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We propose a classical optical model for high-energy elastic scattering. The model predicts that the
logarithmic slopes for forward differential cross sections should be either the same or twice as large as the
backward ones. The backward peak is due to the contribution from the discontinuity in the boundary of
the optical medium. The model has the property that the mechanisms responsible for the forward and
backward scatterings are not independent of each other. This is contrasted with conventional models which
view the forward and backward scatterings as arising from independent mechanisms. For example, in
absorptive and Regge-pole models the main contribution to the forward scattering comes from t-channel
exchange, while backward scattering arises from I-channel exchange. A 6t is made to the high-energy x p
data in both forward and backward directions, and good results are obtained.

INTRODUCTION

XPERIMENTS on elastic high-energy scattering
~ generally exhibit the following characteristics: (a)

a forward diffraction peak, (b) a backward peak, (c) a
differential cross section which approaches a limit as
the incoming energy —& ~:

d0
lim —=j(t).

(9

It should be noted that similar characteristics are also

observed in classical scattering. The forward peak. in

high-energy scattering is called a diffraction peak
because of its presumed similarity to the diffraction

patterns in classical electrodynamics. However, these
two scattering phenomena are qualitatively different.
In the di6raction and scattering problems of classical
electrodynamics, the diffraction peak, or backward

peak, is flatter than the corresponding one in high-

energy scattering. In the classical case the scattering
targets are the geometric apertures or obstacles. These
targets have a clear and distinct boundary which gives
rise to the flatness" of both peak. s in classical scattering.
In the geometrical-optics limit for classical scattering,
the forward scattering amplitude is analogous to the
transmission amplitude for an electromagnetic wave

through a medium, and the backward amplitude is

analogous to the reflected one. For a given scattering
the geometrical-optics limit is a high-frequency or
short-wavelength limit. If there is a similarity between

high-energy and classical scatterings, one can conjecture
that the forward and backward peaks observed in the

high-energy scattering also come from some sort of
transmission and reflection mechanisms. In this paper
we propose such a mechanism.

A convenient way to explore this classical feature is

to treat the high-energy scattering as a potential
problem. However, the potential being "strong, " the
problem generally can not be solved exactly, and some

approximate methods must be used. The most com-

monly used methods are the so-called %KB method
and its linear approximation, the eikonal approxima-

I

tion. ' These approximations are only valid for the
forward scattering and are based on an assumption that
the scattering potential changes very slowly over a
distance comparable to the incident wavelength 1/k.
Any rapid change in the potential, which might be the
case in high-energy scattering, will cause a reflection or
a backward scattering. These approximation methods
serve a purpose in understanding the classical features
of the high-energy scattering, but should not be con-
sidered as complete since they cannot describe the
backward scattering. Therefore, we will not use the
%KB method or its linear approximations, but instead
we use a simple solvable model which enables us to
calculate both the forward and backward amplitude.

The model we will consider has the property that the
mechanisms responsible for the forward and backward
scatterings are not totally independent. This is not the
case in the most conventional treatment of the high-
energy scattering. In most common treatments, the
main contribution to backward scattering comes from
the exchange potential, ' i.e., the so-called Majorana
force. This force gives a constructive interference
between even- and odd-parity states. The interference
leads to an accumulative contribution in the backward
direction. On the other hand, the forward amplitude
comes from the ordinary potential. Thus the amplitudes
in forward and backward directions are from two
distinctly different mechanisms. In the absorptive' and
Regge-pole4 models, both forward and backward
scattering amplitudes are due to t-channel and I-channel
exchanges, respectively, which are also different from
each other. In the classical case the transmission and
reflection waves occur simultaneously as a wave passes
through one medium and into the other. The appear-

' G. Wentzel, Z. Physik 38, 518 (1926);H. A. Kramers, i'. 39,
828 (1926); M. Brillouin, J. Phys. 3, 65 (1922).

2 J. M. Blatt and V. F. Weisskopf, Theoretica/ ENclear Physics
(John Wiley 8t Sons, Inc. , New York, 1952).

3K. Gottfried and J, D. Jackson, Nuovo Cimento 34, 735
(1964);J.D. Jackson, Rev. Mod. Phys. 37, 484 (1965);L. Durand
and Y. T. Chiu, Phys. Rev. Letters 12, 399 (1964); 13, 45(E)
(1964).

4 V. Barger and D. Cline, Phys. Rev. 155, 1792 (1967);21, 392
(1968); and (unpublished).
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ance of these two waves is due to a discontinuity on the
boundary. Although the generating mechanisms may
be diferent for both waves, they are not totally
independent.

In this paper we shall consider scattering of two
spinless particles. For particles with spin, there would
be a spin-Rip and a non-spin-Qip amplitude. The spin-
Qip amplitude gives a small contribution in both forward
and backward directions. It is customary to assume
that, as long as one is only interested in the non-spin-
Aip amplitude, the spin need not be taken into con-
sideration. With the above considerations we might
expect our model to be applicable to high-energy
scattering in both forward and backward directions.

