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for y=1, which is of interest in the analysis of chiral
Lagrangians, we have a finite expression. In the limit
v— 0 the integrals in (A4) diverge at the lower end
point. The ¥, terms are then found to compensate for
the [I'(¥)]* in the denominators and we obtain the
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It is asserted that the Sugawara theory of currents is equivalent to a canonical Lagranigan theory of mass-
less scalar fields with a Yang-Mills type of interaction. The Sugawara currents are identified with the
canonical currents associated with nonlinear transformations of the massless fields. These transformations
arise naturally in the context of spontaneous symmetry breakdown. In models of spontaneously broken
symmetry in which the symmetry-breaking scalar fields are elementary dynamical variables, that part of
the stress-energy tensor containing the Goldstone bosons terms goes over into the Sugawara form when
reexpressed in terms of the currents. However, additional terms relating to a massive field appear in the
stress-energy tensor, and the massive field operator replaces the usual Sugawara constant. A Sugawara
current theory is obtained by eliminating the massive field and retaining the Goldstone boson field only.
The reverse is also true in that any Sugawara theory is necessarily equivalent to this canonical representa-
tion. Finally, it is shown that if the currents are coupled to gauge fields, a massive Yang-Mills field is

obtained.

I. INTRODUCTION

NUMBER of recent papers! have dealt with the
suggestion put forward by Sugawara? that a
dynamical theory could be formulated entirely in terms
of currents. In this approach the currents are regarded
as the fundamental dynamical variables, and the theory
is defined by stipulating the equal-time commutation
algebra together with the explicit expression of the
stress-energy tensor in terms of the currents. It was
hoped that this theory would constitute an alternative
to old-fashioned canonical Lagrangian field theories. In
a previous paper,® however, Lurié and this author have
shown that a Sugawara current theory for a single
neutral current is completely equivalent to a canonical
theory of a free neutral massless scalar field, the current
being associated with the transformation

¢ — ¢ota. 1.1)

In seeking to extend this result to Sugawara current
theories based on non-Abelian groups, a hitherto un-
suspected connection was found between the Sugawara
theory on the one hand and spontaneously broken
symmetries and massless particles on the other. That a
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2 H. Sugawara, Phys. Rev. 170, 1659 (1968).
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connection does exist seemed to be implied by the
association of the current with the transformation (1.1)
It was precisely this transformation that was en-
countered by Umezawa,*® Sen,® and Leplae® in their
analysis of spontaneous symmetry breakdown.

They have shown how a symmetry operation applied
to the basic fields in terms of which the theory is formu-
lated can be dynamically rearranged into an entirely
different symmetry operation on the asymptotic or
“physical” fields which describe the quasiparticle and
collective excitations of the system. As an example they
consider the model of Nambu and Jona-Lasinio® charac-
terized by the Lagrangian density

L= —J‘Yuanlﬁ—g(\N)z—f-g@%‘//V ;

which exhibits invariance under the simple vs gauge
transformation

(1.2)

Y — etery) (1.3)
owing to the vanishing of a fermion bare mass and the
vs-invariant form of the interaction term. When trun-
cated in the chain or “random-phase” approximation,
the above model exhibits a cutoff-dependent self-con-
sistent solution characterized by a finite fermion mass
m and a massless pseudoscalar bound state. (This is, in

4 H. Umezawa, Nuovo Cimento 38, 1415 (1965); H. Umezawa,
ibid. 40, 450 (1965).

5 R. N. Sen and H. Umezawa, Nuovo Cimento 50, 53 (1967);
L. Leplae, R. N. Sen, and H. Umezawa, Problems of Fundamental
Physics (Kyoto, 1965), p. 637.

6Y, Nambu and C. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
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fact, one of the first relativistic examples of Goldstone’s
theorem” linking spontaneous symmetry breakdown
with the appearance of massless bosons.) It was then
shown by Umezawa* that the original symmetry (1.3)
for the basic fields is dynamically rearranged into the
symmetry (1.1) for the Goldstone boson.

