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Relativistic Quantum Mechanics of Two Interacting Particles*
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A variation of the quasipotential approach of Logunov and Tavkhelidze is investigated. Two relativistic
particles with or without spin are subjected to a mutual interaction that can be described (i) as generated
by the exchange of field quanta or (ii) as a two-particle potential V(r) that depends on the relativistic
three-dimensional coordinates introduced by Kadyshevsky. The framework includes the complete axiomatic
structure of nonrelativistic quantum mechanics (except that the metric in Hilbert space is indefinite in
the same way as in the static Klein-Gordon or Dirac theories} and is at the same time fully and explicitly
covariant. Both the nonrelativistic and the classical limits exist and are susceptible to detailed interpreta-
tion. The case of two spinless particles with a "relativistic Coulomb" interaction is examined in detail.
The wave equation, as well as the equation for the T matrix, is in this case exactly soluble. Closed. analytic
expressions are given for transition form factors, including "photoproduction, " the elastic scattering
amplitude, and a production amplitude (bremsstrahlung) .

I. INTRODUCTION

~OUTSIDER two noninteracting relativistic particles
M with or without spin, described by wave functions

fbi(xt) and its(xs) that satisfy the free wave equations

KiiPi ——0, E sos ——0,

where E» and E2 are either Klein-Gordon operators

on the classical level, and by Logunov and Tavkhelidze, '
Matveev, Muradyan, and Tavkhelidze, 4 and by
Bogoliubov5 in quantum theory. The difficulties of
developing a complete physical theory are considerable
in either case. The simplest example of this approach is
the case of two spinless particles of equal mass. Starting
with the free equations, one'. forms the sum and the
diGerence; in momentum space,

Ki ———(r)/r)xt„)' mi',—

or Dirac operators

E,= —(fl/cixs„)''—mss (1.2) (Ki+Ks)lb= (sP'+sr' —2m')&=0

(Ki Ks)4 =P.—C+ =o (1.7)
Ki =ip„8/Bxt„mi, —Ks =iy„8/Bxs„ms —(1.3. ) Here p =pi+ps and q =pi —ps are the total and relative

momenta. The second equation has the simple intuitive
content of setting the relative energy equal to zero in
the center-of-mass system and has the effect of reducing
the first equation to an ordinary nonrelativistic
Schrodinger equation in that frame. In the quasi-
potential approach of Tavkhelidze et' al. ,

'4 one retains
Eq. (1.7) in the presence of interactions as well, and
introduces interactions in Eq. (1.6) only; this can be
done without violating the "subsidiary condition"
(1.7). The difficulty with this approach is that Eq.
(1.7) contains the total momentum p„;as a consequence,
one has no relativistic local Lagrangian, no conserved
current, and trouble with gauge invariance. The Bethe-
Salpeter equation' represents a different kind of
approach to relativistic two-particle dynamics. This
equation is of the form

Following the example of nonrelativistic quantum
mechanics, one wishes to replace ipt and lbs by a single
two-particle wave function iP (xi, xs) satisfying the
two equations

KsiP =0.KiiP=0,
'

How can mutual interactions between the two particles
be introduced into this framework? The obvious
procedure, to add interaction terms to both equations,
leads to two serious difficulties: (i) The two equations

(K V)iP =0, —(E —V )iP=0 (1.5)

are mutually inconsistent unless V& and V2 are chosen
with great care, and (ii) no Lagrangian variational
principle can be found from which the two equations
can be derived.

Attempts to resolve these difficulties are of two kinds.
It is possible, though difficult, to choose V~ and V2 such
as to obtain two mutually consistent equations. This
has been shown by signer and Van Dam' and others'

(EiKs—V)P =0,
where V is an operator that represents the interaction.
It has often been said that the Bethe-Salpeter equation
contains objectionable features associated with the

~ A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento 29,
230 (1963). See also A. N. Tavkhelidze, Lectures on the Quasi-
Potential Approach, Tata Institute, Bombay, 1963 (unpub-
lished).

4V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze,
JINR, Dubna Report No. E2-3498, 1967 (unpublished).' P. Bogoliubov, Trieste Report No. IC/69/76 (unpublished).

H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951).
A comprehensive review article has appeared recently: N.
Nakanishi, Progr. Theoret. Phys. (Kyoto) Suppl. (to be pub-
lished).
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interpretation of the relative time and with the nor-
malization of the bound-state wave functions. In
addition —and this is probably more serious —it may
have too many solutions. This can be seen in the
simplest case of scalar massless exchange in the ladder
approximation, or more easily by examining the limit
V—+0. To its credit, Eq. (1.8) is derivable from a
relativistic local Lagrangian and thus it fits into a
relativistic c-number field theory. Ke now present a
variation on the quasipotential approach of Tavkhelidze
et a/. '4 that combines the most satisfactory features of
both theories.

Note: The most obvious objection to our procedure
is the apparent asymmetry between the roles played by
the two particles. It will be shown that this asymmetry
is merely a feature of the formulation, and that the two-
particle on-shell scattering amplitude is symmetrical.
(See the end of Sec. VII and the last part of the
Appendix. )

II. SUBSIDIARY CONDITION AND
WAVE EQUATION

Variation of a Lagrangian LLEW) with respect to
P(xi, x&) can give only one field equation, and yet it is
necessary to impose the pair of equations

1.e.)

(q' —mP)P =0 or (yq —mig =0,

(Eg—V)P= LQ=O. — (2.1)

The potential V is an operator in the space of wave
functions. If E~ is expressed in terms of P and q, then

can be treated as a subsidiary condition. '
In order to simplify this discussion we suppose from

now on that particle 1 is spinless, although the com-
plications that arise in case of spin —, are purely technical.