The presentation is arranged in the following order.
In Sec. 1 we list the results for scattering by a square-
well potential in the one-dimensional case. This one-
dimensional problem may be considered as the problem
of a plane wave incident normally on a well, which is
confined by two parallel infinite planes. In Sec. 2 we
discuss the scattering by a square well in the three-
dimensional case. The forward and backward ampli-
tudes are expressly factored out to show that, in the
high-energy limit, they exhibit the same property as do
the transmitted and rejected wave amplitudes in Sec. 1.
The model here is essentially an optical model, in which
the potential is considered as a description of the optical
medium. Owing to I.orentz contraction, the shape of
most objects is pancakelik. e at high energy. Our intui-
tion indicates that it may be reasonable to consider a
disk-shaped well, rather than the square well for a
comparison with experiments. This approach is de-
scribed in Sec. 3. In Sec. 4 we present a comparison
between the theory of Sec. 3 and ~ p experimental
data at several incident energies. Our model is a single-
energy model for both the forward and backward
scatterings. The reported data are given at de'erent
incident energies. We choose data for two neighboring
incident energies from one of each forward and bac1»-
ward direction as a fitting unit, The numerical values
show that the fits are good. Our model may provide
valuable clues as to the nature of high-energy scat tering.

1. TRANSMISSION AND REFLECTION

Let us now consider a plane wave incident normal
to a rectangular well which is confined by two parallel
infinite planes. The potential in the well will be taken as
complex throughout this paper. The imagina, ry part of
the potential describes the summation of inelastic
processes. The problem described in this section is one-
dimensional and can be found in most textbooks on
quantum mechanics. ' The ratio of the transmitted and
incident wave amplitudes can be written as

2ikk'e "~
(1 1)

(k'+k") sin(2k'a)+ 2ikk' cos(2k'a)
~ For example, E. Merzbacher, Quantum N echanics (John

Wiley R Sons, Inc. , New York, 1961).

where

k = (2mE) '~'

k'=L2m(Z —V)g ~ .
(1 2)

T=$4kk'/(k+0')']e" &'-»~

R= L(k —k') j(k+k') je—'" .

(1 4)

(1.5)

Equation (2.5) expresses the fact that the reflected
wave depends on the wave-number discontinuity k —k',
which takes place on the boundary. On the other hand,
Eq. (1.4) indicates that the transmitted wave is just
the incident wave, modified by losses due to absorption
inside the potential and by rejections on the boundaries.

2. SQUARE-WELL SCATTERING

For a square-well potential, the scattering problem
can be solved exactly. The formula discussed here will
serve as a foundation for our later discussion. The
complex square well is confined within radius a:

V(r) = V', r(a
=0, r&a (2 1)

where V'= Uq'+iV2'. The radical function u~, A(r) for
each partial wave satisfies the Schrodinger equation

l(l+1)
+ —k')u, (r)=o, r)a

r2

d' l(l+1)+-
d1' r

—k Qi Ic r =0) r(0
(2.2)

where k'= k' —2p V', p is the reduced mass, and k is the
incident momentum. The phase shift 6~ for each partial
wave satisfies the following relation:

e"& sin8~= (e"' 1)——
2i

Sg
fa2&el +e '" sine' ~. (2.3)

Pg —Dg —iS(
~ ~

The energy and mass of the incident particle are
denoted by E and m. The well has a complex potential
V and a range 2u. The ratio of the rejected and incident
wave amplitudes is given by

(k' —k') sm(2k'a)e "'~
(1.3)

(k'+ k') sin(2k'a) +2ikk' cos(2k'a)

The transmitted and rejected waves include not only
the contribution from the primary transmission and
reliection, but also from internal and secondary rejec-
tions at the boundaries. If the potential is strongly
absorptive, the contributions from secondary reAections
can be neglected. Then
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The parameters et, St, Pt, and At are determined by

jt'(ka)+inst'(ka)
at+iSt k——a

jt(ka)+irt t(ka)

jt'(k'a)
Pt ——k'a (2.4)

jt(k'a)

jt(ka) im—t(ka)
e2t el

jt(ka)+in t(ka)

where j& and n& are spherical Bessel functions. The
differential cross section in terms of phase shift has
the form

(/0—= —
~ P (2l+1)e'" sinbt Pt(cosg)

~

', (2.5)
dQ k2 t=o

bk =l+ (2 7)

In the forward direction, 0 is always small; therefore, f

momentum may be approximated by

—t=2kP(1 —1+pr 8P) =krgP (2 8)

Meanwhile the Legendre function Pt(cosg) at such
small angles can be represented by a zeroth-order Bessel
function JpL8(l+-', )]:
Pt(cosg) =JpL8(1+ p)) =Jp(b+ —t), for 8 small. (2.9)

I et
e"l srnbt —=nt —=n(b); (2 10)

then the diQerential cross section in forward direction
has the form

where 8 is the scattering angle in the center-of-mass
frame. We wish to explore the behavior of the forward
and backward scatterings in the above model. The
scattering amplitudes for these two types can have
simple approximate forms with high accuracy. Some
important physical quantities such as momenta I and t

and impact parameter b should be introduced:

—t =2k'(1 —cos8), —u =2k'(1+cosg), (2.6)

Region A. /((ka, ku»1.
Asymptotic expansions:

jt(ka) =cos[ka ——,'(i+1)wj/ka,
ttt(ka) =sinfka —,'(l+1)erg/ka,

j,'(ka) = —sinLka —,'(t+1)~j/ka,
et'(ka) =cosLka —-', (i+1)pr7/ka.