This mechanism seems to provide a very satisfying
picture of what happens when a symmetry is spon-
taneously broken, for it provides a raison d’étre for the
Goldstone boson.! The latter is identified as that
particle which carries away the original symmetry lost
by the fields present in the Lagrangian. We believe that
the correlation of Sugawara current theories and broken-
symmetry models stems from this phenomenon.

An analogous result is obtained in Lagrangian models
in which the symmetry-breaking scalar fields are ele-
mentary dynamic variables. If a symmetry inherent in
the Lagrangian is spontaneously broken by imposing
nonsymmetric vacuum conditions, massless bosons will
appear in the theory. These massless bosons will form
a nonlinear realization of the group to which the original
symmetry is reduced. All reference to the field operators
of the massless particles may then be eliminated in
favor of the current operators associated with this non-
linear transformation. In particular, that part of the
stress-energy tensor containing the massless fields goes
over into the Sugawara form when reexpressed in terms
of the currents. This model is, of course, not a ‘“pure”
Sugawara model. Reference must still be made to the
field operator corresponding to massive particles. By
suitable constraints, however, they may be eliminated
from the theory, in which case a canonical Lagrangian
representation of Sugawara’s theory of currents will
have been achieved. The crucial point is that the
reverse is also ture. Any Sugawara theory is equivalent
to the model thus obtained. Finally, it is of interest to
note that if the currents are coupled to massless gauge
fields, a simple massive Yang-Mills® field theory is
obtained.

In Sec. IT we will follow this prescription to obtain a
SU(2) current theory. In Sec. III we consider the
equivalence of any SU(2) theory to our model. We then
examine an explicit realization of the Sugawara model
which has appeared in the literature and exhibit the
basic mechanism which is responsible for the equiva-
lence. In Sec. IV vector gauge fields are added, while
Sec. V contains a summary and conclusions.

II. FORMULATION OF MODEL

The SU(2) Sugawara theory is defined by the
equations
0= (I/ZC) [jnijvi+jvijui'" 5uvjrijvi] ) (2-1)
7 J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone,
A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).
8 This picture is marred, however, by the difficulty of identifying
the charge as a generator of the symmetry [see Y. Freundlich and
D. Lurié, Technion, Israel Institute of Technology report

(unpublished)].
9 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
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Lioi(x,0), jo’(y,0) 1=1€in jo (%) 6D (x —y) , (2.22)
Lio'(x,0), 77y, ) J=1€ijn ja"(2) 6 (x—y)

—iC&i,-a%&"” (X*Y) N (22b)

[7a°x,),75(y,)1=0, (2.2¢)

where C is a ¢c-number constant.1?

To obtain a canonical representation of this theory,
we follow the procedure outlined in the Introduction.
We consider a U(2)=U(1)XSU(2)-symmetric theory
and break the symmetry in the U(1) direction. There
then appears, in the theory, a triplet of massless bosons
which form a nonlinear representation of the SU(2)
group. We therefore start with a complex Lorentz
scalar and isospinor theory described by the Lagrangian

L£=—0,u'0,u+V (u'u) (2.3)

and the equal-time commutation relations (ETCR)
[uta(X,0), 06" (7,0) ]=10ap3 @ (x—y),  (2.40)
L' ®,0),16(v,0) = 10apd @ (x—y),  (2.4b)

the other commutators being zero. This theory is clearly
invariant under the constant U(2) gauge transformation

u— T2y (2.5)
where « runs from 0 to 3, 7o is the unit 2X2 matrix, and
7; are the usual isotopic spin matrices. When spon-
taneous symmetry breakdown is discussed, it will be

convenient to make the polar decomposition!!
— gitera
u=e"07°x |

(2.6)

where 6 are real, and X is a complex isospinor.!? We
also note, for further reference, the useful formula

