
PHYSICAL REVIEW D VOLUM E 1, NUM BER 12 15 JUN E 1970

Superselection Rule for Charge*

G.-C. WxcK

Department of Physics, Cotttmbia University, Sew York, Pew York 100Z7

AND

A. S. WIGHTMAN AND EUGENE P. WIGNER

Joseph Henry Laboratories, Princeton University, Princeton, %em Jersey Oh'540

(Received 26 January 1970)

The customary notion of superselection rule stipulates the vanishing of those matrix elements of the
density matrix that connect states separated by the superselection rule, i.e., the relative phases of which are,
according to the superselection rule, meaningless. It is shown that, if any two states for which an additive
conserved quantity has diferent values are separated for all physical systems by a superselection rule at one
time, the separation will persist for all times. It is concluded that the states with difterent electric (or
baryonic) charges are so separated. The reason for the difference between electric charge and other additive
conserved quantities, such as momentum, is brought out.

INTRODUCTION
' 'T has been recently claimed that coherent super-
' - positions of states with different charges can be
produced, ' i.e., that there is no charge superselection
rule. The same question was discussed before' and the
opposite conclusion arrived at. Since, however, the
earlier discussion's conclusion was part of a much more
general argument, it may be worthwhile to repeat it
in the much simpler form in which it applies only to
the possibility of the production of states which are
superpositions of states with diQerent charges.

The argument of the authors' amounts to the follow-

ing. They consider systems C, composed of two sub-

systerns A and 8, and the time evolution of a state of C
under a charge-conserving interaction. A is supposed
to be, initially, in a state consistent with the superselec-
tion rule. The authors then show that after some time
it can be arranged that A is in a superposition of
states with different charges, i.e., in a state violating
the charge superselection rule, provided that 8 is
initially in a state that is a coherent super positiort of states

neith diferent charges. It was one of the main points of
the previous paper' that nature does not seem to
admit the italicized assumption. The principal point
of the present paper is to show that the italicized
assumption is accessary in order that the state of A

should evolve from a state satisfying, into a state
violating, the charge superselection rule. Hence, we

conclude that all present evidence points to the univer-

sal validity of the charge superselection rule.
In addition to the assumption concerning the initial

state of all objects, mentioned before, we shall use two
other assumptions which may as well be stated here.
The first of these is the conservation law for the
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' R. Mirman, Phys. Rev. 186, 1380 (1969); Y. Aharonov and
L. Susskind, ibid. 155, 1428 (1967).' E. P. Wigner, in Physikertag. Hauptvortraege Jahrestag.
Uerbandes Deut. P'hysik. Ges. (Physik Verlag, Mosbach/Baden,
1962).The superselection rule for electric charge was first proposed
by G.-C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 88,
101 (1952).
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electric charge. The second one is less commonly stated
explicitly: It refers to the charge operators of the two
subsystems into which a composite system can be
separated. If we denote the Hilbert spaces of the two
subsystems by H& and H2, the Hilbert space of the
composite system will be the direct product H&&&H2 of
these. We assume that the charge operator Q in this
composite system is the sum Q=Q'+Q' of the charge
operators which give the charges of the two subsystems
and, further, that the expectation value of the charge
in the first subsystem is, for a pure state thereof, inde-

pendent of the state of the second subsystem, and
conversely.

PROPERTIES OF CHARGE OPERATOR

It may be appropriate to start the discussion by
deriving the form of the charge operator of a composite
system and to relate it to the charge operators Q' and
Q' of the constituent systems. As one expects, the form
of the latter will be'

Q =Q x1, Q =1xQ, .