Relevant quantities:

(2.15)

ward direction is given by
do 2—=4pr n(b)e""' """Jp(bg u—)bdb . (2.14)
dQ

The differential cross sections in Eqs. (2.11) and (2.14)
behave diRerently. The forward cross section comes
mainly from the smooth part in the odd and even
partial-wave amplitudes o.~. On the other hand, the
backward cross section comes from the nonsmooth part.
This latter part can be easily produced by an exchange
mechanism, for example, the Majorana exchange poten-
tial, or the n-channel exchange. In the square-well
model, there is no exchange mechanism involved. It is
our intention to seek out what contributes most to the
backward cross section in this simple naive model. One
must bear in mind that in high-energy scattering, the
number of partial-wave amplitudes involved is quite
high. Hence, we limit ourselves only to the case ka»j. .
In order not to complicate the problem,

~

k'
~

is treated
in the same order as k. It is known that the forms of the
asymptotic expansions for the Bessel functions depend
on their orders and arguments. ' The partial-wave
amplitude is best discussed by dividing them in di6erent
regions which are denoted by l(&ka, l&ka, l ka, and
l&ka. These regions are denoted by A, 8, C, and D,
respectively. The reason for which we divide the orbital
momentum in several regions is due to the validity of
the asymptotic forms of the Bessel functions. Each
region overlaps with its adjacent ones; however, it is
convenient to treat each of these as separate regions.
In the following, the relevant quantities are given in
the corresponding group along with the asymptotic ex-
pansions which are used to calculate them.

Clo 2—=4~ n(b) Jp(bg —t)bdb
dI,

(2.11)
eptet ( ) te 2i7ce—

Dt+zst —zka
~

In backward direction, 8 is close to x, the de6ned angle
8'=m. —8 should be small. The momentum u can be
written as

—u =2k'(1 —cosg') =k'8' (2.12)

The Legendre function Pt(cosg) for backward scattering
angles may also be approximately expressed by a
zeroth-order Bessel function

Pt(cosg) =Pt( —cosg') = (—)'Pt(cosg'),
eitmJ Lg (t+r)j —et(Pk 1/PlvrJ (bQ—

u)
(2.13)

The corresponding differential cross section in ba, ck-

Pt ——k'a cotk'a,
= —k'a tank'a,

k' cotk'a+ik
e2 jbt

l =even

i=odd
~

e "~~ i=even
k' cotk'u —ik

k' tank'a —ik

(2.16)

l =odd.
k' tank'a+ ik

IIigher J"ranscendenta/ Functions, edited by A. Erdelyi et al.
(McGraw-Hill Book Co. , New York, 1933); IIartdboak of ItIathe
matical Functions, edited by M. Abramowitz and I. A. Stegun
(U. S. Department of Commerce, National Bureau of Standards,
Washington, D. C., 1964).
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Region B. I&ka, ka))1.

Asymptotic expansions:

where

v =—1+2, ka—=v+v"'z, k'a—=v+v'"z'. (2.22)

jl(ka) =
(kav tang)1/2

1

COS(V ta11P —VP —42r) v

nl(ka) = sin(v ta,nP —vP —IIr),
(kav tanP) "'

sin2P
jl'(ka) = sin(v tang —vP —42r),

2kav

fsin2P '"
21I'(ka) =

/
cos(v tang —vP —-', Ir),

k 2kap
where

(2.17)

Ai and Bi are the Airy functions.
Relevant quantities:

r(l)
e '"= 1—22(6 / ) sl11(—Ir)-

r(-,')
/ r(-', )- r(-', )—

DI+iSI= —ka — —— 1+6"'e '" —z e
r(2)- r(-', )

6 / r(-;)- r(-;)—
//I I

——k'a — ——1 —6"'———z'
r(-', ) r(-', )

e""=$(k'+k) cos-,' +i(k' —k) sin-', ] ' (2.23)

v—=1+22 =kb, v sec8=—ka, v sec/'=—k'a. (2.18)

Relevant quantities:

e'*'"= exp—$ 2i(v—tanp vp 42—r)j,—
61+iS1=ika sing,

pI ———k'a sing' tan(v tang' —vp' —42r), (2.19)

e2ibl
1+pe—2vA'

e
—2i(A—A')

1+pe2Ia'
where

2 = v tang —vP —~2r,

2'=—v tang' —vP' —82r,

tanP —tang'
p—=

tanP+ tang'

k cos(212r —P) —k' cos(22r —P')

k cos(222r —P)+k' cos(22r —P')

(2.20)

p is the so-called Fresnel reAection coe%cients; it repre-
sents the reAection of a plane wave with incident angle
—2'Ir —p from the boundary of a potential step, and the
transmitted wave has a transmitted angle 22r —p'.

r(-', )
kr 2 k' kk' —z2 6"' —sin —', w

r(l)

x [(s'iv)v vv(v+ )]—)
61/6 r(2)=1+i - (k k') av -'/'— —

~3 r(z)
XL1 —(k+k') ap-l).