Notation, : From now on P(p) will indicate the wave
function for a state with total momentum P„, defined
on the two-sheeted hyperboloid q'=m&'. The q de-
pendence will be suppressed whenever possible, in favor
of an operator or matrix notation. The q dependence is
analogous to the dependence of the Dirac wave function
on the four-spinor index, and the restriction of q„ to the
mass hyperboloid corresponds to the restriction of the
spinor index to the values 1, 2, 3, and 4.

The subsidiary condition Eif=0 h'as now been
expressed by the stated range of variation of the
internal variable q„, and no further reference to it is
necessary. All dynamics is contained in the equation
IC2iP=O, which in the presence of interaction will be
modified to read

Eig= 0, EgiP=O, L=P' 2P„q~+mP—m22 V— —(2.2)
in the limit of no interaction between the particles. It
is therefore necessary to retain one of the two equations
(or some combination of them) in the presence of the
interaction; that is, the two equations must be re-
arranged as one field equation, to be modified by the
interaction, and one subsidiary condition. In order that
the result be a local Lagrangian field theory it is
necessary that the subsidiary condition contain only
"internal" variables and not the total momentum

P„. However, this criterion has meaning only if the
internal momentum q„has been defined. Consider the
following choice of canonical position and momentum
variables:

P Pi+ P~~

P —X] X2)

s=cxi+ (1—c)$2,

q= (1—c)pi —cpg.

One conventional choice is to take c=mi/(mi+m2),
in which case x is the position of the center of mass;
this is convenient in case external gravitational fields
are of importance. Having different priorities, we take

X $2) q=P&)

the advantage of which is that E& depends on q„only,
and not on p„, so that the equation

Egg=0,
7 Compare higher-spin theories with momentum-dependent

transversality conditions. Inconsistencies in the earliest attempts
were. removed by arranging for these "subsidiary conditions"
to be included in the Lagrangian variational equations. See M.
Fierz and W. Pauli, Proc. Roy. Soc. (London) A173) 211 (1939).

if particle 2 has spin zero, and

L=P y qy m —V— —(23)
if particle 2 has spin ~. Generalizations to higher spins
are of course possible. Equation (2.1) may be derived
from the Lagrangian

~ =f(dq)d'P 4*(P)L(P)0(P), (2 4)

where the complex conjugate P* should be replaced by
P*yo in the case of spin —',. The measure (dq) is deter-
mined by the following considerations. Ke first require
that the contribution of E2 to 2 be real; this means that
E2 must be Hermitian with respect to the measure and
implies that the latter is local, or one-point. Lorentz
invariance leads to the form

(dq) = t'i(q' mP) e(qo) d'q— (2.5)

on each of the two sheets of the mass hyperboloid, with
the possibility of different weights for the two sheets.
Positive weight factors may be absorbed in the wave
function; the sign factor e(qo) is included in (2.5) for
future convenience.

Some important operators, including q„, E2, and the
generators of Lorentz transformations, are Hermitian
operators in a Hilbert space whose elements are the

8 Another important point is the physical interpretability of
the time coordinate x0, which is the time measured by an observer
following particle 2. What, in fact, is the meaning of the "center-
of-mass time" P
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wave functions p(p), and in which the inner product is
defined by'

(0(p), 0'(P')) =f (~~)4*(p)&'(P').

The Hermitian conjugate of an operator A in X~ is
denoted A*. Now that Xz, has been determined by the
requirement that the contribution of E2 to 2 be real,
we must require that V*=V in order that the con-
tribution of V to 2 be real as well. (See Table I.)

In addition to the "Lagrangian Hilbert space, " we
must define a physical Hilbert space X, whose elements
are solutions of the wave equation, and whose inner
product can be interpreted as a probability. This can
be done in the standard way, provided the potential V
is a polynomial in the total momentum p„. In this case
it is possible to construct a conserved canonical current
whose time component provides the metric in X.

For simplicity, suppose that V is a polynomial
V(p') in p', and define

(0 (P), IA"(P')) =f (~v)4*(p)I.(P, P')0'(P'), (2 &)

where

V (P') V(P")—I.(P P') =(P+P'). 2zu — ,—„(P+P')u
(2.8)

in the spin-zero case and

to restrict the potential in order to ensure a complete
physical interpretation. Ke have already mentioned
that V*=V; this was used in (2.12) to prove current
conservation, without which the probability inter-
pretation breaks down. Note that it is Hermiticity in
Xz, which is important here, not Hermiticity in X.
Observables, on the other hand, are Hermitian in X,
and (2.13) is a necessary condition for the energy to be
a physical observable. In nonrelativistic quantum
mechanics with energy-independent potential, Io(p, p')
reduces to unity, and the Hermitian conjugate A* of an
operator A in X~ is also the Hermitian conjugate in
X (provided the solutions of the wave equation are
complete). Another restriction on V is that the metric
in X, which depends on V according to (2.8), must be
positive definite. Actually, it is possible to make Io)0
in the case of spin ~ and POIO) 0 in the case of spin zero,
as in the theory of a Dirac or Klein-G-ordon electron in
a static 6eld. Finally, it is desirable that the solutions
of the wave equation should form a complete set.

Perhaps the most important property of nonrela-
tivistic quantum mechanics is the existence of soluble
models, by means of which a really detailed study is
possible. It turns out that there exists a realistic choice
of the relativistic potential operator V in Eq. (2.1) for
which that theory is exactly soluble. The remainder of
this paper is concerned with that particular case.

