify that the G~ contribution to an
amplitude F(xi, . . . ,x~) with E external line can be
written as a sum of contributions from a set of super
graphs constructed as follows.

(a) Take 1V points xi, xg, . . . , x~.
(b) Join all points pair-wise with just one superline

joining two distinct points (x,,x,); associate with this
line a positive integer e;;.

(c) For each line write the factor

(1/e, ,!)PA p(x, —x;)j"*i.

(d) For each point x; write a vertex factor

v(p; I;,+m;) .

Here m; is the number of external lines impinging on the
point x;.
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(e) The contribution of the supergraph to the ampli-
tude equals

Fmlml "(xl»~ ~ ~ xone)

nij
(1.3)

(f) To get the total contribution in order G~, sum
over all partitions, Lmi&. . . ,mNj, of the external lines
with mi lines at the ith vertex such that

Q m;=E.

(g) In the above set of rules we omit all tadpole con-
tributions (lines joining a point x, to itself). This is justi-
fied if we consider instead of (1.1) a suitably Wick-
ordered interaction. Figures 1 and 2 show a typical
supergraph and a superline.

(h) It is clear that the Green's function

Fml m&, m&&" (Xl»XX)
&

with ns1, m2 nonzero, is simply related to

mI—1,m2 —1,m3, ~ ~ ~ ~p
For example,

o!Fo,o,o," (&1)

+(xi x2)F1,1,0, 0,~"

where F(l&) on the right-hand side of (1.4) is obtained
from (1.3) by replacing 6(xl —x2) by XA(xi —x2).

(B) To illustrate the x-space and p-space techniques,
consider a simple example with g;„&..

FIG. 2. Typical graph from the collection which
is represented by a heavy line.

n=o p

(1.7)

f'"e rdf—

region is the region for which P, ~& 0, p,P;~& 0.) Following
Efimov, we can define the integral (1.6) by making
a Wick rotation xo —+ ix4 For. this region in p space, one
therefore needs to consider h(x) for Euclidean x space
only. LFor a zero-mass field l4 (x) = —1/4&rox2 is real and
positive. ] For p-space regions outside the Symanzik
region, we must appropriately analytically continue
(1.6). $1t cannot be emphasized strongly enough that
for divergent series of the type (1.5), one is not starting
by "proving" the validity of the Wick. rotation. Rather,
Euclidicity is a basic postulate —part of the process of
definining the theory. One accepts it for the Symanzik
region; outside this region one Inakes an analytic
continuation. j

(c) Borel s24mmatior4 To giv.e meaning to the diver-
gent sum F(l& ), use Borel transforms and write

=G E ( f4)"-
n=o

(1 4)

Here 2&(N) =f"rt!
(a) The formal series exparision for amplitudes. For-

mally an expectation value like
F(t& ) = df e r(1 l f2t& ) '. —(1.8)

(d) The x space met-hod. The x-space inethod consists
of inverting integration and summation in (1.7) and
writing it as

equals the divergent series:

=G' Q 24!f2"6p"(xi—x2) .
n=O

(1.5)

We are interested in giving a meaning to this divergent
series such that the Fourier transform

I& (p2) = F(6)e'o*d4x (1.6)

possesses correct analyticity and unitarity properties.
(b) The E24clidicity post24late To do this co.nsider the

Symanzik region in p space (p2(0). (When more than
one external inomentum p; is involved, the Symanzik

The expression (1.8) defines the amplitude F(d,). At this
stage we encounter our 6rst problem in the x-space
method; the integrand has a pole on the integration
path at

4x'r'
for the case m=0, r'=x'+x '.

f2t& f2

Ke must dehne how to go around this singularity.
One obvious answer is: Take the principal value

(P.V.). This is because F(h) in the Symanzik region is
a sum of real terms. The P.V. prescription for the inte-
gral representation (1.8) of F(d,) will guarantee this.
Lee and Zumino show that this is essentially the correct
prescription, barring an arbitrariness (to be specified
later) associated with functions like exp[1/(f 2t&l) j
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D= —1, F(A) is given by

00 2- —1

F(h) =O'P.V. d( e rx' x' —l-
27r

for zero-mass fields p. This expression is finite in the
limit x ~ 0. For the interaction Lagrangian V(Q) =ps/
(1+fP) with D=4, however, we recover the ultraviolet
in6nities since the corresponding expression for F(~) is

Here p(s;;) is the product of the vertex factors
v(P;~, s,,+m, ), the factors 1/sinvrs;;, and the factors
1/Lsin~s;;F(s;;)F(s;; —1)) for each superline. The p, 's

are the momenta carried by the external lines at the ith
vertex, and the 8 functions express conservation of en-

ergy and momentum.
Introduce Feynman's auxiliary parameters, using the

integral representation'4

F(h)=d, s dl e-z(1 f'f~)—i.
(—q')' '=

mr(2 —s) s

don~ '8 ~

The question arises: Where in the p-space method is
there an indication of a Dyson index? The answer, as
we shall see in Sec. III, is that it is the Gel fand require-
ment 0&Res(2 for the unique de6nition of the Fourier
transform of 6'(x) which forces us to distinguish be-
tween Lagrangians like V(g)=1/(1+fP) and V(P)
=g'/(1+fP). In order to give a precise meaning to
F(h) for the latter, we are constrained to write it in the
form

F(a) = g "!a-+-,'i
n=2 —too

( f'l~)-
ds — e'dl —(1(n(2).

sings

& n3(p.+Z .)

The terms which appear in the sum P„=s'e!~" are just
the ones which give rise to ultraviolet in6nities.

(k) Higher orders. The great beauty of the p-space
method lies in the similarity of the p-space expressions
for supergraphs and normal Feynman diagrams.

One can introduce Feynman's auxiliary parameters
and carry out the loop integrations. As we shall see
below, the result is an elegant expression for the super-
graph contribution as a weighted average integral of
contributions of conventional graphs. The utility of
such an expression is twofold. (i) The sums of super-
graphs in different orders of G closely resemble the sums
for conventional graphs, and the methods previously
discussed by Polkinghorne, Federbush, "and others for
carrying through the summation can be taken over. (ii)
The discontinuity formulas of Cutkosky —and the proof
of the unitarity relations using such formulas —follow
the conventional lines.