3 =e""7(9,X+10,%7°X) , 2.7
where
0,07 = —ie=i0°7%9, (¢10°7°)
=0,07"40,°7%. (2.8)
The Lagrangian (2.3) goes over into
L= —(0,X19,X4+19,X10,27°X —iX'0,2729,X
+Xx10,2720,878X)+V (XTX). (2.9)

The middle terms correspond to undesirable mixed

10 We use 8y, as a space-time metric. Fourth components of four
vectors are imaginary. Four-dimensional space-time indices are
indicated by p, »; spatial indices by @, b, c=1, 2, 3; and SU(2)
indices by 2, 7, k=1, 2, 3.

1P, W, Higgs, Phys. Rev. Letters 13, 508 (1964); Phys. Rev.
145, 1156 (1966); T. W. B. Kibble, bid. 155, 1554 (1967); Y. S.
Kim and F. L. Markley, University of Maryland Report (un-
published). Of course, expressions such as these, to make sense,
must be understood as expansions in terms of normal ordered
products of the ¢ fields.

12 Of course, only four of the eight variables are independent.
The choice of the independent fields is dictated by the direction
in which the symmetry group is broken. See Ref. 11 in connection
with this point.
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kinetic energy, and we eliminate them by imposing the
conditions

X=(1/v2)p%, (2.10)

where p is real and X is a constant unit isospinor. This
together with the further constraint §p=0 reduces the
number of independent variables to four. In terms of
these variables the Lagrangian may be cast into the
form

L= —5(3,09,up+p0,70,%)+V (p?) .

The broken symmetry condition is expressed by setting

(2.11)

(po=n540. (2.12)
We finally write the Lagrangian as
L=—3[0u0' 90’ +(n+0)26,%0,714+V (0?), (2.13)

p'=p—n,

from which it is clear that %20,%0,° is the kinetic-energy
term for the ¢ fields. These fields create massless one-
particle states from the vacuum and thus correspond to
the Goldstone boson fields. To see this!®* we note that
they form a nonlinear realization of the SU(2) group,
transforming as

eiﬂ”:‘r" — 6i¢if“:/2ei(ﬁ'r“';

(2.14a)
in terms of the infinitesimal transformation this becomes

az;‘= 55010 cotf4(1—0 cotd)6:97/62+€i*6* J167, (2.14b)

The existence of massless particles in the physical

spectrum is now proven in a manner completely analo-

gous to the usual proof of the Goldstone theorem.”
From Lorentz invariance, we have

i / d ¢12(0] [,(),09(0)]] )
=q.(p*(¢?)+p>"(g*)e(g0),

where 7, are the currents associated with the trans-
formation (2.14) and whose forms will be exhibited
shortly. From current conservation we conclude

P i(gh)=a"8(g?), p2¥(g?) =0%(g*)d(g*),

where ¢% and 4% are constants.

(2.15a)

(2.15b)

18 Often [e.g., the last two authors in Ref. 11; also J. Honerkamp
Nucl. Phys. B12, 227 (1969)] the existence of massless particles
has been deduced from the fact that terms involving 6° but not
9,6° do not appear in the Lagrangian. However, a counter example
(though one which is not manifestly Lorentz-covariant) is supplied
in Sec. IV as is obvious from Eq. (4.8). The proof supplied in the
text depends upon the particular form of the symmetry trans-
formation when reexpressed in terms of the ¢° fields. Thus not only
does the original symmetry rearrange itself into a symmetry for
the Goldstone bosons, but the very form of this symmetry opera-
tion reflects the massless character of these particles. We leave
open the question of whether the theory allows for massive bound
states.
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On the other hand, from (2.14b) we have
i¢*0[[Q%,6°]]0)=(0] 67| 0) =46"i¢p7,
which combined with (2.15a) and (2.15b) yields

(2.16)