Iu(P P') =&u , —„(P+P')u (2 9)

in the case of spin ~. In either case

(P—P')"I.(P, P') =I-(P) L(p') (—2 1o)

The physical inner product is defined as'0

8 (P) 14"(P') ) = (4 (P)~ I''(P')) (211)

If P and f' are any two solutions of the wave equation,
then it follows from (2.10) that the current is con-
served:

(P P')"(0 (P), IA"-(P'))
= (4 (P), LI-(P) —L (P')34'(P') )=o (212)

In particular, if p=p', then (2.12) reads

(Po—Po') Q(po, p)14'(Po', p)) =o, (2»)
so that two wave functions with the same three-
momentum but different energies are orthogonal in the
metric (2.11).(See Table I.)

The structure encountered here is very similar to that
of ordinary nonrelativistic quantum mechanics with an
energy-dependent potential; in both cases it is necessary

The inner product (2.6) is not positive definite. Whenever
necessary for the purpose of denning limits and other topological
properties of the space, we use the modi6ed norm obtained by
dropping the factor e(go). This procedure is familiar in the case
of the Klein-Gordon or Dirac theories with a static potential.

"Like (2.6), this inner product is not positive definite in the
spin-zero case. The same comments apply —see Ref. 9.

III. SOLUBLE EXAMPLE

Consider the case of two spinless particles, and let the
potential V in (2.2) have the form

V=~(p)~-, (3 1)
where p(p') is a polynomial in p' with numerical
coeKcients and

(3.3)
(3.4)

I'4 V~(p) = —~ 'fL(&c')/(c —g')'l0 ~ (P) (3 2)

Here we have indicated the "index" g in order to show
explicitly how the integral operator I'4 ' acts on the
wave function. Note the strong suggestion that this
potential represents the exchange of a massless 6eld
quantum between the two particles. That the similarity
is not illusory will be seen below by the property of the
solutions. A full discussion of the relation with quantum
Geld theory will be given in another paper.

The name I'4 ' given to the operator (3.2) derives
from the existence of an irreducible representation of
SO(4, 1) in the Hilbert space Kr„and a set I'~
(A =0, 1, 2, 3, 4) of operators that transform among
themselves like the components of a five-vector. It is
useful to introduce a notation that exploits this situation.
The generators of SO(4, 1) will be denoted by $z&

(A, 8=0, 1, 2, 3, 4). The subset $u„(p, v=0, 1, 2, 3)
are the generators of infinitesimal Lorentz rotations of

q„, and s„4 are "Runge-Lenz operators":

=
LV (~/~Q") —0 (~/~q")0

$u4 =1%i (g "$up+ 21'�)= —$4u.
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TAsLE I. Spaces and notation.

Context
Designation
Metric (bosons)
Properties of metric
Hermitian conjugate
Hermitian operators

Real Lagrangian
KQ

(q', s') = fA*'pa(dq)

8, co'It') &0

Pf'7 '&~ ~

Physical properties
Be

(~ I4)—= 8, I,b)
8 I po I e»0
No symbol
Physical observables

Group representation
Kg
pt4-=(p, r '4)
pt4'&o
pt, At
Group generators

(dq) =s(q' —mp) (qp) d'q

Five-vectors: PA, )A, .. . (A =0, 1, 2, 3, 4)
Minkowsky vectors: p„, q„, . .. (p=0, 1, 2, 3)
Fock vector: e, (a=1, 2, 3, 4)
Space vectors: p, g, boldface

p(p, nlrb) off=-shell eigenvectors

p(y, elm) =on-shell eigenvectors

p'(p) =realization of vector p(p) by function of q„
p(p, g) =asymptotic distorted wave solution

m~, ~=constituent masses, m+= m1+m2
p, ™m~(re+,M„=bound-state masses
m =arbitrary normalizer with dimension of mass

(3.5) (3.11)
I„(P,P ) =rg„(P, P )

=Ir.+h(p )—v(p ) j/(p —p )I
X (P+P')„—2mrl'„. (3.12)

Some of these operators, namely F4 and s„„are
Hermitian operators in KL, but all of them are Hermitian
in the metric (see the Appendix):

The operators I'~, which together with the s~~ are the with
generators of an irreducible representation of SO(4, 2),
are de6ned by (3.2) and by

mgFy, —I 4', e

~ 'jL(&q) (dq')l(q q')'l0'V'' — (3 6)

This metric is positive definite and defines a Hilbert
space Kz in which the operators generate a unitary
irreducible representation of SO(4, 2) ~ The proofs of
these statements are given in the Appendix.

The metric (3.6) differs from the metric in K~, given

by (2.6), by a factor F4 '.

4'(P)0'(P') =(4(P) I'4 '&'(P')).

The introduction of this new metric, the third one, is
not as fundamental as the first two; rather it is part of
the special technique used to solve the wave equation
in the case of the potential (3.1).Table I is a summary
of the notation related to Xl-, K, and X~. It is con-
venient to adapt the notation to the space K~. To
every operator A in Xz, there is an operator FQ =A
in X'g such that the matrix elements of A in Xl. are the
same as the matrix element of A in Xg.

The physical inner product is

8 (P) I 4'(P')) =4'(P)&o(p, P')4'(P') (3 13)

Finally, the wave equation

o =~(p)4 (P)

= &(Ps+mP —ass) I'4 —2mrP„I'„—y(P') )f(P) =0

(3.14)

is seen to be of the type already studied by Majorana
and others. ""

This model has a close relationship with the work of
Kadyshevsky et al." In particular, the operator I4 is
essentially the variable that Kadyshevsky calls r and
which he has proposed as a covariant definition of the
internal "distance" of the two-par ticle system. The
de6nition is indeed attractive; in the classical limit it is
just the inverse of the (electrostatic or gravitational)
potential due to particle 1 and measured at particle 2.