Regzoe D. 1&ka, ka))1.

Asymptotic expansions:

j 1(ka) =
1 1/2 ev(tnnlia —a)

2kaf (22rp tanhn) '/'

X/2 2 X/2

2II(ka) =- ev ~ N-tanh0, )
7

2ka xv tanhn

2r )"' sinh2nj I'(ka) = ev (tanhcx —o.)

2kai 42rv

»2 sinh2~ »2
NI'(ka) = ev (a—tanh 0.)

7

2ka xv

(2.24)

Eegzon C. 1 ka, ka))1.

Asymptotic expansions:

where

p= 1+2, v sechn= ka, —v
—sechn'=—k'a. (2.25)

1/2 2j./3

jl(ka) = Ai( —2'"z),
2ka v~/3

j./2 21/3

nI(ka) =- Bi(—2"'z),
2ka

i/2 22/3

j((ka) = — Ai'( —2"'z),
2ka v2/"

(2.21)

Relevant quantities;

e2s el —1 Zp
—2v (a—tanha)

v )

EI+iSI= —ka(—', sinh2n tanhn) '/'e""

PI=k a slnhn,

k sinh~ —k' sinh~'
e2v'6I —1+2 e—2v(2 —(nnlia)

k sinhn+k' sinhn'

(2.26)

I/2 22/2

2/I'(ka) =
~

Bi'(—2"'z),
(2ka v»z

(k' —k')a'
=1—z

2v (ka)'
e '" ln——1+

ka 2v2
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The factor e2i'& in the partial-wave amplitude n~ has
diferent behavior with respect to the regions de6ned
above. In region 3 the factor e2i'~ depends strongly on
the evenness or oddness of the orbital momentum /.

We shall manipulate Eq. (2.16) to the form

(2.13) are approximated by

( 2 ) i/q

~o(bV' —t) =
I

t~bg —tj

g2ilg
ikk'(tank'u+cotk'u)

k'+ k'+ikk'(cotk'u —tank'u)

k'2 —k2

(—)l g
—2ika

k'+k'+ikk'(cotk'u —tank'u)

2ikk'e "~

(k'+k') sin(2k'u)+2ikk' cos(2k'u)

(k' —k') sin(2k'a) e—'*"
( )L

(k'+k') sin(2k'u)+2ikk' cos(2k'u)

q
1/2

!Xcost (bQ —t) —-',qr] =!

e'qlib~ —')—t 1+qm~&bb-l)q (2 30)
q=l, 1

e(/bb j')wJ—(bQ u)

2
cosL(bg —u) —-'qr]e'&b ~-'*)

qrbg ui—
1

ei q [ ( b & O 1—~1+—i (b b ', ) m-—

2prbg —u)

=T+(—)'R for /«ku (2.27)

where T and E. are just the transmitted and rejected
coeRicients defined by Eqs. (1.1) and (1.3). From Eqs.
(2.11) and (2.14) we observe that the smooth part T in

Eq. (2.27) will contribute along with the Fraunhofer
term, which is the i term in the partial-wave amplitude
o.&, to the forward scattering amplitude. By the same
token, the nonsmooth part R in Eq. (2.27) gives a
contribution to the backward scattering amplitude. In
other words, the forward diffraction is associated with
the Fraunhofer di6raction and the directed transmis-
sion, and the backward diffraction with the directed
r exsection.

In region 8 the factor e2i'& does not depend so strongly
on the evenness or oddness of the orbital momentum /

as in region A. It is this dependence which gives rise to a
contribution to the backward scattering amplitude. As
far as the backward direction is concerned, the region
8 should be less important than the region A. In
regions C and D the factor e2i~' depends smoothly to the
orbital momentum. One should expect a minimal con-
tribution from these regions to the backward amplitude.
Nevertheless, the contribution from region 8 is evalu-
ated in the following by the method of stationary
phase. r The phase factor e""in Eq. (2.19) is expanded
in a power series of Fresnel reQection coefficients from
Eq. (2.20):

)&e'm~ibb l)'. (2.31)

The added term 2qrtqr(kb —sr) does not alter the defined
Bessel functions where m is any arbitrary integer. Since
the differential cross sections near forward direction
(2.11) and backward direction (2.14) along with Eqs.
(2.30) and (2.31) bear a close similarity, we cast the
phase-factor e2i~' contribution from the region 8 to Kqs.
(2.11) and (2.14) in one form:

1
p gg

2i
eq/b)erribb q)s Jp(bg— u))bdb

1 1

2i 2~+—ro/) n=o q=i, i
e„(Qb)e'&db, (2.32)

where

&= —2~+2p~'+V LP& t) ']-—
+r(kb ——,'))r+2q)tqr(kb —sr), (2.33)

r=O

forward

backward,

forward

backward.