For the zero-mass case, the integral expression for
the Ãth-order supergraph is the following.

Associate with each superline a four-momentum vec-
tor q,, The Sommerfeld-Watson transform of (1.3) in

p space equals

One may now carry through the d4q integrations in

I(p,n;,)

(«pg~;, q; )g'(ps+Pqkl)g"gd'q;, . (1.18)
l&k

The result is identical to the case as if we were dealing
with norma/ Feynman graphs with F=—,'N(N —1) inter-
nal lines rather than supergraphs. (This is because
I(p;,n;, ) is not z;, dependent. ) Such normal graphs we
shall call skeleton graphs. The evaluation of the functions
I(p, ,n;;) for the skeleton graphs can easily be carried
through using the methods of Chisholm"; the 6nal
expression for the amplitud. e F(p,) reads

F(p) =g dh;,p'(s, ,) dn, ,n„,' *"I(P,a,,:), (1.19)

where p' differs from p by the factors

'&' mI'(2 —s;,)

The result for the E-point function evaluated in order
G~ can therefore be stated thus: Draw a normal Feyn-
man graph with internal lines joining all the E points
pair wise. Ke shall call such graphs skeleton graphs.
Introduce Feynman parameters; the result of perform-
ing loop integrations in skeleton diagrams is the stand-
ard Chisholm expression I(p,n, ,) Multiply this by the
factors (n;,)' "~ and the weight function p'(s, ,); integrate
over Feynman parameters n;; and the Sommerfeld-
Watson parameters s,;. One obtains the supergraph
contribution.

(m) Finiteness of the sepergraphs. One may examine
the supergraph integrals for ultraviolet infinities. It is
easy to see that a superficial power count would indicate
that for an N-point function, with F= sr N(N 1) inter-—
nal lines and t=F N+1 loop rnomenta, th—e super-

graphs have no ultraviolet infinities provided each
superpropagator contributes a factor falling like (q') '.
It is crucial to remember that with our Euclidicity

'3 J. C. Polkinghorne, J. Math. Phys. 4, 503 (1963); P. G. 14For a=1 we recover Feynman's formula for normal propa-
Federbush and M. T. Grisaru, Ann. Phys. (N. Y.) 22, 263 (1963); gators.
22, 299 (1963). J. R. S. Chisholm, Proc. Cambridge Phil. Soc. 48, 300 ($.952).
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Fxo. 3. Contribution to the s-wave scattering
amplitude, P(s) expL(const)sg, s)0.

and its behavior near x'=0 and x'= ~ is given by

A(x2 m2)- —1/x2 x2 ~ 0
-(—x')—'tse —"~t—"&, (x'~ ~~. (2.3)

The generalized function 6', which we shall call the
superpropagator, is well de6ned provided one can find
a space of test functions f(x) over which the integral

postulate it is the asymptotic behavior for spacelike q'
for the superpropagators which is relevant here. This
also leads us to stress once again that it would be a
mistake to evaluate supergraphs in each order in the
major coupling parameter G~ for the Symanzik region,
to continue the external momenta to the physical region
and thee sum the series in G~. One must sssm in G~ first
(as indeed has been done for the series in the minor cou-
pling constant f) and then continsse the slm to the Physical
regiorI, .

(n) As stated earlier, the G' approximation to the
two-point amplitude in a typical nonpolynomial theory
behaves asymptotically, as illustrated in Figs. 3 and 4.
Thus, to order G', a simple evaluation for form factors
(Fig. 4) immediately yields physically sensible results"
$F(t)=G2/tsj, while the same approximation in the
timelike region s& 0 gives, for the four-particle scatter-
ing amplitude, a physically unacceptable behavior
LF(s) ~G2e 'j. It is clear that before rejecting non-
renormalizable theories on the grounds of unaccepta-
bility of their predictions in the lowest-order calculation
in the timelike region of external momenta, one must
6rst carry out a summation of a chain of diagrams. This
crucial problem is being studied.

II. SUPERPROPAGATOR

(Az f) d4x Asf(x) (2.4)

1
D(ps, z) = — d4x e'" 5'

Z

(2.5)

which converges absolutely for p'&0. In fact, one can
perform a Wick rotation of the xo contour and replace
the Minkowskian integral (2.5) by an equivalent
Euclidean one which reduces to the form

is convergent and satisfies the appropriate continuity
conditions. This integral can certainly be defined for
f(x)Q S, the space of infinitely differentiable functions
with bounded support, provided z lies in the strip
0&Res&2. (Presumably it can be extended to larger
spaces but we have not examined this problem. ) Fol-
lowing the standard procedure" for defining a general-
ized function that corresponds to an ordinary function
with an algebraic singularity, we can define (A*,f) out-
side the strip 0&Rez&2 by means of analytic continua-
tion. The result is an analytic function of z with simple
poles at the integers z=2, 3, 4, . . . .

The Fourier transform D(p', s) of the superpropagator
must, like the latter, be an analytic function of z. It is
defined on the segment Imz=0, 0(Rez&2 by the
classical integral

( p2) 1/2

As we have been stressing in Sec. I, the basic gen-
eralized function, in terms of which all the Green's func- D(P'8)
tions are ultimately to be expressed, is 6', where z de-
notes a complex number in the strip 0(Rez&2, and 6
is the usual propagator for a free scalar field of mass m,

dr r2Ji(( —p')'tsr)A( —r', m')' (2.6)

(T(g(x)g(0))) =A(x' —i0, m') .

The function A(x2, m2) is analytic in the x' plane cut
from 0 to +~. Explicitly,

6(x2)m') =mEt(mg( —x2))/42r2+( —x') (2.2)

where Ei denotes the modified Hankel (or Macdonald)
function. The function 6 is real and positive on the
negative real axis. It has no zeros in the finite x' plane,

"That a typical form factor falls so fast is a welcome result,
It is perhaps not a surprising result, since it has already been
pointed out in the literature that falling form factors are most
likely to be consequences of the existence of multiparticle inter-
mediate states. See, for example, J. S. Ball and F. Zachariasen,
Phys, Rev. 170, 1541 (1968); D. Amati, L. Caneschi, and R.
Jengo, Nuovo Cimento 98, 783 (1968); A. O. Barut and H.
Kleinert, Phys. Rev. 161, 1464 (1967); C. Fronsdal, ibid. 171,
1811 (1968).