(it, A4') =4'Ak' (3.8)

In particular, the Lagrangian (2.4) is

& =J'd'P 4'(P)1 (P)k(p)

and the current (2.7) is

(3.9)

(4 (P), &,P'(P') )=P'(P)~. (P P')4'(P') (3 1o)

» E ™jorana, Nuovo Cimento 9, 335 (1932);I. M. Gel'fand,
A. M. Yaglom, and M. A. Naimark, summarized in A. M.
Naimark, LAzear Representations of the Lorents Grolp (Pergamon,
London, 1964); Y. Nambu, Phys. Rev. 160, 1171 (1967); and
others mentioned below.

'2 C. Fronsdal, Phys. Rev. 171, 1811 (1968)."V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B.
Skachkov, Nuovo'. Cimento 55A, 223 (1968); C. Itzykson, V. G.
Kadyshevsky, and I. T. Todorov, Phys. Rev. D 1, 2823 (1970).
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IV. PROPERTIES OF DISCRETE SPECTRUM

Let I'~ and X~ be the five-vectors

and in particular,

(p(p, elm), p(p, elm)) =nXypt(p, elm)p(p, /elm)

Pg = [2mip p'+mio —m '}

where P= (P')"' and

P'=P '—Po' ——(p' —m ') (m '—p')

my =m~&m2.

Let e be the operator

(4.1)

(4.2)

(4.3)

(4.4)

(4.17)
Ke shall determine d„by setting

1=/(p, Nlm) "p(p, elm)

= (/oX4)
—'f (dII) ~ p(p, elm) ~'

1mi2/o
—1P-2 (p2+m12 m 2)—1

&&fI«IL(p g—)' m—o'5} } d Y-/- ~'

e =A~V~. (4 5)

The spectrum of /o in Xz is unaffected by $0(4, 1)
rotations of )g and depends only on whether I'~ is
timelike, spacelike, or lightlike:

1y 2p ~ ~ ~ y if E'&0

=pure imaginary if P'(0. (4.6)
P

For any choice of p„we can diagonalize L by diago-
nalizing n From. (3.11) and (4.5),

L(p)= Pr, —~(p),
mL„(p') = —P/o —y(p'). (4.7)

We now calculate the eigenvectors corresponding to the
discrete eigenvalues of n.

I.et m '& p'&m~', so that P')0; and po)0, p=0,
so that

e )o~o ~41 4p

Xo =2mipoP ',

Define

X4
——(p '+mr' —mo')P ' (4 9)

I,'=X,r, -z,r„
I'4' = —X41'o+Xol'4,

(4.10)

(4.11)

p/ —]p I g=1, 2, 3, 4. (4.12)

From (4.12) and (3.5) it follows that

u= —QPmi (po —mo ) (4.13)

N4
—— $2mi'po —g(po+o—Pmmo') 5mi—'(po' m)o'—

(4.14)

The complete set of simultaneous eigenstates of e and
angular momentum is given by (see the Appendix)

i d„ i'=2 P'/ (4.19)

Finally, it is necessary to generalize (4.15) to an
arbitrary Lorentz frame. The result is

p(p, elm) = (2e)i/'mi(XQ) 'Y„/ (X, Q). (4.20)

The meaning of the notation is as follows. First, X and Q
stand for the five-vectors (4.2) and

Q~= IV. mi} (4.21)

These determine a four-vector I, which is defined as
the projection of Q~ in the plane normal to X~, and
Y„/ (X, Q) is a spherical harmonic depending on the
direction of n, . The quantization axes are as follows:
for e, X~, for I, in the (4, p„) plane normal to X~,' for
m, in the (0, p) plane normal to p„.Finally, (&Q)=—&~Q&.

The vectors (4.20) are off-shell wave functions; they
become physical on-shell wave functions when po takes
a value such that m '&p'(m~' and such that the
eigenvalue (4.7) of the wave operator vanishes. Con-
sider first the case when 7(p') is a negative constant. "
Then for every positive integer e and for every three-
vector p there are two values of p, such that
m o(Po(m+o and such that I„(Po)=0, namely,

p y (p2+/If 2) 1/2 and p + (po+~ 2) 1/2

o m 2+m o~ (4m 2m 2 72/g2)1/2

The physical norm is given by (3.13); in the frame
p=0

Xfd&j1+L2mipo/(p'+mi' mo')5'} ( d„Y„/„( .

(4.18)

Here dQ=d'I/u4. The Y„/ are normalized to unity and
the expectation value of N4 vanishes. Thus

0,(p, ~Im) =d-(po' —mo') 'Y-/-(N)~ (4 15) (p(p, ~lm)
~ p(p, elm))

where Y„/ (I) are four-dimensional spherical harmonics
and 3=0, 1, . . . , e—1. The normalization constant d„
will be determined next.

The expectation values of Fo' and I'4' in the X~
metric are e and 0, respectively; hence

p(p, elm)tI'~Q(p, /elm) =e)gp(p, nlm)tp(p, atm),

(4.16)

=p(p, elm) t( —2mil'o+2poi'4)f(p, e/tm)

=2'+(po4 —miXo)f(p, nlm)tp(p, elm)

=2epoP-'(p' —m, '—mo').

"Tn this case our wave equation coincides with one that has
been used by Barut and co-workers; see, e.g. , A. O. Barut, D.
Corrigan, and H. Kleinert, Phys. Rev. 167, 1527 (1968).
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(5.4)

We see that the states with mass 3II„+ have positive Inserting (4.20) and summing over l, m, one obtains
norm and the states with mass M„have negative
noim. We therefore reject this theory" and consider

n
the next simplest choice of p(p').