(2.34)

The integral in Eq. (2.32) oscillates. This means that
the most contributions to the integral come from the
value bp where Re($) is stationary:

g2i8& —g
—2iA Y 6 e2i&A'

p
@=0

with the coefficients

(2.2g) —LRe(&)]b=b, ——/t(Q —w)+2kP —2kP Re(P')
db

+rkqr+2mqrk! b b,

~s =P) p=0
=(1 P')( P)"—', p—=1, 2, (2.29)

=g(g —tt))+2kPp —2kP Re(Po')

+rkqr+2r/bprk =0. (2.35)

Ps=sec '(ku/kbp), Pp'=sec '(k'u/kbp). (2,36'l

Furthermore, the Bessel functions in Eqs. (2.11) and
The quantities pp and pp' are defined by

(McGraw-Hill Book Co., New York, 1966), Applied Mathematics
Series 55.
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From the method of stationary phase, Eq. (2.32) may
be approximately expressed by

2i 2nQ'N—'n=s s=&,—&

1 6"' I'(-', )
-(k k'—)a(kb) "'

2 v3 I (-', )

X)1—(k+k')a(k5) 'j
XbJo(h/ —t)2k '(ka)'" (2.40)

where

C/2

X(s„(+b)e'&js=s, e'*~ ""a, (2.37)
where 6 is mean value and

a —k '(ka)"'&b&a+k '(ka)'". (2.41)

2k (cscP)
G = ——cscP —2kp Re~

~

. (2.38)
8 k )—Q=ss

In order to define Eq. (2.35) one must choose the
arbitrary integer m properly. The result (2.37) states
that the phase-factor e"'& contribution to the scattering
amplitude from region 8 is due to the transmission and
reflection on the boundary along with internal reflec-
tions. The mechanism is similar to that of geometric
optics for non-normal incident rays on an optical sphere.
These rays will give an important contribution at large
scattering angles. In region A the reQection and trans-
mission are due to normal incident rays. The internal
reflections from the normal incident rays provide more
constructive contribution to the near forward and back-
ward amplitudes than non-normal rays. Thus we
conclude, as we did before, that the contribution from
region 8 in the backward direction should be less
important than that from region A. The absorption
inside the square well darnps out the contributions from
high-order internal reflections, so we shall retain only
lower terms p=0, 1 in Eq. (2.37). The incident rays at
region 8 are not normal, and are deflected through some
angles. That is to say, the contribution of region 8 is
observed at higher momentum transfer which should
satisfy the relation

(g —t) &%2(b/a)(Rek' —k) for p= 1,
(2.39)

(g—u) & 2V2kg1 —(b/a) j't',
where b~ is the lower boundary for region B. Owing to
the absorption of the complex potential, the magnitude
of phase factor e"'~ is less than 1, so the Fraunhofer
term gives a dominant contribution over the phase-
factor term in the forward direction for regions A and B.

In the transition region C, the phase factor in Eq. (2.23)
yields a destructive interference with the Fraunhofer
term, and depends smoothly on the orbital momentum
l. The contribution to the scattering amplitude can be
estimated by using the mean-value theorem

Fa=n(b) Js(bg —t)b—db

1 6'" I'(s)
-(k —k')a (kb) '"

2 ~3 I'(-;) c

Xt 1—(k+k )a(kb) '3Js(b4 t)bdb

In the case of the large radius a,

Fe=0.213/k'(k' —k)a'/k'jJ (b+—t). (2.42)

From Eq. (2.42) one can conclude that the region C
gives only a contribution in the forward direction; and
the order should be comparable to the Fraunhofer
diffraction from the A and 8 regions.

In region D the phase factor e""in Eq. (2.26) yields
also a destructive interference with the Fraunhofer term.
The partial-wave amplitude in region D involves an
exponential damping factor; thus the contribution to
the scattering amplitude can be neglected in the case
under consideration.

We have tried a naive attempt to fit high-energy
elastic scattering data by using the above simple
square-well model, with a radius a and a complex
momentum k' taken as parameters. By choosing proper
parameters, the order of the forward and backward
peaks can be produced. However, one has difhculties in
accommodating the slope of both peaks. The fact is that
the Fraunhofer diffraction is always dominant in the
forward direction. The backward peak comes from the
reAection of the nearby normal rays which also shows a
Fraunhofer-like diffraction peak. In this model, the
dependence of momentum k' on the orbital momentum
1 can be assumed. This is to say that the potential U'
in Eq. (2.1) is taken as V'(t). Even in this case, the
Fraunhofer diffraction still dominates in the forward
direction. However, the fj.tting in the backward direction
can be improved.