De(p2, z) =sr(42r)2 "
sinsrz F(s)I'(s —I)

(2.7)

which clearly exhibits the poles at s=2, 3, 4, . . . . (It
shows in addition the rather unexpected feature of
zeros at z=0, —1, —2, . . . . We havenotyetbeen able

after performing the angular integrations. It is clear
that (2.6) converges for a wider range of s than does
(2.5): 0&Res&2, —0o &Irns& ~. The analytic con-
tinuation of D(p', s) outside this strip will be considered
below. It will be shown that like the functional (A', f),
it has poles at the integers z=2, 3, 4, . . . .

For the zero-mass case we can express the integral
(2.6) in terms of elementary functions and so perform
the analytic continuation explicitly. The result is
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to prove that this is true also of the massive super-
propagator. )

The asymptotic behavior of the superpropagator
both in P' and in z is of particular importance. For
~P2~ ~~ with z fixed, we shall assume that D(p', z)
can be approximated by Ds(ps, z). For

~
z

~

~~ with p'
Axed, the situation is less clear. The behavior of the
zero-mass superpropagator

Ds-(-P')*-'i -Zi-' *-' [a gZi (2r (2 g)

may or may not provide a useful guide to the massive
case.

Consider the structure of D(P', z) in the finite z plane
with p &0. The integral representation (2.6) is valid
only in the strip 0(Rez(.2. In order to continue to the
right of Rez=2, we must modify the behavior of the
integrand of (2.6) at r =0. We propose to subtract and
add the first E terms of a Maclaurin expansion of J~.
Indeed, if we write

J (( p2)1/2r) 1 /ir 1 (1p2r2)2—+R~(p'r'), (2.9)
( P2)t/2/ 2 s=o P!(fr+I)!

then (2.6) takes the form

1 2

D(P2 z) 2~2 Q dr r2s+2+( r2 m2)g
/=o k!(k+1)!

FrG. 4. Contribution to the
electromagnetic form factors F(t}
~f/t2, t&0.

It is the convergence or lack of it at the upper limit
which controls the analyticity in P'. We shall be able to
make analytic continuations by displacing the r contour
in (2.12). The integrand has no singularities in the
finite plane, and for large values of ~r

~

it can be approxi-
mated by

+42r2 Jr rs+N(psrs)Q( r2 m2)z (2.10)

The term involving E~ is easily shown to converge in
the extended strip

assuming Re(ps)'/2) 0. Let us keep z fixed in the strip
1&Rez &2. It is clear that we can rotate the r contour
through the angle 0 without affecting the value of the
integral, provided we maintain the condition

ReL(mz —QP2) e*'])0,
0&Rez&N+2 (2.11)

or, otherwise expressed,

4x'
D(P', z) =

(p2) 1/2
dr p' Il((p2) 1/2y)Q( r2 m2)z (2.12)

since near r =0 we have 212 (Psrs) r2N. The other terms
in (2.10) will of course exhibit poles when continued out
of the strip 0(Rez(2. (This can be shown by the
method of Gel'fand and Shilov. ) The important point
here is the fact that the residues of the poles at z =2, 3, 4
are PolyrMmtals in P'. (This is simply a reffection of the
well-known fact that the ultraviolet divergences mani-
fest themselves in the coefficients of a polynomial. ) By
increasing N indefinitely, we can thus prove that D(p', z)
with p'(0 is analytic in the half-plane Rez) 0 except
at the points z =2, 3, 4, . . . where it has simple poles,
the residues of which are polynomials in p' (of order
z —2). The structure in the half-plane Rez(0 is more
dificult to unravel and we have not attempted this.

Consider now the structure of D(P', z) in the P' plane.
It is trivial but helpful to continue into the strip
0&Re(p')'/'(m Rez by expressing the integral (2.6)
in the modified form

This follows from the absence of singularities of 6' in the
r plane apart from the branch point at r=0 where the
convergence does not depend on arg(r). Starting with
the original contour, 0=0, we have analyticity in the
half-plane

(I) —-'22r (arg(mZ —&ps) & -2'2r .

Increasing 0 continuously to +212r rotates the conver-
gence domain into

(II) —~&arg(mz —gp2) &0,

while decreasing 0 to —~x rotates the domain into

(III) 0(arg(mz —+ps) (2r

The regions (I)—(III) so obtained can be pictured in the
plane of QP as in Fig. S. The dashed lines indicate
boundaries between the regions. Thus it appears that
the integral (2.12) defines a function which is analytic
in the half-plane Re(+ps)) 0 except at the point +ps
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— .Be+ps

A„a(—r', 0) = —,a)0
42r2 r2+a2

(2.15)

mass case where it is analytic with zeros at s=0, —1,
—2 ) ~ ~ ~ ~

For large values of
~
p'~ it is presumably adequate to

approxima. te D(P', s) by the zero-mass form (2.7). For
large values of

~
s~ it may or may not be possible to use

(2 g)
Finally, let us consider an alternative regularization

of the superpropagator 6' which can be used in the zero-
mass case. (This regularization will be referred to in
Sec. III.) Introduce the regularizing parameter a to
define

FIG. 5. Structure of the superpropagator in the complex Qpz
plane. The solid line represents a branch cut and the dashed lines
mark out regions in which the superpropagator is represented by
distinct contour integrals.

which has no singularity at r =0. Substituting this form
into (2.6), we find the corresponding momentum-space
superpropagator

=ms, where it presumably has a branch point. The dis-
continuity across the branch cut is given by D&& —Di&i,
where Dii and D&iz are defined by the contours with
8=222r —0 and 8= —222r+0, respectively. Equivalently,

D-.(P' s)

(2~)2—2z»z r2J (( p2) 1/2r)
dr-

( p2)1/2 (r2+O2)z

4m'
Drr(p', z) =

(p2) 1/2
du u2J1((P2) '"u)

2(4~2) 1—z ( p2) 1/2 z—2

K 2(a( —P') '/') (2.16)
I'(s) 2a

»»»a "'/I»»))'X—
Sm- u

4m'
Drrr(p', s) = — du u'Ji((p') '/'u)

(p2) 1/2

im Hi&"(mu) '

(X
8m n

(2.14)

D...(p', s) = (4~) 2—2z

sin2rs I'(2) I'(s —1)

442p2

s —1 4

2»/» —1)( 4 ) I'(3 —»)( 4)

and, as was to be expected, the fixed poles at a=2, 3,
. . . have disappeared. In order to see what happens in
the limit o; —+ 0 let us assume that s is not an integer and
replace E, 2 by its series expansion. The result is

These formulas are valid for 1(Res(2. If we add and
subtract the Maclaurin terms as in (2.10), they can be
extended in an obvious way into the half-plane Res& 2.
Presumably their range of validity can be extended
down to Res=0 without difficulty (at s=1 the branch
point should reduce to a simple pole).