I.et
~(p') = 'e'—(p-' m —')- (4.22)

where e is a real constant. " The zeros of L„(p') are
now at

p + (p2+~ 2)1/2

, 1+(m /m~)'(e'/2n)'

1+(e'/2n)'

(4.23)

(4.24)

The physical on-shell bound state wave functions are
sufIiciently labeled by nlm and p, since po is determined

by (4.23). We may therefore distinguish on-shell from
off-shell wave functions by leaving out the argument

Po from now on iP (p, nlm) stands for a discrete solution
of the wave equation. The physical norm is given by
(3.13).In the frame p=0,

(iP(p, —nlm) i tP(p, nlm) )
=2n(po~4 —m,Xo)+poe2

Here, Q is the angle between the projections of Q and Q'

into the four-space normal to A. , and P,4 is a four-
dimensional I.egendre function:

cosP = 1—(QQ')/(XQ) (XQ'),

P„,4(p) = sin(np)/sing.

(5 5)

(5.6)

The series (5.4) is a difference between two hyper-
geometric series. It converges when m '(p'(m+' but
is easily continued analytically by a Watson-Sommer-
feld transformation —or by using 3 ames's integral
representation for the hypergeometric functions. The
result is

G,'(p) = (m / )'(&Q)-'(~Q')-'
+iso

X ',i -dn cscirn n'I „(p') 'P,4'(p), (5.7)
$00

where

=4mimgnppP ', (4.25) P 4 (P) L( eaP)n ( e gg)nj//Leis e
——

i'd) (5 g)

and this is positive definite.
The continuum solutions may be found in the same

way, except that p' must now be outside the interval
from m ' to m+', and the spectrum of rs is the entire
imaginary axis. However, this naive procedure cannot
be justified in general —it is usually incorrect, since a
normalizable wave packet in 3C& may be quite di8erent
from a normalizable wave packet in BC. The proper tool
for understanding the continuum is the resolvant
operator.

G(p) =L(p)-'=L(p)-'I . (5.1)

To evaluate G«(p) we begin with p„ in the range
m '(p'(m+', then the functions (4.20) satisfy the
completeness relation

P iP, (P, nlm)P;(P, nlm)*=5« I'4. (5.2)
nlm

Here 8« is the Dirac 6 function associated with the
measure (dq) and 8«1'~ is the unit operator in Xii.
Inserting (5.2) into (5.1) we get

G„(P)= Q L (P') Q, (P, nlm)iP, .(P, nlm)*. (5.3)
nlm

"When our model is studied in the context of quantum field
theory it becomes clear that the domain of greatest physical
relevance is p' near or above m+ . Consequently, we are not really
justified in rejecting the choice of a constant p(p') on the basis
of anomalies near ng,

"In this case the wave equation is the same as that studied in
Ref. 12.

V. GREEN'S FUNCTION, CONTINUUM

The Green's function G«(p) is a matrix element of
the operator

The representation (5.7) is valid when —e @' is in the
complex plane cut along the negative real axis. The
integration contour passes to the left of the pole of
L„(p') ' and intersects the real axis between —1

and +1.
Equation (5.7) defines, for fixed q, q', and p, an

analytic function'i of po, with poles at the positions of
the discrete solutions (4.23) and cuts along the follow-

ing portions of the real axis:

p02) m~'+p' ("normal" cuts), (5.9)

(5.10)po'(m '+p' ("left" cuts).

Asymptotically, as
~ p, ~~~, p,G«(p) —4; hence we

have the Cauchy formula

ds
G- (po, p) =(2~l) ' G«(z, p). (5.11)

os po

The contour C runs around the poles and the cuts in the
clockwise sense. The residues of the poles are given by
(5.4), and the discontinuities across the cuts are
obtained from (5.7) by replacing the integration con-
tour by a circle surrounding the pole of I„(p') '. Thus'8

G„(p)=( ./ )'Z(~.—p)-

X L(XQ) '(XQ') 'n'P„,4(y)g„-'$„~~

+ (mi/ir)'(-', i)f't dk/(z —p, )g

XL(&Q) '(XQ') '( '/sinir )P„'(y)P—'j. . .„(5.12)

"The analytic properties of Gqq (p) are the same as those of
the Compton scattering amplitude already studied in connection
with current algebra; C. Fronsdal, Phys. Rev. 182, 1564 (1969).

"For further details see Ref. 12.
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where E„are the energies (4.23) of the bound states and

~(p) = v—(p')/&. (5.13)

The integration runs along the cuts from left to right.
To write (5.12) in terms of discrete and continuum

solutions of the wave equation we expand I'„,4 and
E„,4 in four-dimensional spherical harmonics (see the
Appendix) and obtain

G. 0(p)=2 m'lZ (E-—Po) '
nlm

&&L(7 e)-'(~e')-' &--(7, Q) &--*(~,Q').='3. .
ds E(7e)-'(~e')-'( / )

8—pp

&& V 1-(7 Q) V-1-"(& Q')~'3~ *+' (5 14-)

+2m, ' g ,'i-
lm

lp, (p, 421m+ 0 (p, 22lm)*
p

—1

nim nn

al, (P, plm)P', (P, 1 lm)* ds

t 2iE sinhlr
~

p
~

s—p
(5.15)

This result shows that the bound states are completed
by a continuum whose wave functions are obtained by
analytic continuation in n to I= —y(p2)P ' and which
cover the cuts (5.9) and (5.10).The right-hand portion
of (5.9) is the conventional scattering continuum. The
remainder of the continuum disappears in the non-
relativistic limit.

where r and q are the usual relative coordinates and p
is the reduced mass. The connection between the
relativistic and the nonrelativistic realizations is given

by a rotation in the (0, 4) plane (we are working
in the center-of-mass frame):

I"o~(14/4m ) (I' +I' )+ (m /u) (I' I )

I'4~ —(p/4ml ) (I'0+ I'4) + (ml/p) ( I'0—I'4) .