@¥i=2mb7i£ (),

and hence the existence of massless one-particle states
with the quantum numbers of 7,5, 6%

We now turn our attention to the currents. The
conserved SU(2) currents associated with the trans-
formations (2.5) are

7t =310, ut riu—utrid,m), (2.17a)

which in terms of the polar variables are'*
Jut=3p%0"s", (2.17b)
0,/ =e?0,e7%, (2.18)

These currents may be used to eliminate all reference
to the massless ¢° fields. The stress-energy tensor is

0, =04 0u—+0,u"0,u+6,,L (2.192)
=3{0upd,p+0,p9,p— 8, [ depd.p—2V (p?) 1}
+1p2(6,16,i+6,'0,—5,,0,0,%) (2.19b)
=3{0,up00+0,09,p—08,[ 9opdesp—2V ()]}
+ (2/92) (jnzjvi'{']'vij#i - auvjvijvi) ’

where we have used

(2.19¢)

0ui vi=0,ui0/yi. (220)

From the ETCR (2.4) and the explicit expression for
the current (2.17), we derive the current-current com-
mutation algebra

L7o*(®,0), jo’(y,8) 1=ieijn jo* (x) 6 (x—y) (2.21a)
L70"(x,), 77y, 1) ]=1eijn ja* (%) 6P (x—y)
—18:;04,1p%0 P (x—y), (2.21b)
L7a*(x,0), 7 (y,4) 1=0. (2.21¢)
These must be supplemented with the ETCR
L7o®,0,0(y,0) 1=0=[7u'x,),p(y,)], (2.22a)
L70"x,0),0(y,0)p(y,) 1=0, (2.22b)
[1eix,0),0(y,08(y,8) 1= 214 (x)6 @ (x—y),  (2.22¢)
[o(x,0),8(y,t) =6 (x—y). (2.22d)

The similarity and contrast of this model with the
Sugawara one is obvious. The form of the current-
current commutation relations (2.2) and (2.21) in both
theories is identical. In our model, however, the
Schwinger term contains a g-number field operator. This
difference is further expressed by additional terms in
the stress-energy tensor (2.19) and in the need for the

14 Where convenient, we will use a matrix r.otation. Hereafter
8 is to be understood as the 2X2 matrix 7%,
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supplementary ETCR (2.22). It is now clear what must
be done to formulate a pure Sugawara theory. We
merely limit p to a constant ¢ number and make the
identification

3pr=1n’=C, (2.232)
which is equivalent to the constraint
ulu=2C. (2.23b)

To sum up, our canonical representation of the SU(2)
Sugawara theory consists of interacting massless bosons
and is defined by the Lagrangian'®

£=-20C0,,°, (2.24)
where
0,= —ie=9 6+

(2.8")
and by the canonical commutation relations

900" (x,2)

[4C00’°(x,t) , Bf(y,t)] 8 ®(x—y). (2.25)

oYy

The Sugawara currents are associated with the
transformation

60— ¢i12%0 (2.14")
and are given by
7u=2C0 ¢, (2.17)
where
0, =e0,e7%, (2.18)
The equations of motion are
00,5 =0,0 ,i=0. (2.26)

III. EQUIVALENCE THEOREM

We assert that any SU(2) Sugawara theory must
necessarily be equivalent to this model. To see this we
apply the Heisenberg equations of motion

Ougs'=iL3',Pul, 3.1)
with
P,= ——z'/(h,,(x)d%c (3.2)
to derive the equations of motion
Oufv—0yJu= (i/ZC)[j“,jy:], (3.32)
9,7.=0. (3.3b)

Equation (3.3a) is reduced to an identity by setting
Ju=2C0,'=2Cie®3 . (3.4)

Moreover, Bardakci and Halpern!® have shown that
this is the most general solution to Eq. (3.3a). Equation

15 A canonical representation of the Sugawara theory consisting
of the Lagrangian (2.24) with the constraint (2.23) was also found
by Bardakci and Halpern [Phys. Rev. 172, 1542 (1968)] using
completely different methods.
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(3.3b) is the Lagrangian equation of motion (2.26) for
the massless scalar fields. To establish complete equiva-
lence we need merely show that the current algebra
(2.2) implies the canonical commutation relations for
the 67 fields when the j,° are given by Eq. (3.4).