To summarize, from the integral representation (2.6)
and its modifications (2.10), (2.12), and (2.14) we deduce
that the superpropagator D(p', s) viewed as a function of
two complex variables has the singularities: (a) fixed
poles at a= 2, 3, . . . , the residues of which are poly-
nomials of order s —2 in p', (b) a singular surface P'
= s'm' which manifests itself as a branch point in the P'
plane except when a= 1, in which case it becomes a sim-
ple pole. The discontinuity across the branch cut is a
regular function of s—at least for Res)0. Whenever
s is an integer the singularity surface p'=s'm' corre-
sponds to normal thresholds as implied by unitarity.

Ke have no clear idea of the behavior of the super-
propagator for Res~&0, except, of course, in the zero-

1»(s 1) f» p2 3—z

6—2z—0- ~ ~ 4

r(4 —.) l
(2.17)

III. REGULARIZED PERTURBATION SERIES

Consider now the problem of developing perturbation
expansions in the nonpolynomial interaction V(P). As

In the limit a —+ 0 every term except the first vanishes
if Res(2. In this way the superpropagator (2.7) can be
obtained as the limit of a regularized function.

If, on the other hand, we were to take 2&Res&3, then
the limit would be singular:

D-.(P',s) ~ De(P', s)
—(42r2) 1—»444

—2z/(s —1)(z —2) . (2.18)

This means that contour integrals involving D„a(p2,s)
must be moved to the left of Res=2 before the regulari-
zation is removed.
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discussed in Sec. I, we could begin formally by expand-
ing V in powers of P and then, for each power P", de-
velop the usual series. I.et us therefore suppose that the
interaction Harniltonian, considered as a function of the
complex variable P, is analytic in some neighborhood of
/=0 so that we can write

v(~) =Z (./!)(-~)-, l~l«. (3 1)

It is convenient for our purposes to consider, instead of
the usual many-body Green's functions, the equivalent
set of amplitudes

(—)s"Pm, ...m~(5) =(T(V&"2&(y,) V&"»(y~))), (3.2)

dele-"-'v(@)
I
& (3.5)

distorting the f' contours or by giving the 6's suitable
imaginary parts.

The precise details of the method used to define the
functions F~(A) are not important since we are using the
Sorel integrals only at an intermediate stage of our
program. The essential step will be the replacing of the
sums over 22;; in (3.4) by contour integrals over s;;.
To do this we need to interpolate the expansion coeffi-
cients v„byan analytic function it(s). The existence of
such an interpolating function is assured by the
condition"

"+'" ds 2 (s)
QZ

;„sin2rs I'(s+1)
(3.6)V(~) =!'

F„,...„(A) P v(mi+P 222;) 2 (m~+P 22~,)

f'or some range of n. Indeed, if (3.5) is satisfied then V(2t )

substitute the power series (3.1) into (3.2) then, after may be rePresented by the Mellin integral

some straightforward manipulations, we obtain the
series

ni

XII l~( '—')j""/ ' ', (33)
where it(s) is an analytic function defined by the integral

where the indices i, j, run from 1 to E and the e;;=a;;
from 0 to ~. %e shall suppose that e;;=0 since the
factors A(0)"*' produce no more than a rather simple
renormalization of coupling strengths which we can
regard as having been done already. '~

For the interactions we shall be considering, the series
(3.3) generally diverge. Thus, for example, correspond-
ing to the interaction (1.4) we have e(n) =Gf"n! and so
in the simplest case X=2, m~ ——A&2 ——0,

2(s) =
r( —s)

dy y 'V(y), -R-es =~. (3.7)

ms&n(. mp, (3.8)

where np and e& are determined by the limiting behavior

In order to compare the integral representation (3.6)
with the power series (3.1) we have only to perform the
inverse Watson-Sommerfeld transformation. It ap-
pears that n is constrained by the minimum value ep of
22 appearing in the sum (3.1), i.e.,

poo(g)~G2 p f2n22 Ign
n=p

V(~)-~-, ~-0
OD (3.9)

Fml" mN (~)
00 00

g dt „er' p 2(—mi++22;, )
i( j' n;&.—p

which clearly diverges. However, we can easily regard
such series as asymptotic expansions and direct our at-
tention to the problem of defining the amplitudes which
are so represented. As a first step towards such a defini-

tion, let us consider the Borel sum of (3.3),

)We shall be assuming later that V(@) can be expanded
in powers of 1/p for lpl)E2. In this expansion the
lowest power to appear is —222.j

To avoid the notational obscurities consequent upon
the use of general formulas like (3.4), we devote the
remainder of this section to a detailed treatment of the
second-order amplitudes,

+mlm2 (~)

Lf a(X —~)j" 2

(3 4)
oo {fg)n

df e r Q v(mi+22)v(m2+n) —.(3.10)
p n=p {22!)'

The summations over e;; are by this method —or some
generalization" of it—made to converge so that we are
left with the problem of integrating over the t;; The f'.
integrals may well be unde6ned since the analytic func-
tion in the integrand can develop singularities on the
path of integration. These can always be avoided by

"R. Delbourgo and K. Koller (unpublished).
"Examples of such generalizations are given in Refs. 7 and 8.

Formal generalizations for the higher-order amplitudes
can usually be made without difFiculty. New features
connected with the problem of defining products of
superpropagators may appear in the higher orders;
about these we can draw only tentative conclusions.
These problems will be presented in Sec. IV.