Before the end of this section we should comment on
the approximation used here. Retaining only the first
terms in the asymptotic expansions of the Bessel
functions will not be suitable everywhere in a given
region; in particular, there will be a band between
adjacent regions in which more terms should be kept,
because of the slow convergence of the expansions. In
recent years much attention has been paid to this
complicated problem of the slow convergence, and
some elegant methods have been developed to handle
them. A review and some new developments can be
found in the two excellent papers by Nussenzveig, ' who
treats this subject in the case of a real square potential.
In such a case there appears the striking phenomenon
of the so-called surface waves. These are due to total
internal reflections. However, in the complex potential,

8 H. M. Nussenzveig, J. Math. Phys. 10, 82 {1969);10, j25
(1969); Ann. Phys. (N. Y.) 21, 344 (1963).
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because of the internal absorption, this phenomenon
should not be expected. The surface, which is closely
related to the orbiting of a par ticle' in classical
mechanics, has been considered as a mathematical
foundation for describing optical glory. Recently, the
surface wave has also been suggested as a model" for
describing high-energy phenomena, and a best fit has
been achieved for 7r+p backward scattering. In our
proposed model, as we shall see later, the backward
scattering is treated as a contribution from the dis-
continuity on the boundary.

3. DISK-TYPE WELL

It has been shown in Sec. 2 that for a square well, the
high-energy process can be treated as that of geometrical
optics; in the following we shall adopt this point of view.
The optical density of the target particle is described
here by the term potential. In the high-energy process,
any reasonable theory must take some considerations
of the relativistic effect; owing to the Lorentz contrac-
tion, the shape of most objects is pancak. elike in the
relativistic case. Thus, we first consider that it is not
appropriate to take an optical object as spherical sym-
metric. Perhaps it is more adequate to replace the sphere
with a disk of thickness d and radius E. The thickness
d shall be less than radius E in order to accommodate
the Lorentz effect. On the other hand, the uncertainty
principle yields a lower limit. With the above considera-
tion in mind, we take

d =nor/k, n) 1. (3.1)

The second thing that comes to our attention is that
some structures of the particle should also be expressed
in the model. It is natural to assume that the particle is
denser near the center than away from it. Since we treat
the difference k' —k as some complex function of the
impact parameter b and momentum k,

k' =k+F(b, k), (3 2)

where F(b,k) is a monotonic decreasing function of the
parameter b. The approach used here is quite closely
related to the Serber" model. Owing to the particle
having finite space extent, the function F(b,k) must
satisfy the condition

F(b,k) =0 for b large. (3.3)

Equation (3.3) will play the role of a cutoff to the high
partial-wave amplitudes. So the radius R can be dis-
carded by simply taking R ~ ~ . The distinction
between our model here and the Serber" model is the
discontinuity in the direction of the relative motion for
the scattered particles. As we argued in Sec. 2, the

'K. W. Ford and J. A. Wheeler, Ann. Phys. (N. Y.) 7, 259
.(&959).

»H. C. Bryant and N. Jarmie, Ann. Phys. (N. Y.) 47, 127
(1968)."R. Serber, Phys. Rev. Letters 10, 357 (1963); Rev. Mod.
Phys. 36, 649 (1964).

discontinuity is responsible for the backward peal~. The
rigorous treatment of the postulated model here is
tedious. We shall follow the empirical point of view
from geometrical optics. The approach here is similar to
that of Fernback, Serber, and Taylor. " Since we are
interested in the scattering amplitude near the forward
and backward directions, the rays which denote the
partial wave involved are nearly normal to the surface
of the disk. The non-normal rays will suffer a large
deflection which can only be observed at large scattering
angles. These non-normal rays should be excluded from
the model. The contribution from the so-called transi-
tion region, as region C in Sec. 2, should not be present
due to the limit E.—+ ~. Now the partial-wave ampli-
tude o.~ has the form

2'(== 2in(b)

2ikk' e's"+( )'(k' —k') si—n(k'd)e 's'

(k'+k') sin(k'd)+2ikk' cos(k'd)
—1, (3.4)

where k' and k are defined by Eqs. (3.2) and (3.1),
respectively.

4. NUMERICAL RESULTS

XVe now discuss certain properties implied by Eq.
(3.4). Since the general behavior of Eq. (3.4) is com-
plicated, we restrict ourselves to a simple case where

~F(b,k) [((tk~ for all b. (4.1)

The function F(b,k) is defined by Eq. (3.2). From Eq.
(4.1) the partial-wave amplitude (3.4) is approximately
equal to

2zA 8iE (5,k) d

F(b,k) 1 F(b,k)
+( )t( &) 1 e'z&s, sia

k 2 k

X)F(b,k)d cos(kd)+sin(kd) j
—=f(b)+(-)'a(b) (4.2)

As has been stated before, the contribution to the
forward differential cross section comes mainly from
the smooth part f(b), in the odd and even partial-wave
amplitudes rr&. That is to say, only the term f(b) will
contribute to the forward scattering amplitude. This
same term is used in the conventional optical model for
describing; high-energy scattering in the forward direc-
tion. However, in the conventional optical model, it is
always assumed that the scattering potential changes
very slowly over a distance comparable to the incident
wavelength 1/k. In our model, the potential has a
discontinuous jump over a such distance. Nevertheless,
the model still gives a forward scattering amplitude
like that obtained by the conventional optical model.
This seems to imply that the forward scattering ampli-
tude does not depend on the variation of the scattering