To this end, we rewrite Egs. (2.2) as

Lio'x,0), jo’(y,0)r7]=—3[7%, jo’'r 16 ® (x~y), (3.52)
L7o'(x,0), Ja(y,0) 77 1= —3[7%, j 716D (x—y)
—iCri9,,3®(x—y), (3.5b)

and using Eq. (3.4) for the current we may derivels
(3.6a)
(3.6b)

L), ]= —jrie 6@ (x—y),
L0, 00600 ]= ~ 3770068 (x—) .

To derive the canonical commutation relation, we
must write an explicit expression for the canonical
momenta. Accordingly, we adopt matrix notation and
use the following definitions:

e 7% =D, (6)77, (3.7a)
. 6 . .
—ie 0—e =077, (3.7b)
00°
From these we derive
0,‘i= @)ﬁa,ﬂf, (38&)
0’ ;i=D;;0,,0,0%, (3.8b)
and from the Lagrangian (2.24) we have
. 6£ .
= ——— =4C0;,0y7, 3.9
(9007
so that
joi= —ZCDij00j= —%Dij@)_ljkﬂ'k. (310)
Using these equations and Eq. (3.6), we derive
—17%05® (x—y)
= —1¢9D 1716 (x —y)
= —%Dij@)“ljk@klei”rlé(” (X'-y)
aeiﬂ
=%iD;;07j—o6® (x—y), (3.11a)
96"

while
[joi(x,0),e0]
=—31D;0 1 [r*(x,0),e?-0] (3.11b)

When these two equations are compared, it is clearly
seen that

[ri(x,t),ﬁf(y,t):l: _iaijs(s)(x_}’) . (312)

16 From (3.5b) we derive (3.6a) which in turn allows us to derive
(3.6b) from (3.5a).
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We conclude that the Sugawara theory is necessarily
equivalent to the interacting massless scalar field theory
defined by Egs. (2.24), (2.8), and (2.25).

In view of this theorem, it is of interest to examine
an explicit realization of the Sugawara model and to
exhibit the basic mechanism which is responsible for
the equivalence. We have in mind the formal zero-mass
limit of a massive Yang-Mills vector theory considered
by Bardakci, Frishman, and Halpern.'”

The massive SU(2) Yang-Mills theory is defined by
the equations of motion

F.t=0,B,'—98,B, 4 ge:;xB,'B,*
G“F,‘yi-m“’B.,": geiij“,,fB“k ,

(3.13a)
(3.13b)
with the commutation relations
[Bai(x,0),B4(y,1) ]=0,
[Bai(x,0),iF 447(y,t) 1= —18a18:;6 P (x~y),
[Fas'(%,0),Fra’(y,) 1=0,
and the stress-energy tensor

Ou» =%[FnpiFvpi+FvpiFupi+m23ntii+szviBui]
— 8 5F 0o'F oot +3m2B, B, ].

(3.14a)
(3.14b)
(3.14¢)

(3.15)
The commutation relations (3.14) imply
[Bo'(x,0),Bo(y,1) 1=1(g/m*) €ijiBo* (%) (x —y) , (3.16a)

LBo'(x,0),Ba’(y,1) 1= i(g/m?)€ijpBa*(x)8 ) (x —y)
— (z/m2) 61'_7'6%5 @ (X —'y) . (316]3)

The limit to be taken is obtained by redefining the fields

E,ﬁ= (m?/g)B.,z, (3.17a)
Fuvi= (m*/QF ' (3.17b)

and demanding that B, remain finite in the limit 7 — 0
and g— 0 with m?/g?=C, the constant in Sugawara’s
theory. Applying the transformation (3.17) to the
commutation relations (3.14) and (3.16), we obtain