Thus
I'p-~m, r (1+q2/4m12),

I"4—~mlr (1—q'/4ml'),

r~r,
and to lowest order in inverse masses,

qp-~mi+ q'/2ml,

q
—+q.

We also dehne the energy by

pp pip+ p20 m++Ep

so that, finally,

P2 m2 l2m2 (E—pl /2ml —
p2 /2m2)

= 2m2(E —q2/2p)

as expected. Our wave equation thus turns into the non-
relativistic Schrodinger equation for two particles with
masses ml and m2 and with the potential —e2/r.

VI. STATIC AND NONRELATIVISTIC LIMITS

ol

V = V (r) = —(plp+m2) (e2/r).

In the nonrelativistic limit, both no~ and m2 are
finite, but pl and p2 (or p and q) are small compared
with either mass. The nonrelativistic representation of
the F matrices is"

Fo—I'4 =pr,

j. =rq,

I'0+I'4=p 'rq',

'0 C. Fronsdsl, Phys. Rev. 156, 1665 (1967l.

In the static limit mq —+~ and particle I acts as a
fixed potential. Our wave equation, in the form (2.1),
reduces to either the Klein-Gordon equation or the
Dirac equation in the external potential V. In particular,
the potential (3.1) becomes

p (p') lr 'f $d q'/—p2 (mq lq') 25ip-;
With the choice (4.22) for p (p'), i.e.,

y (p')~ mle'(p20+m2), —

this is the same as

—(4'2/22r2) (p20+m2) ffdpq'/ (q q') 2$1P;—

where P is the angle between the projections of Q and
Q' in the plane normal to 71:

- ~=1-Lee'/(~e) (~'e)3 (7.4)

When P2'~m2' and P2"~m2' this tends to infinity, since

7le =mlP '(P2' —m2'). (7.5)

' This may be shown within the quantum-mechanical frame-
work. In another paper we shall show that Eq. (7.1) may be
derived directly from quantum Geld theory.

VII. SCATTERING MATRIX

The integral equation for the scattering matrix is"

2 (plp2 pl p2 ) V(pl pl )

+f(dq) v(P1, q) L(P —q)' —m2'3 '2'(q, P q; Pl'P2'), —

(7.1)
and the solution is

T = (p2' —m2') (l. ' —E2—') (p2"—m2'). (7.2)

Since we are mostly interested in the on-shell limit we
may drop the second term. Using I '=G and (5.4)
we get

&=L&'/~'(7 Q) (7 'e) jr[~'/L-(P')3&-. 4(cos4), (7 3)



C. FRONSDAL AND L. E. LUNDB ERG

2QQ'~i P 'I'(1 —v) I'(1+v)
(l Q) (~'Q)

(7.6)

In the on-shell limit there appears an inhnite angle-
independent phase factor that is familiar in the case of
the nonrelativistic Coulomb problem. Following Finkel-
stein and Levy, "we introduce incoming and outgoing
wave packets by

sint(~p
~

ms)j j
~([ ps (

—ms)

where m, is an arbitrary unobservable quantity with the
dimension of a mass that may depend on energy but not
on angle. After a change of the variable of integration
the integral turns into a well-known representation for
1/I'(1+v), except for an infinite phase factor that we

drop. The on-shell limit of the T matrix (7.3) is thus

T=-~(s) I'(1—~(s)) «&""
(7 8)I'(1+i (s)) (mj

where s= (pi+ps)', t= (pi —pi')'= (ps —ps')', and

i (s) =+ie'[(s—m ')/(s —no+') $'i'. (7.9)

The final expression for the scattering matrix is com-

pletely symmetric in the two particles, which is sur-

prising in view of the diferent roles assigned to them

by the dynamics. Such a situation is not unthinkable,
however, since the dynamical equations are no more
than a mathematical model for the interpolating states.
A more general result is obtained in the last part of
the Appendix.

VIII. EXTERNAL INTERACTIONS

Interactions with an external electromagnetic field

may be introduced by making the usual gauge-invariant
substitution in the Lagrangian (2.2), or in (3.11).To
first order A„ is coupled to the conserved canonical
current, Eq. (3.10). This current is local and generates
a local Gell-Mann current algebra. '

The electromagnetic form factor for a transition
between two arbitrary states is

4'(p)&. (p, p')4"(p') (8 1)

"R. J. Finkelstein and D.Levy, J. Math. Phys, 8, 2147 (1967).
"C.Fronsdal and L. K. Lundberg, Trieste Report No. IC/69/33

(unpublishedl .

Consequently, only the contribution of the Regge
pole at n=a= ——y(p')/P survives the limit""

I'P„,4(p)„—PN —y(p')

r(1—~)r(1+~)~d~= 2+s ', P„,4 —cosQ
Pe+y(p')

If the two states are stationary bound states this is
given. by Eqs. (A.20)—(A.22) of the Appendix. In
particular, the elastic form factor for the ground state is

(p+p')„1—(mr/2ms)& j(p' —m ')
Z(p,p,')»s (1—&m,s/Vs)s

(8.2)

Q"X'—1 VX—1»'
V,"&'+1VP, +1
v(p')IP—e '&

2'Compare G. Bisiacchi and G. Calucci, Phys. Rev. 181, 185
(1969).

24 These rules must be used with care. They are based on (A22),
which holds if the scalar form factor is written in the form (A20) ~

The differential operators do not act on the tensors P, which
must be remembered when these tensors are eliminated by means
of the completeness relation (A24).