The 6rst factor of both expressions on the right side

operate in the Hilbert space H1 of the first, the second
factor in the Hilbert space H2 of the second subsystem.
In order to prove (1), one has only to consider states
C)&% of the composite system for which both sub-

systems individually are in pure states. The expectation
value of the charge operator Q' of the first subsystem
must be, then, according to our assumption, independ-
ent of the state 4 of the second subsystem. Introducing
a discrete coordinate system in both Hilbert spaces H&

and H2, and denoting the coordinate axes in the first
one by ot, P, . . . , in the second one by a, b, . . . , our
postulate for Q' demands that the left side of

2 ~-"+.*(Q')-;e.C e+
=Z (Qt)-eC'-*C'e (2)

'The reader who is familiar with (1), or is willing to take it
for granted, should skip the present section.
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be independent of @.All sumxnations in (2) are over all
indices, e, a, P, and b, which occur in the expression
following the summation sign. In order to obtain
(2), we note that since the left side of (2) is independent
of +, we can equate it vith its value for %,=8 ~.

Denoting then (Q') i sx by (Qi) s, one obtains (2),
valid for all C and O'. Multiplication of (2) with the
denominator of the left side gives

is obtained in the same way.

DEMONSTRATION OF
SUPERSELECTION RULE

Before proceeding with the demonstration of the
superselection rule for charge, let us ascertain what its
explicit form is for both a pure case and a mixture.
In order to do this, we introduce particular coordinates
in our Hilbert spaces. These will have double indices q
and e, the first giving the value of the charge (i.e., the
characteristic value of the charge operator Q, or Q' or
Q', whichever Hilbert space we consider); the second, m,

distinguishes betv een the various states with the same q.
Evidently, the charge operators have highly degenerate
characteristic values and e enumerates the degeneracy.
The most general pure state compatible with the charge
superselection rule is then (by definition)

where go is the charge of the state. Hence, the form of
the most general density matrix becomes

Rqn; q'n' —~qq'pnn' (5)

where the p„„.q are positive semidefinite Hermitian
matrices; the sum of their traces is 1. Conversely, every
density matrix of the form (5) is compatible with the
charge superselection rule, since it can be considered as a
mixture of pure states of the form (4). In order to
decompose it into such states, one first decomposes a
particular pq, e.g., the p with q= go, into states (4); the
f„ thereof is a characteristic vector of the p&o. The pure
states contained in the mixture R are then all character-
istic vectors of all p' in (5), the characteristic values of
which do not vanish. What we shall have to prove,

Both sides of (2') are Hermitian quadratic forms of %.
They can be equal only if the matrices of the two forms
are equal. Hence, one can drop the summation over a
and b if one also drops the 4 factors on both sides.
One then obtains Hermitian forms of C on both sides;
these can be equal again only if the matrices are equal.
Hence, (2') implies

(Q )a.;8&= (Ql)as~ah&

which is the explicit form of the first part of (1). The
second part thereof,

therefore, is that the density matrices of all states
which can result from states satisfying our postulates
are of the form (5), i.e., do commute with the charge
operator. We shall call a density matrix of the form (5),
i.e., a density matrix consistent with the charge
superselection rule, a permissible density matrix.

We now proceed with the demonstration. Three
processes will be considered: the union of two systems
into a composite system, the change of a system
(composite or not) in time, and the separation of a
composite system into its parts. Each set of events can
be decomposed into a succession of these three processes.
Since a permissible density matrix vill be replaced by
one or more permissible density matrices by each of
the three processes, the same will hold for any succession
of them and thus for any set of events. Hov ever, v hen
proceeding with the decomposition it is important not
to replace a composite system's density matrix with
the density matrices of its constituents if these will
interact again at a later time, i.e., if they are to be
united again into a composite system. This means that
the separation of composite systems into their con-
stituents should always be carried out last. The reason
for this is that, when considering the process of the
union of two systems, it will be assumed that these were,
before the union, statistically independent, i.e., that
the density matrix of the composite system is the direct
product of the density matrices of the constituents. As
is well known, this is not true, in general, if they had
interacted before either directly or indirectly. This point
has been greatly emphasized by Aharonov and Suss-
kind. 4 The point is that the density matrix of the
composite system (or its state vector if it is in a pure
state) contains more information than the density
matrices of the constituents. One replaces the density
matrix of the composite system by those of the con-
stituents if one wishes to restrict one's attention,
henceforth, to one of the constituents and ascertain,
for instance, that it is in a permissible state. Hence, the
postponement of the separation process, so as not to be
followed by any process of uniting two subsystems,
does not affect the validity of the demonstration which
follows.