' E. C. Titchmarsh, Theory of Folrier IntegraLs, 2nd ed. (Oxford
U. P., Oxford, England, 1967), p. 46.
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It will prove convenient in the following to have an
auxiliary complex variable X at our disposal. Let us
therefore consider the functions Iia(XA), bearing in
mind that we shall take a limit X ~ 1 at the end. Let
us now replace the summation over 22 in (3.10) by a con-
tour integral using the il(s) of (3.7), analytically con-
tinued, to interpolate the coefficients v„,

I mlm2 (l~A) d| e
—r(-,'i)

Sin%3

a (z+ml)a(z+mo)
X (—X)'OA)' (3.11)

1(a+1)'

=1'=21
+'" dz a(s+mi)v(z+mo)

(—X) '6' (3.13)
Sin&3

where o. lies in the range

~(+1)

3f,«&3I; (3.14)

here M& denotes the position of the singularity of the
integrand nearest on the left to s =3II.This will generally
be a pole at z=M —1 due to the factor (sin2rz)

However, if 3E=1 or 0, this will be a pole from one or
both of the factors il(s+mi) and v(s+m2). Let us defer

these questions until we come to consider the construc-
tion of asymptotic series for the momentum-space
amplitudes.

In formula (3.13) we have thus obtained an integral
representation of the Mellin type involving the super-

propagator 6'. If M~(2, then this integral defines

unambiguously the generalized. functions Fa(XA). If,
on the other hand, 3f&~&2, then it will be necessary to
translate the contour to the left of the line Res=2 and,
in so doing, pick up the poles at a=2, 3, . . .LMi]. The
part of the generalized function defined by the new con-

tour is unambiguous but the separated terms, involving

where I' denotes a contour coming from +~ which en-

circles the integers z=M, M+1, M+2, . . . , in the
negative sense, and returns to ~. The non-negative
integer 3II is fixed as the lowest power of 6 appearing in
the sum (3.10). It is defined by

M =max(22o —ml, 22o —m2, 0) (3.12)

Let us now open the contour F after the fashion of
Watson and Sommerfeld. This is possible because of
the postulated existence of the Mellin representation
for V(@).The factor I'(a+1) ' produces a strong damp-

ing effect for
~

s
~

—2oo,
~
args

~

&—',2r. Once the contour has
been opened, however, the factor

I'(a+1)—' exp(2r
~

Ims
~ )

acts to weaken convergence. Hence it is advisable at
this stage to interchange the f and s integrals and per-
form the |integration to obtain

+mlm2 (~A) a (mi) a(m, ) (22r) '8'(p), (3.16)

which is the Fourier transform of the contribution of the
pole at a=0. Clearly (3.16) corresponds to a discon-

nected graph. The contour method apparently picks out
the connected graphs only.

Let us now consider the problem of constructing an

asymptotic series to represent the function Fa(po, X).
To simplify the discussion let us suppose that 3f=0 or
1. (If M)&2 the necessary modifications can be made
without difficulty. ) For large spacelike p', we shall use
the zero-mass approximation for D(p', s) and write

(3.15) in the form

F, ,a(po, X)

+'" dz a(a+m, )o(s+mo)
=21

I'(a+1)'
a( —&)'(-p')' '

(4~)'-'
sin2ra I'(z —1)

+'" dz a(z+mi)a(a+m2) a
=21

;„sin2rz I'(a+1)'
Xl'(2 —a)(—y)2( po)2—2(42r)2—» (3 17)

Sln7I 3

O', 6', . . . , h~~&~, are not. They carry the usual ultra-
violet divergences.

A simple illustration of this effect can be given in the
zero-mass case using the regularized superpropagator
D„,(p', z) in place of A' in (3.13). This propagator,
given by (2.16),has no s poles and in the strip 0&Res & 2

it reduces to the correct form (2.7) in the limit when the
regularization is removed. However, if Res) 2 then
singular terms appear when the regularization is re-
moved. That is, the Fourier transform of Fe(XA) is well

defined when the regularization is removed only if the
contour is contained in the strip 0(Res&2.

Assuming now that 0(o.(2, we can immediately
write down the Fourier transform of Fa(XB). It is given

by

P„,„,a(po, z) =-',.
~;„sinews

a (a+mi)a (s+mo)
X (—X)'D(po, z) . (3.15)

I'(a+1)

At this point we must remark that the continuation to
s=0 of D(p', z) must be treated carefully. For the zero-
mass case the explicit formula (2.7) gives

D(p', 0) =0.
On the other hand, we should expect the Fourier trans-
form of A'=1 to be (22r) P(P). This means that if, in

the integral representation (3.13), the contour lies to
the left of x=0, i.e. , if 3f=0, then before defining the
Fourier transform we must translate the contour to the
right of a =0 where we can use (3.15) and, in compensa-
tion, add the term
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Our aim, in order to get a series in inverse powers of p,
is to collapse the contour onto the negative real axis—a
mirror image of the conventional Watson-Sommerfeld
contour on the positive real axis. By our assumption
that V(!1) can be expanded in inverse powers of !3)) for
suKciently large

~
P

~ &
it follows that v(s)/I'(s) is damped

with sufficient strength for the inverse Watson-Sommer-
feld transformation to go through in the half-plane
Res(0. The only factor in (3.17) which hinders this
operation is F(2—s), which explodes. However, this can
be removed by the Borel trick. That is, we can write

ao d| a+i co—e "(-,'i)
P t n—izo Slnirs

'V Z Sty'V 3 m2 S
X —(—1)'I ——

~

(4~)' " (318)
I'(2+1)2

Fmimz (P Z&)

The dominant term as p' ~~ is going to come from the
pole or dipole of v(s+mi)v(s+m2) furthest to the right.
For simplicity let us suppose that the poles of v(s) occur
at negative integer values of s. This happens in many
cases of interest and it is a consequence of requiring
that V(P) has a Laurent expansion at!3) = ~. Suppose

u(n)
VQ) =2 -(—~)-".

n

Comparing this with the integral representation (3.6),
we find

I'(s)
v(s) = — —u( —s),

r( —s)
so that, in particular,

v(2+m)

r(s+1)
u(-s —m)= —(s+m) (s+m —1) (2+1) (3.19)
1(1—.—m)

which vanishes for s= —1, —2, . . . ,
—m. It will vanish

also for
s= —m —1, . . . , —m —n2+1,

where n2 denotes the lowest power of g occurring in the

regular part of the Laurent expansion of V(1/!t), i.e.,
u(n) =0 for n=0, 1, . . . , n2 —1. The poles of the inte-
grand of (3.18) therefore occur at

2= —S—1, —S—2, . . . ,

where 2V is given by

1V=max(mi, m2, mi+n2 —1, m2+n2 —1) . (3.20)

Hence we can write
"di (n —1)!—er 2 ( )"

p f n N+i (n —ml 1) I

u(n —mi) (n —1)! u(n —m2)
X

(n —mi)! (n —m2 —1)! (n —m2)!