[B.i(x,t),Bui(y,))]=0, (3.18a)
[B4i(x,0),iFrii(y,t) ]= —i(m%/g2)8asd:76® (x-y), (3.18b)
[Fai(x,0), Fosi(y,) ]=0, (3.18¢)
[Boi(x,0),Boi(y,t) ]=ie1Bo*s® (x—y), (3.184d)
[Byix,0),B.i(y, 1) J=ieiuB.56® (x—y)
—i(m?/g2)8:04,0® (x—y). (3.18¢)

In the limit described above, F,i commutes with all
the canonically independent variables and is therefore
a ¢ number. Since (F.)o=0, it follows that F.s— 0
and from (3.18b) vanishes like m?. By Lorentz in-
variance all the components of #,, vanish like 72, and in

7K. Bardakci, Y. Frishman, and M. B. Halpern, Phys. Rev.
170, 1353 (1968).
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this limit, the stress-energy tensor (3.15) reduces to
01“’ = (I/ZC) [Bnigvi_*_éviéyi— 6“yBaqui] . (3 19)

The reason for this reduction of a massive Yang-
Mills theory in this formal limit to a massless scalar
field theory is that the massive Yang-Mills fields may
be decomposed into a set of interacting massless trans-
verse fields and massless scalar fields. These fields
decouple in the limit described above. However, the
stipulation that the transformed fields B, remain finite
in this limit is equivalent to discarding the vector
components while retaining only the scalar ones.
Rather than carry out this program directly by decom-
posing the massive Yang-Mills fields, we will approach
the problem from the opposite point of view. It will be
more instructive to show that the gauge-invariant
interaction of massless vector fields with our massless
scalar fields leads to the Yang-Mills fields. We will then
reexamine the limit of Bardakci et al.

IV. ADDITION OF GAUGE FIELDS

We wish to couple the Sugawara currents to gauge
fields and generalize the nonlinear transformations in-
volved to include space-time dependence. We do this
first for a single neutral current theory where the ideas
are simpler. The Sugawara theory for a single neutral
current is equivalent® to a free massless scalar field
theory consisting of the Lagrangian

£=—10,00,0 (4.1)
and the current
Ju=040 4.2)
associated with the symmetry transformation
60— 0+a. (4.3)

This transformation may be considered a nonlinear
realization of the gauge transformation

S — ¢S (4.4)

obtained by applying the constraint S*S=1 and
defining

S=ei, (4.5)

The extension of the transformation (4.4) to a space-
time-dependent transformation is obtained by replacing
the ordinary derivative in the Lagrangian

Lo=—%0,5%3,5 (4.6)
with the covariant derivative
D,S=(8,—igd,)S. 4.7)

The full Lagrangian, in terms of the polar variable 6, is
then

£= "“%(auo_gA#)(aua""gAM)'-%fl“’fﬂh (4.8&)

where

fur=0udy—3yA (4.8b)
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it is invariant under the combined transformation

0(x) — 0(x)+ga(x), (4.9a)
Au(x) = Au(x)+0,0(x) . (4.9b)
By means of the simple substitution
Bu=A4,—(1/g)93.8, (4.10)
the Lagrangian (4.8) goes over into
£=—1(8,B,—9,B,)(8,B,—,B,)—%5¢B,B,, (4.11)

which is the Lagrangian for a free massive vector field
of mass g. Upon verifying the commutation relations,
we must remember that our choice for the kinematic
part of the massless vector field in (4.8) implies that we
are working in the radiation gauge and the commutators
must be chosen accordingly. Using the commutators