'2 S. Fernbach, R. Serber, and T. B. Taylor, Phys. Rev. 75,
&3S2 (&949).
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F(b,k) =iare ~2a~ (4 4)

where both a~ and a~ are functions of the incident
momentum k. By a proper choice of the disk width d,
the nonsmooth part g(b) of the partial-wave amplitude
(4.2) can have the following asymptotic forms for large
values of the impact parameter b:

or
g(b) o: e '»'

g(b) "e """.
(4 5)

(4.6)

Forms (4.5) and (4.6) indicate that the logarithmic
slopes for forward differential cross sections should be
the same or twice as large as the bac.~ward ones. The
high-energy n p experiments" exhibit the latter
behavior. Our model gives a relation between the
forward and backward differential cross section at a
given energy. However, the reported experimental data
for forward and backward differential cross sections are
obtained at different energies. Here we would like to
report the simultaneous fit in both directions for some
neighboring incident energies by using the partial-wave
amplitude (3.4) and the Gaussian form (4.4). For the
17.0-GeV/c forward and 16.0-GeV/c backward da, ta, we
have the fitted parameters'

kd =19m =59.6,
ar ——0.0419 GeV/c,
a2=0.0755 (GeV/c) '.

(4 7)

13 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ogaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 11, 425 (1963);
E. W. Anderson, E. J. Bleser, H. R. Blieden, G. B. Collins, D.
Garelick, J. Menes, F. Turkot, D. Birnbaum, R. M. Edelstein,
N. C. Bien, T. J. McMahon, J. Mucci, and J. Russ, ibid. 20, 1529
(1968); A. Ashmore, C. J. S. Damerell, W. R. Frisken, R. Rubin-
stein, J. Orear, D. P. Owen, F. C. Peterson, A. L. Read, D. G.
Ryan, and D. H. White, ibid. 21, 387 (1968);J.Orear, D. P. Owen,
F.C. Peterson, A. L. Read, D. G. Ryan, D. H. White, A. Ashmore,
C. J. S. Damerell, W. R. Frisken, and R. Rubinstein, ibid. 21,
389 (1968).' We are taking units such that A =c= 1.

potential. On the other hand, the backward scattering
amplitude certainly does depend on the variation of the
potential. Previous optical models did not worry about
this variation of the potential, because they were con-
cerned only with the forward scattering.

Now we wish to exploit the relationship between the
forward and backward amplitudes. I et us assume that

(4.3)

Then the smooth part f(b) of the partial-wave ampli-
tude which contributes to the forward scattering ampli-
tude can be approximated by iF(b,k)d. It has been
generally assumed that the forward scattering ampli-
tude is purely imaginary. With the above assumption,
we can determine the functional form F(b,k) from the
high-energy forward elastic scattering data. .At high
energies the forwa, rd differential cross seccion can be
expressed by an exponential function, which indicates
that the function F(b,k) has a Gaussian form

d =7r/k. (4.9)

These changes L(48) and (49)] are our new
par ametriz ation.

We report four simultaneous fits in both directions
for ~ p scattering; they are represented, respectively,
in Figs. 1—4.

1. 17-GeV/c forward and 16-GeV/c backward data":

x =0.051,
ar ——0.81 GeV/c,
a~ ——0.075 (GeV/c) —'.

Z. 10 $-Ge V/ . focrward and 9.9-GeV/c backward data:

x=0.0658,
ar=0.745 GeV/c,
a2=0.0793 (GeV/c) '

3. b'. 9-GeV/c forward and 8.0-GeU/c backward data:

x =0.095,
ar ——0.743 GeV/c,
a2 ——0.078 (GeV/c) '.

4. 7 0 GeU/c forw. a-rd and 5 9-GeV/c ba. ckward data:

x=0.095,
aq ——0.647 GeV/c,
a2 ——0.084 (GeV/c) '.

In the model there is no spin involved. It is expected
that the fitting should be only good for low momentum
transfer. The figures show that our model gives satis-
factory agreement with the experimental data. Some-
thing should be said about the choice of the disk. width
d. If the width d is taken larger than the one given by
Eq. (4.9), then the parameter x will also increase.
However, the fitted curves only alter very slightly. The
same thing is also true if the parameter x is replaced by
the disk. width parameter d. In that case the width d

The fitted curves are very similar to the two in Fig. 1.
However, in the fitting we used a different parametriza-
tion. Our motivation comes from the argument that the
inelastic process in the forward direction has been tak.en
care of by the complex wave number k'; however, the
inelastic process in the backward direction has not. Let
us imagine that there exists some exchange mechanism
at the discontinuous boundary. Then, after reflections,
some inelastic channels will open, which, in turn, will
reduce the scattering amplitude in the back.ward
direction. With the above insight in mind, we replace
the partia, l-wave amplitude (4.2) by