Fm)mz (P y&)

n+2

&&(—1),)"— —— (42r)'&" '& (3.21)
7r 2

((n 1)!j'—u(n mi) u—(n m2)—
X

(n —mi —1)!(n —mi)!(n —m2 —1)!(n —m2)!

4~2) n+2

Xo!z+1)!(— i
. !3.22)

2 j
There are two impoi. tant aspects of this formula. Firstly,
the leading term in Fs turns out to be (—P') ~ ' where
X is given by (3.20). $1f 3II~& 2 we must include addi-
tional terms corresponding to the poles at a=1, 2, . . . ,
Mi. These are (1/p') lnp' (p')~' 'lnp' j Secondly&
the asymptotic series (3.22) is single valued in 1)..

The functions Fs(P2, 1).) defined by the integral (3.15)
are not single valued in 'A. Generally they have a loga-
rithmic singularity at X=0. This can be seen if we col-
lapse the contour of (3.15) onto the positive real axis
and pick up the residues of the di pates a,t s=2, 3, . . . .
I et us use again the zero-mass expression for the super-
propagator to write

Finally, to obtain the asymptotic" series we interchange
the t integration with the summation. We obtain the
result

00

F-.-, (p',1)=- 2 ~"
~ n=N+1

( p2)z —2+'" ds v(s+mi)v(s+m2)
( 1))z

;„sin2rs I'(2+1) sin2rsl'(s) I'(s —1)

v(1+mi)v(1+m2) 1 8 -v(2+m, )v(s+m2)( —X)*(—P')* '

~ -=2 as 1(2+1)r(s)r(s—1)

v(1+mi)v(1+m2) 1 v(n+m, )v(n+m2)( —'h)" (—P')" '
1).+ —Q

p' 7r n=2 n!(n —1)!(n —2)!
v'(n+mi) v'(n+m2)

X + —)P(n+1) —)P(n) —)P(n —1)+ln( —1).)+ln( —P'), (3.23)
v(n+mi) v(n+m2)

F„,„zs(p2,X) =-,'i

' We shall not attempt to prove that the series (3.22) is indeed asymptotic. Presumably one could ensure this by imposing
appropriate conditions on V(p).



A. SALAM AND J. STRATHDEE

which is just a polynomial in X.
The form (3.24) which has been derived for the zero-

mass case is probably true in general. Its validity de-
pends only on the feasibility of the inverse Watson-
Sommerfeld transformation together with the fact that
D(P', s) has simple poles at the integers s=2, 3, . . . .
These combine with the zeros of sinvrs to make dipoles.

The dispersive part of F~ is certainly not an integral
function of X and we shall have to adopt some definition
of the limit P ~ 1. It is at this point that a basic uncer-
tainty enters the program. In the absence of guidelines
we can interpret limi i (—X)' by an average of the
terms

ei(2k+1) ~z k=O, &i, &2, . . . .

That is, we should write

(P') =2 ~~I" '(P' —~'""+" ) (3 26)

with arbitrary complex parameters aI, . Substituting the
form (3.24), this reads

&mama(P ) = (P &tc)&mzm2(P q 1)

where P(s) =P'(s)/P(s). That is, we can write

E„,,~(P', X) =A,„,(P', 'A)+in( —X)8„,„,(P',X), (3.24)

where A and 8 are entire functions of X. Moreover, 8 is
an entire function of p' as well.

That B(P',X) is an entire function of g' can be seen
from the fact that the discontinuity of E is an entire
function of X and must therefore come from the func-
tion A(P', X). Considering the massive case, we can use
the property that the absorptive part of the super-
propagator, D(p', s), vanishes for p'((ms)' to evaluate
the absorptive part of F~ by translating the contour in
(3.15) to the right of Res = (QP')/m for given QP') 0.
Only the poles separated in this way can contribute to
the discontinuity, which is therefore given by

discF, ,~(P',X)

t Vu /m) Vm1+nnm2+n
2

'A" discD(p', e),
n=1

This corresponds to the choice advocated in earlier
references (Efimov~ and Paper P) and it may receive
justification when we, are able to impose the unitarity
requirement in higher orders.

The final choice of amplitude F(p') represented by
(3.27) and (3.28) can be expressed by the integral

~mzm2(P ) = 2&

+'" i (s+mi) v(s+m2)
ds D(P' s)

P(s+1)$00
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IV. HIGHER ORDERS AND FEYNMANIZATION
OF SUPERGRAPHS

Corresponding to a diagram with E vertices which are
pairwise connected by superpropagators there exists
the momentum-space amplitude

dx, dx~e" 'g A(x —x) '

= (2~)'~(ZP)D(Pi P~; »2 ) (4 1)

&
—2&H ezi j—g—K (N—1)Rez

if we assume for simplicity that Res,; is the same for
every s;;. This singularity is compensated by 4(N —1)
integrations. Hence we have superficial convergence if

1.e.)

E(X—1) Res(4(E—1),

Res(4/Ã. (4 2)

An equivalent representation of the amplitude (4.1)
is given by the momentum-space integral

depending upon E—1 independent momenta and
i21V(1V—1) independent complex parameters s„;.The
singularities of this integral occur on the various light
cones (x;—x,)'=0. An over-all convergence condition
can be obtained by considering the behavior of the
integrand when all components x; approach 0 simul-
taneously. This gives the over-all singularity

+ (Z(2&+1) )~--.(P'1) (327) D . . . . , . . . )k i' ' ' x) si2 n (d~) n D(~„,„), (43)
loops i(j

so that there are really only two arbitrary constants.
There is one very important constraint to be imposed.