The analytic structure of this and other form factors
was investigated earlier, " before the detailed physical
content of the wave equation was understood. It was
pointed out that the singularity at t=ps/crisis is the
anomalous threshold singularity that is expected for a
compound in which only particle 2 is charged. The
reason for this is now completely clear. The gauge-
invariant minimal coupling that is obtained by replacing
p„by p„—eA„ in the wave equation (3.14) actually
means that p»~ps„eA—„and pi„~pi„.We have coupled
locally at x„, which is the position coordinate of particle
2. If both particles are charged, then the coupling will
not be minimal. The current will have an extra nonlocal
contribution. "Hence we see that the electromagnetic
current is not symmetric in the two particles. However,
there exists a nonlocal unitary transformation that
interchanges the roles of the particles, which shows that
the asymmetry is not fundamental. (These remarks
have some obvious relevance to the problem of con-
structing a nonfactored current algebra. )

The matrix element for Compton scattering is a sum
of two terms illustrated by the Feynman diagrams of
Fig. 1(a).We have

BR (1)

=«p", o«)'1.(p", p')L1/L(p')3J (p', pN (p,
'

)

=I.'(P" P')I '(P' P)4(P" out)'Ll/L(P')34(P,
'

)

(8 3)
Here the I„have been pulled out with the help of
(A.22); hence I„'(p",p') is related to I„(p",p') by the
substitution of 8/BX""+rl/N, '" for I'„.'4 The scalar
matrix element is evaluated in the same way as G«(p);
in the case of elastic scattering from the ground state
we easily find"

k(p" 1)'I:1/L (p')3 (p 1)
=2' 'D»'fsPi(1, fi;1—b;e) sFr—(1) b;1 i'i—;s)—j, —

(8.4)
where D is the Kibble determinant formed from X",
A.', and P, and
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The singularities of the form factors and the Compton
scattering amplitude have been studied~ and found to
coincide with singularities of quantum Geld theory.

Amplitudes that involve scattering states in the
external states can be evaluated in the same way as the
Coulomb amplitude, but the easiest method is to use an
algorithm that can be justified precisely as in the non-
relativistic theory. " Ke illustrate the procedure by
calculating the photoeffect induced by a scalar photon
incident on the ground state. See Fig. 1(b).The matrix
element is

0(p, q)'[1/I (p)3 (p', 1). (8.5)

Here p(p, q)—not to be confused with 1t,(p)—is the
wave function for an asymptotic scattering state: a
distorted plane wave. Expanding the propagator as
usual, we get a contribution from the pole of L„(p')
only:

1/L(p)~1/~(p') r(1—.)r (1+.)
X Q f(p, vlttt)p'(p, vlrrt) t. (8.6)

atm

Inserting this into (8.5), we use

4 (p, q)'p(p, v&m) =[y(p')/m&2srf[1/r(1+v) j
X V"' V"v-'iP(P visit)A, ...A„„(8.7)

In order to normalize to one initial atom per unit
volume divide this by rt&(p')'t'.

The calculation of the Coulomb amplitude [see Fig.
1(c)$ now goes as follows:

2'=4+(p, q') [1/L (p)3 (p, q)

=I 1/~(p')3r(1- )r(1+ )

X Z 4'(p, q')0(p, vIm)0'(p, ptm)'4 (p q)
lm

= [p(ps)/2srsms/[r (I—p)/r (1 /v) jV'A. . .
X Q fA. ..f'B"'VB ~ ~

lm

= [p(p')/sr'm'( [I'(1—v)/I'(1+v) I (—2V V') ~'. (8.1,2)

Similarly, the amplitude for bremsstrahlung of a scalar
photon with four-mornenturn p —p' is [see Fig. 1(d)$

SlI=4'(p', q')[I/L(p )]I I/L(p)34(p q)

= [1/v(p') j[1/~(p")3

Xr (1—v) I'(1—v') r (1+v)I'(1+v')

X[~(P')~(P)/2 'm'jL1/r(1+ )j[1/r(1+ ')j
xv'"" pA. .. Iy'(p', ') p(p, .)Ip' " v

The quantity in I j is given by (A20); hence

with

VA = (1/m)QA = (1/m, ) (q„, ntr),

which defines P (p, q), and (A.20) for rt = 1:

&'(p, Im)'4(p', 1)

(8 8)
SR= (1/sr'm') I'(1—p) I'(1—p') [(1+y'y)/2]' —~ vr

(v —I) (v' —1)
X~

I II

I(V'~)"-r-s( —V'AV)s( —VV) -r-s

&&i& &)
= (I/n't)r(1 —v)r(1 —v') (2VV') "+"'(VV) "'P V')—"

=62(1+X X) p(p pint)BI- Bv—1$B ' ' 'QB„(89)

Finally, since the tensor V~'V~' ~ ~ ~ is traceless, sym-
metric, and transverse to X, the sum over l and m sim-
plifies to

VAlVA2 ~ 1t (P v$rrt) A A P (P pint) B1B2"'"AB

lm

=2"(—VX') " '. (8.10)

Thus, using (8.6)—(8.10) we reduce (8.5) to

r(1—v), ,
—2VX'i"

(vv)-

I'(1—v) —2VV "
= (p p')" (p+p' 20).-. — . (811)

mirth' 1+V.'

tt, co (V.') —1%t

(8.13)

~(v.') =v.'+ (vv') [1—(v.')'j/(~v') (~'v)

eABe AB/(ecDgCD e ABe AB )1/2 (8.14)

where G~~=tggj, 'QD@V9 X' and e'» depends on V'.
The Reggeized quantum number is e rather than l,
but an expansion in terms of / poles is possible.