I et us now consider each of the three processes
separately. That the 6rst two of them do not change
the permissible nature of density matrices is pretty
obvious. In particular, if R' and R are permissible,
their direct product is also. This can be seen either by
writing out the matrix for the direct product, with four
symbols labeling both rows and columns, or by observ-
ing that if E' commutes with Q', and R' commutes with
Q', their direct product E'&&R' will coxnmute with the

Q of (1), i.e., with Q'&& 1+1&(Q'. As to the second point,
the conservation law for R means that R commutes
with the Hamiltonian. It then also commutes with the

4 Y. Aharonov and L. Susskind, Ref. 1. This article already
contains the form (5) for the "permissible" density matrix.
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KqK q+~vqn; ~'v'q'n' =~~+q; ~'+q'pvn; v'n' (6)

The density matrix E' of the second component will be

time displacement operator U=e '~"". Hence, if Q
commutes with E, it also will commute with UE.U '
since it commutes with each of the three factors.

Only the veri6cation of the third statement is not
present in commonly used form and we presume that
this is the statement which is being questioned. It claims
that the separation of a composite system with a
permissible state vector or density matrix into its two
components results in permissible density matrices for
each. The point is that the density matrix for the
composite system may not have the form of a direct
product of density matrices referring to the constituent
systems. It can have arisen, for instance, from such a
direct product by the time development operator of
the composite system. However, the verification is
straightforward also in this case.

We again introduce a coordinate system in the
Hilbert space H&)&H2 of the composite system the
axes of which are direct products of orthonormal
vectors in the component spaces. The labeling nu, etc.,
used in (2) is then applicable for the axes chosen. We
further choose the axes a, 6, . . . , in H2 to be character-
istic vectors of the charge operator Q2 in H2 so that the
labels a, b, . . . , are appropriately replaced by double
labels qe, where q is the charge of the state. We similarly
replace the labels n, P, . . . , by double labels ~v, the
first of which, &, is again the charge of the corresponding
state, i.e., the characteristic value of Q~ of the unit
vector labeled by ~p in the Hilbert space H~. The
elements of the density matrix in the composite Hilbert
space will then have eight labels, such as E,„q„-„„q„.
The most general permissible density matrix in H&)& H2
will have the form

Since 8„+,, ,+, ——8«, the R' of (7) indeed has the
permissible form (5) with the second factor on the
right side equal to

pnn' ~ pvn; vn', q —~,aqaq (7')

A similar calculation of the density matrix of the first
constituent of the composite system leads, naturally,
to the same conclusion.

CONCLUSION

The above concludes the demonstration. It may be
well, however, to reemphasize the critical assumption
on which our analysis is based: that we have, to begin
with, only "permissible" states, i.e., that we have no
states naturally given which are superpositions (rather
than mixtures) of states with different charges. There is,
in this regard, a fundamental difference between
conserved quantities, such as linear and angular
momentum on the one hand, ' and electric (and bar-
yonic) charge on the other. We have naturally been
given states which are superpositions of states with
different momenta; all more or less localized states are
of this nature. In particular, all macroscopic systems
are. We also have an interpretation of the relative
phases of these states: They give the position in space.
We were not naturally given states which are super-
positions of states with different charges (nor do we
know how the relative phases could be interpreted).
What was called skew information' is well available with
respect to momentum and it has a classical interpreta-
tion. This is not true with respect to charge, electric
or baryonic. We do not know the deeper reason for
this difference, but it seems to be present.

P2
qn; q'n' ~ ~xvqn;vvq'n'

KqKq
+qi +q P (7)

' Cf. Ref. 2.
6 E. P. Wigner and M. Yanase, Proc. Natl. head. Sci. U. S. 49,

910 (1963).The more general statement referred to in the Intro-
duction (and Ref. 2) is that if, with respect to an additive con-
served quantity, the skew information is zero to begin with, it
will remain zero throughout.