That is unitarity. The imaginary part of E(p') should be
given by (3.25) with X= 1, and it should vanish for p'(0.
This gives us the conditions

P aI, =1 and i7r P (2k+1)al, ——b, (3.28)

where b is real. Thus it appears that the Fourier trans-
form of the generalized function F(A) may contain one
arbitrary parameter b. Possibly we could take 6=0.

where D(q', s) denotes the superpropagator of Sec. lI.
The i2(A (E—1) momenta q;; associated with the super-
lines are expressed in the usual way by linear combina-
tions of the loop momenta k1, . . . , kg and the external
momenta Pi P~. The convergence of (4.3) can be
justified by the same power-counting arguments as
were used above. Using the asymptotic form D(g', s)

(—q')' ', one arrives again at the condition (4.2).
The problem of analyzing higher-order contributions

is a very standardized one. For each E there is one and
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only one skeleton graph. This graph is obtained by
joining the vertices in pairs —one line to each pair. The
resulting diagram has 12K(cV—1) lines and 2(Ã —1)
X(cV—2) loops. The amplitude which corresponds to
this diagraIn would be highly divergent if ordinary bare
propagators were associated with the lines. It is the
possibility of taking Resij sufficiently small which makes
the amplitude converge when superpropagators are
associated with the lines. The analytic function dehned

by this convergent integral can then be continued out-
side the original domain Rez;, (4/N exactly as was done
for the superpropagator itself.

In this way one is led to define the higher-order
momentum-space amplitudes by the multiple contour
integral

Fml" mN (pl' ' 'pNr ~12' ' ')

where aN(z12 ) denotes an entire function de6ned by
the sum

aN(z12. ) = Q a„„...N exp(in. Q v„,",,) . (4.7)

It is necessary to investigate in what way this "ambigu-
ity function" (which resembles the signa, ture ambiguity
in Regge theory) is constrained by the requirements of
unitarity.

The unitarity problem is of course an extremely in-
tricate one and so we shall confine the discussion to a
conjecture about normal thresholds. To this end let the
E vertices be divided into two sets, 1, 2, . . . , M and
1', 2', . . . , M' (M+M' =Ã). If the amplitude

D(P1 PN, z;,), considered as a function of the variable

(pl+ +pkr)'=(pl + +pkr. )' has a branch point
at

M ~ ~ii' (4 g)

~(~„+gz„,)D(p, . . .p z„.. .) (4 4) and if the discontinuity across the associated cut is given
vertices & by the integral

Fml ~ ~ mN(pl' ' 'pN)

F '(pl . PN —&'"'" ) (45)

where each v;; takes the values +1 and —1. The coeK-
cients a„„... are to be chosen consistently with unitarity
but are otherwise arbitrary. Substituting the represen-
tation (4.4) into (4.5) one obtains the form

Fmt" mN(pl' ' 'pN) = d~ij
II li
c sic r;;rim;;+1))

X II &('+k+Q zkl)D(pl' ' 'pNr z12 ' ')
vertices

XtiN(z12 ) (4 6)

where the s contours lie initially in the strip 0(Resij
(4/E. The auxiliary parameters X;; must then be set
equal to +1, and it is at this stage that some ambiguity
can enter the problem. The general procedure should be
to define the true amplitude as a linear combination of
the possible limits Xij ~ 1, i.e.,

XD(p,+p ql;, . . . , z,,)II 0(q;; ) discD(q, ,',z,,')

XD(pl +E ql', , z, ,'), (4.9)

where the variable g;j denotes the four-momentum
carried from vertex i in the first set to vertex j' in the
second, we wouM have a situation for supergraphs
similar to the I andau-Cutkosky discontinuity for-
mulas for normal Feynman graphs. The plausibility of
(4.9) can be seen when we consider that the discon-
tinuity (4.9) is a regular function of the z,, which van-
ishes when the real part of P z,, is taken sufficiently
large. This follows from the properties, established in
Sec. II, of the superpropagator D(q', z).

If the expression (4.9) for the discontinuity of

D(P1 PN, z;,) is used in conjunction with the represen-
tation (4.4), it is possible to give the discontinuity of F~
in the form

(fz (—X )**i
discF ... (p ~ ~ p; g,,) = II —i II li(212„+pz 1) discD(p ~ ~ ~ pN', z;,)

lines SlnlrZt& I'(Zt&+I) vertices l&A'

dz" (—X")**'r

II l — — II ( +2 ) II (dq*')~(p + "+p 2q")-
lines SjnlrZ~& I'(Z 1+1) vertices i& It,

XD(Pl+2 q', z')lI ~(q") dlscD(q"' z")D(Pl+2 ql', ";z' ') (4 1o)
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The appearance of this formula can be simplified con-
siderably by translating to the right the contours s;;
corresponding to particles exchanged between the two
sets. In the course of this translation simple poles due to
the zeros of sinus„will be crossed and their residues
must be collected. Ultimately, when the contours have
been pushed far enough, the contribution of these con-
tours to the discontinuity will vanish. The discontinuity
is thereby expressed —for given (pl+ +pM)'—by
the residues of the finite set of poles at s;, =n;;. which
have been crossed. The result is

disc+ml ~ mN (pl' ' 'pNj liij)

nj1~ ~ I

&&I', ,;„,„,...~(p;+P q, ,, . . . , X,'; ), (4.11)

where Q„(q') denotes the ll-particle phase volume.
A similar factorization of the discontinuity into the

products of lower-order amplitudes will be obtained for
the true amplitude (4.6), provided the entire function

in Nth order can be expressed in the form

+me "mN(pl' 'pN)
0

II ~ 'F- -- ( ".)
I D(,P)~

&&C(n) ' exp' i, (4.13)
kc() )

D(q', s) = dn D(n, s)e &', Req'(Re(mz)'. (4.14)

where C(n) and D(n, p) are functions which are com-
pletely determined by the structure of the skeleton
graph, which, for these considerations, will always be
taken as the set of N vertices pairwise connected by
—',X(X—1) lines. The functions C and D are those de-
6ned, for example, in Ref. 22 with the stipulation that
zero-mass bare propagators be used in the de6nition.
The function F,... N(n». ..) contains the dynamical in-
formation and also the ambiguities. It will be defined
in the following.