»»'= f(b)+—( )'~g(b—),
where the parameter x is used to describe the inelastic
backward process. The introduced parameter x would
make the par~meter d of the disk width excessive. Ke
shall eliminate the parameter d by simply choosing
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FIG 1. Simultan. eous fit for 17-GeV/c forward and 16-GeV/c backward data in ~ P scattering. The three fitted
parameters are taken as x=0.051, a~=0.81 GeV/c, u2 ——0.075 (GeV/c), where k=c=1.
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FIG. 2. Simultaneous 6t for 10.8-GeV/c forward and 9.9-GeV/c backward data in s' p scattering. The three 6tted
parameters are taken as g=0.0658, oi=0.745 GeV/c, am=00793 (GeV/c) ', where fl=c= 1.
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Fxo. 3. Simultaneous fit for 8.9-GeV/c forward and 8.0-GeV/c backward data in s. P scattering. The three Gtted
parameters are taken as @=0.095, u&=0.743 GeV/c, as=0.078 (GeV/c) ', where A=c=1.
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Fzo. 4. Simultaneous fit for 7.0-GeV/c forward and 5.9-GeV/c backward data in m. p scattering. The three fitted
parameters are taken as x= 0.095, a~ =0.647 GeV/c, as=0.084 (GeV/c) ', where A =c= 1.
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will vary with the incident energy. All this implies that
the goodness of the fit is determined by the model itself
and is independent of the choice of the parameter sets.
Our choice of parameters is conditioned by the demand
that we include the inelastic process in the backward
direction. The fitted parameter x decreases as the
incident momentum increases. This dependence may
reveal the importance of the inelastic process at higher
energies. The ratio of the parameter ai to the incident
momentum k shows a slight decrease as the incident
energy increases. This may indicate the transparency
of the optical medium at higher energies. The sr+p

backward scattering data exhibit more complicated
structure than the sr p data. It is apparent that our

simple model cannot accommodate the sr+p ba, ckward

data. %e hope that with some additional mechanism,
our simple model may be made to include the sr+p

results. The success of the sr p fits indicates that our
model may provide valuable clues as to the nature of
high-energy scattering, and that the exchange mecha-
nism is not essential for a description of the backward
scattering.
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Hadron Couplings in Broken SU(6) )& O(3). I. Baryon Decays
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A new form of parametrization is proposed for meson-baryon couplings in a phenomenological quark (Q)
model of broken SU(6) XO(3) for the decays of baryons (mass M') belonging to the representations (56,2t+)
or $70, (2t+1) ] to baryons (mass m) belonging to 56, together with the emission of pseudoscalar (P)
mesons (mass ts). The starting point is the use of the direct term in QQP coupling for the evaluation of the
meson-baryon coupling structures which are reexpressed in terms of nonrelativistic Rarita-Schwinger fields
together with multiple derivative structures in the meson field. A relativistic generalization of the latter is
then proposed through a simple extension of the index structures in the (L+1) partial-wave coupling terms.
For the (L—1)-wave coupling terms, which appear with an extra multiplying factor k' in the meson three-
momentum k, an additional ansatz k' —+ k„k„(=——

tM,') is used in order to include the contributions of the
recoil terms for (L—1)-wave transitions in a certain special combination, so as to incorporate the experi-
mental feature of enhanced heavy-meson decays in the s wave. Finally, all these coupling terms are assumed
to be multiplied by the following form factor, the plausibility of whose structure is defended on physical
grounds: fz, (h') =grts '(ts/m )'"(ts/Ver)~+'(IiII/m)' ' where the exponents (I&1) are used for emissions
in the corresponding waves, and gL, is a single free parameter governing the entire supermultiplet transition.
The scheme, which is subjected to a detailed experimental test in respect to a large number of baryonic
transitions from (70,1 ) and (56,2 ) states involving a wide range of masses and momenta, is found to pro-
vide an impressive number and quality of agreements with experiment. It is also shown to yield almost
equal values of the coupling constants g~ in respect to the couplings of several Regge recurrences of the 6
resonances, in conformity with the general expectation of a universal coupling for the Regge trajectory of a
given particle.

I. INTRODUCTION

~~~ NE of the most fruitful studies of higher resonances
has been through their couplings with the 56

baryons and 36 mesons. The usefulness of these cou-
plings lies partly in their mathematical simplicity (being
merely three-point functions) and partly in their direct
physical manifestations through the two-body decays
of various resonances into lighter objects. Moreover,
the decay rates of these resonances are generally very
sensitive to their spin-parity and SU(3) assignments,
so that they provide fairly unambiguous means of test-

* Permanent address: Basic Physics Division, National Physical
Laboratory, Hillside Road, Delhi-12.

ing these assignments without going too much into the
details of a theory. In this respect decay properties are
a better guide to the identifications of SU(6) quantum
numbers for resonances than, e.g. , the studies of mass
formulas or mass splittings which not only are less
sensitive to the input potentials but also are much more
model-dependent.

Studies of hadron couplings can be classified under
two broad heads, (i) those which are based on fairly
elaborate relativistic groups, which leave little scope
for parametrization, and (ii) those which use the quark
model as a pedagogical device for the evaluation of cou-
pling coefFicients in terms of certain phenomenological
form factors which are used as free parameters. In the