[A a(X,l) 7'ifb4(Y7t) :l

= —i(dap—0405/V2)0D(x—y), (4.122)
[0(x,1),(8ab— 9003/ V?) foa(y,1) ]=0, (4.12b)
[0(x,0),0(y,)+g4o(y,)) ]=i6P(x—y), (412c)
and the equation of motion
dafas=1g(6+gAo), (4.13)
we may derive
[Ba(x,0),ifoa(y,t) J= —18a00 D (x—y).  (4.14)

Coupling the SU(2) currents to gauge fields is a bit
more complicated, but the procedure is analogous to
the one outlined above. The model defined by Egs.
(2.24), (2.8), and (2.25) is invariant under the trans-
formation (2.14). As previously shown, this transfor-
mation may be considered a nonlinear realization of the
gauge transformation

u—> gi09°7i 2y (4.15)
obtainied by applying the constraint #f#=2C and
defining

u=(2C)12i0*7’g , (4.16)
The transformation (4.15) is extended to include space-
time transformation by substituting the covariant
derivative

Du=(9,—%igd'r)u (4.17)
for the ordinary derivative in the Lagrangian
Lo=—2C0,u'd,m. (4.18)

The total Lagrangian in terms of the polar variables is
therefore

=—2C(0,"—3g4" ) (0, —3g4" ) —1F w'F ',

where!3

(4.192)

I it 0
Al y=e14 et

Fo=0,4,— 08,4, —%ig[4,,4,].

(4.19Db)
(4.19¢)
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This Lagrangian is invariant under the space-time-
dependent transformations

€% — 191270 (4.20a)
Ap— 09P2(A,4-(2/)du(g))e0¢/?,  (4.20b)
with
Bu(g) = —ie~109129 ¢0%12, (4.20c)
Introducing the new variables
B,=¢"%4,6%—(2/g)0, (4.21)

transforms the theory into a massive Yang-Mills field -
theory.'® To see this, we first note that

F,=e"F,,Be %, (4.22a)
where
F,b2= (%B,,-&,B,,—%ig[B#,B,,] R (4.22b)
and we have used the identities
3,8, — 8,0,4i[0,,8,]1=0 (4.232)
and ‘
du(e*pe) =" (up+i[0up e,  (4.23b)

which is true for arbitrary p,
The Lagrangian (4.19) can thus be written as

&= —1F,PF P —5g°CB,'B,*, (4.24)

since
FuviF;wz i FWBmFI“’Bz .

This is, of course, the Lagrangian for a massive Yang-
Mills field of mass m?=g2?C. We further note that there
are no longer any massless particles in the theory. This
is in line with the work of Higgs and Kibble,!! who have
formulated the idea that massless vector gauge particles
may absorb the Goldstone bosons to become massive
vector particles, with the Goldstone bosons providing
the longitudinal mode.

We return to the considerations of Sec. ITI. We can
now understand why the limit of Bardakeci et al. leads
to our massless scalar field theory. Their stipulation
that the transformed fields

Bu=(m*/g)e A0~ (2m*/ g0, (4.25)

remain finite in the m, g— 0 limit with m?/g?=C

18 D, Boulware and W. Gilbert [Phys. Rev. 126, 1863 (1962)]
have shown that in the zero-mass limit the transverse part goes
over to a massless vector field in the radiation gauge, while the
longitudinal part goes over to a massless scalar field. Similarly,
R. Finkelstein and L. Staunton [Ann. Phys. (N. Y.) 54, 97 (1969)]
have pointed out that the massive Yang-Mills field may be
considered the Lagrangian equivalent of a coupled massless
pseudoscalar and vector field. Here we wish to stress the relation
of this phenomenon to the Sugawara model on the one hand and
the Goldstone bosons on the other. In particular, we show why the
Yang-Mills field, in the formal limit of Bardakci et al. yields a
realization of the Sugawara model, implying, according to our
theorem, its reduction to a massless scalar field theory.
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effectively discards the transverse modes of the vector
field and retains only the longitudinal ones.