The derivation of the integral representation (4.13)
proceeds in the following way. I irstly, since the super-
propagator D(q', s) is analytic in the q' half-plane Req'
(Re(ms)' and is bounded there by a power, it can be
expressed as a Laplace transform

factorszes according to The new amplitude D, the n representative of the super-
propagator, is obtained by inverting this integral. For

zij ™n~j' Q~ )

(For the two-point function discussed in Secs. I and III,
a'(s) =cosirs+b sinlrs. ) One possible form for general
aN which satisfies (4.12) is

dq'e ~&'D(q s) P(Re(ms)'

~"(s;~)= II "(s',),
dq'e —~" discD(q', s),

2%1 (ms) '
(4.15)

though this may not be the most general one. This is
a strong result and would imply that there is just one
arbitrary constant b in the whole theory. A result simi-
lar to this but not as strong has been claimed by Efimov,
who shows on the basis of unitarity that, in his recent
formulation" of the theory, there is just one arbitrary
function b(s) associated with superpropagators.

Another method of attack on the unitarity problem
which may give more insight is to eliminate the loop
momenta from (4.3) in favor of a set of Feynman param-
eters. As will be seen below, this method has the ad-
vantage of making a sharper separation between the
factors which depend on the details of the interaction
and the kinematical factors which are common to all
interactions. In fact, the momentum-space amplitude

D(n, s) o. ~O.
I'(1—s)

(4.16)

For ~n~
—+~, )argn[ (~ir, one finds

D(n,s)- e
—&m'&' Res') 0 (4.17)

where the latter form is obtained by collapsing the
contour onto the cut which extends from (ms)' to +~
in the q' plane. The fixed poles at a=2, 3, 4, . . .con-
tained in D(q', s) are absent from its discontinuity and
therefore also from the new amplitude D. It is clear that
D, considered as a function of complex n, is analytic in
the half-plane Ren) 0. In general, there is a singularity
at o. =O, where

"R.J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polking-
2' G. V. Efimov, Kiev Report Nos. ITF 68-52, ITF 68-54, and horne, The Analytic S-3fatrix (Cambridge U. P., Cambridge,

ITF 68-55 (unpublished). England, 1966), Chap. II.
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theprovide md )0. For the zero-mass case,

(4zr)' —'*
D(n, s) = n' (4.18)
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loopslines
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lvertices

lines
(«zj)Fmz "mz) n12' ' ' j )

D(n, p)
)&C(n) ' exp

C(n)

&oo(p')

=G'f' P.V.
0

dn — zrbf'(f'p'+2) er'&'

(n —f')'

where the new amp}itude FF~ is de6ned by

F (n12, l) 12 )m]. ~ ~ em~

f p +Q( fpp2)
&oj 'j ))p2/

+zrbG'f4(f'p'+2) e~'"',
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Jlines 2zrz
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behaves asymptotically like (1/p2)2 provided
~
argp'~)0. The term containing ti, an entire function of P',

dominates the asymptotic behavior if ~arg(P')~ &~22r.

This may be a good reason for taking b =0.
In general, the result of this averaging of limits will be

an integral like (4.13), with F given by

Fm1" m~(a12 ' ' ' )

a F ~(n», —e'"» ), (4.24)

a limit which must be interpreted in the sense of gen-
eralized functions. That is, F(n) will have prescribed
singularities such as P.V. (Q —Qp) or 5(n —o.p) on the
integration contours.

Before discussing the unitarity problem it will be use-
ful to have yet another representation at one's disposal.
In the power series (4.23), one can substitute for the n
representative of the superpropagator the form

class of theories considered in this paper because the
spectral function defined by the sum (4.26) tends to in-
crease like expK'.

Although the integral representation (4.25) is not
valid for the entire range of the o,"s, it provides a very
useful tool for the analysis of singularities in the mo-
mentum-space amplitudes. This is because, according to
the integral representation (4.13), only the behavior of
F(n) for /arge c2 is relevant to the finite P-space structure.
Thus if the o.-space integrals are divided into two pieces
0(o.;j(E and R(o.;j(~, then the former yields an
eagre function of the momentum variables while the
latter yields the expression

~my" mZ (pl' ' 'pX)

D(,p)~g (d,,)F,„,... „( )C( ) 'exp
g C(n) P

g (de'ij )orna" m~(&12 ' ' ')
D(n, 22) = d~'0(~' (21m) ')—e "'0 (~—')

where Q„(~2)denotes the 22-particle phase volume. One
obtains in this way, after making an interchange of the
Kzj integrals with the Rzj sums~

Fmt "m~(o'12' ' ' )

g (dg, ,2)o, „(~122,. )e z ", (4.25)
lines

n12 ~ ~ ~ lines S$J ~
. . f

X Q o(m&+&u&i). (4.26)
vertices

It must be emphasized, however, that the spectral in-
tegral (4.25) converges only for sugcieutly large n,;
where it defines an analytic function. If the n's are de-
creased until a singularity of the function I' is reached,
then (4.25) will of course diverge. This happens for the

where the sPectral furcctio21 o. is given by the finite sum

2. . . 30 m]," m~ K12

8(~' —m'22 ')0 (~ ')

D(~,p)x rr (~.„)p~-)--p ' -z.„.„)
12 C(n)

(4.27)

The integral over o.,j contained here approximates to
the simple I'eynman amplitude corresponding to a dia-
gram with E vertices joined pairwise by lines which
correspond to the propagation of bare particles with
mass K 'j It certainly has all the usual singularity struc-
ture that is proved for perturbation amplitudes. Since
the amplitude (4.27) is just a summation of these simple
processes weighted by a spectral function which is itself
given by a sum of simple phase-space integrals, it seems
at least plausible that the requirements of unitarity are
met.

It must be remarked, however, that the formal inter-
change of K2 and e integrations employed in arriving at
the result (4.27) is not usually permissible. The z2 inte-
grals as written are divergent. This difficulty can be
met simply by cutting off these integrals at some large
mass M'. Such a cutoff will not affect the singularity
structure in any given range of the external momenta if
M' is taken sufficiently large. One of course takes the
limit M' —+~ in the end.