V. SUMMARY AND CONCLUSIONS

We have shown that dynamical theory of currents of
the kind suggested by Sugawara is equivalent to a
canonical theory of massless scalar particles, provided
that the currents are associated with nonlinear trans-
formations of the field. These nonlinear transformations
arise naturally in the context of spontaneous breakdown
of symmetry, and it is interesting to note that in
Lagrangian models of broken symmetry the Goldstone
bosons fulfill the Sugawara criteria. This allows for a
general procedure for obtaining canonical representa-
tions of Sugawara models for any group, and we have
exhibited this mechanism specifically for a SU(2) model.
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Finally, we have shown that if the Sugawara currents
are coupled to gauge fields, the resulting theory is a
massive Yang-Mills one.

We conclude that Sugawara models as formulated
contain massless scalar particles and as such are un-
realistic. We also conclude that any attempt to resolve
the contradiction involved in associating a massive
scalar particle with a Goldstone boson must fail, since
this procedure removes the scalar particle altogether.?®
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19 This phenomenon appears also in theories in which the sym-
metry-breaking scalar fields are not elementary dynamic variables
but bilinear combinations of Fermi fields. Y. Freundlich and
D. Lurié, Nucl. Phys. (to be published).

1, NUMBER 12 15 JUNE 1970

Momentum-Space Behavior of Integrals in Nonpolynomial Lagrangian Theories

ABpUs SALAM* AND J. STRATHDEE
International Atomic Energy Agency, International Centre for Theoretical Physics, Miramare, Trieste, Italy
(Received 13 October 1969)

Methods are developed for constructing momentum-space amplitudes corresponding to nonpolynomial
nonderivative interactions of a real scalar field. The methods give rise to a supergraph technique and rules
for writing down matrix elements very similar to Feynman techniques. The methods are not established
rigorously; at several points the argument requires certain analytic properties of Feynman integrands
which, though plausible, can only be demonstrated rigorously for the zero-mass case. Asymptotic behavior,
both in spacelike and timelike directions, is discussed. Rough arguments are given that indicate that the
singularity structure of the amplitudes is likely to be consistent with unitarity.

I. INTRODUCTION

F it is to have any future, Lagrangian field theory

must learn to cope with nonrenormalizable inter-
actions. This becomes apparent when one examines
what we currently believe are Lagrangians of physical
interest.

1. These Lagrangians include the following.

(@) Chiral SU@2)XSU(2) Lagrangians for strong in-
leractions. A typical example is Weinberg’s Lagrangian
for = mesons:

£=(9.9)%/ (14 f¢%)*.

(b) Intermediate-boson-mediated weak Lagrangian. An
example is an intermediate neutral vector meson U,
interacting with quarks Q. As is well known in Stiickel-
berg’s representation (U,=4,+«'9,B), L can be
written in the typical form

Line=fOvu(1475) Q4 ,+mQ(eirs U192 —-1)Q.

# On leave of absence from Imperial College, London, England.

(c) The gravitational Lagrangian of Einstein expressed
in terms of the contravariant tensor g#

L= -2(\/_g)gw(rﬁp)\rv)p_ I‘,,,,)‘P)\pp) )
where
T =58"(0,8vs+048uo— pus) -

The covariant components g,, which enter the expres-
sion for g=detg.s are expressed as a ratio of two poly-
nomials in g¥.

The interaction Lagrangians in all these theories are
typically of a nonpolynomial form in field variables.
These Lagrangians can be expanded in power series of

the type
v(n)

£int(¢)=GZ——*‘*(—¢)". 1.1

n nl

(Here ¢ is a scalar field, and for simplicity we are ignor-

ing derivatives.) The coefficients »(x) are proportional

to f», where f is a coupling constant.! All terms in such
11In this paper we distinguish between the coupling constants

G and f: G will be called the major coupling constant and f the
manor. We shall be considering fixed order in G and all orders in f,