APPENDIX

Representation of 80(4, I)

where t = (g —g')'. This is a Reggeized double-peripheral
production amplitude, the "Toiler variable" being
defined by

(b)

/
/

(d)

FIG. 1. Feynman diagrams;
wavy lines represent external field
quanta, thin lines constituent
particles, and heavy lines the
atom. (a) Compton scattering;
(b) photoeftect; (c) Coulomb
scattering; (d) bremsstrahlung.

I.et" ZA (2 =0, 1, 2, 3, 4) be a set of real coordinates
subject to Zo&0 and

Zs—=Z s—Z s—Z s —Z s —Z s =0. (A1)
25 Most of this Appendix is reproduced from Ref. 19. See also I.

M. Gel-fand, M. I. Graev, and N. Ya. Vilenkin, Generalized
FNnctions (Academic, New York, 1966),~iVol. V; and C. Itzykson
and I. Todorov, in I'roceedings of the F& st Coral GaMes Con-
ference on Fnndamental Interactions at IIigk Energy (Freeman,
San Francisco, 1969l.
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Let f(Z) be one of a set of continuous functions of Z~
and let Z~AZ be a proper (4+1)-dimensional Lorentz
transformation, the operators

T(A):f(Z)—&f(A
—'Z) (A2)

we discover that the requirements of invariance under
(A2) together with homogeneity of the functions f and

g always lead to divergent integrals. This must be
remedied by allowing a finite range of X.The result of a
rigorous treatment is that integrals like (A3) give
sensible results if and only if the degree of homogeneity
of the integrand (including the differentials) is fixed
and equal to zero. Thus Z(Z, Z') must be invariant and
homogeneous of degree —S—3 in both Z and Z'. In
other words, the inner product is

(f, g)-f (dZ) (dZ')f*(Z) (ZZ') 'a(Z')

The rule for converting this formal divergent integral
to a meaningful expression is to introduce homogeneous
coordinates and drop one of the integrations. "Define

JLL=O, 1, 2, 3 (A6)

Substituting this into (A5), dropping fd(lnZ4)d(lnZ4'),
and setting X=—2, one gets Eq. (3.6). The constant
factor is arbitrary except for the sign which is arranged
to make the norm positive.

The expressions (3.3) and (3.4) for the infinitesimal
generators are easily obtained from (A2) and (A7).
The Hermiticity of these operators in the metric (3.6)
can easily be veri6ed directly.

Majorana Matrices

As remarked above, it is possible to make sense out
of the integral

I" (Z) =ff(Z') (ZZ') '(dZ'). (AS)

This function is homogeneous of degree —E—3;
consequently, if the functions f(Z) of degree 1V= —2
are the basis for an irreducible representation of
SO(4, 1), then the functions Ii (Z) of degree N= —1
are the basis for an equivalent representation. There
follows that multiplication of f(Z) by Zz can be inter-
preted as the action of operators I'~ in Hilbert space.

form a linear representation of SO(4, 1). If f(Z) is

homogeneous of degree X in Zg, then so is f(A 'Z)
We may therefore fix X, and we choose E= —2 because
this is the only choice that allows for the existence of
Majorana matrices. When we try to de6ne a Hilbert
space by introducing an inner product of the type

ff*(Z)&(Z, Z')a(Z')(dZ)(dZ'), (A3)

(dZ) =doz S(zo)~(Z2)

Discrete Eigenstates

It turns out that the representation is irreducible.
Reduction according to the chain SO(4, 1)~SO(4)—+
SO (3)-+SO(2) gives a complete orthogonal basis
consisting of the functions

Zo 'I"„i„(Z./Zo), (A11)

where I"„~ are four-dimensional spherical harmonics
and a =1, 2, 3, 4. The parameter values are

(A12)

(A13)

and, of course, 222= —l, I+1,—. . . , /.

basis vectors for each value of e; these
ducible representation of SO(4) with
operator (a, b=1, 2, 3, 4)

-,'g S~' 222 1—— —

There are e'
form an irre-
the Casimir

(A14)

It turns out that Fp is a multiple of e; we choose the
normalization of I'p so that Fp=e; then it Dray easily bc
verified that

p kg IB]= —2sgg, (A15)

which shows that the operators I'g and s~~ satisfy the
commutation relations of SO(4, 2)."The operators I'~
are Hermitian, so this representation is unitary. From
this we can also conclude that I'~, I'2, FB and I'4 have
continuous spectra covering the whole real axis. These
results concerning the spectra of I'~ lead easily to
(4.6).

If Xo)
~

X4 ~, then the eigenstates of the operator
I'o'=thoro —&41'4 are (Zo') 'I"„& (Z, '/Zo'), where Zz'
are defined just like I'&'—Eqs. (4.10) and (4.11)—and
the arguments Z, '/Zo' are the 22, defined by (4.12).
Using (A7) we find the corresponding q-space wave
functions (4.15).

The normalization constant in the expression (3.2)
for I'4 ' can now be calculated. The eigenvector of I'p

with eigenvalue 1 is qo
' (up to a constant). Thus

I 4 IItp
= +4 +pgp =my gp (A16)

26 The fact that the two operators defined by (A9) and (A10)
are inverses of each other follows easily from the fact that their
product is an SO {4,1}invariant of an irreducible representation.

"The matrix elements of all the SO(4, 2) generators, including
the I' matrices, were worked out in Ref. 19.

In fact, we may de6ne"

I'g f(Z) fZg'f(Z') (ZZ') ~ '(dZ'), (A9)
I' 'f(Z) Z 'f f(Z') (ZZ') ~ '(dZ'). (A10)

Both integrals make sense and both operators preserve
the degree of homogeneity. If we use (A6) and (A7)
and drop the integral fd(lnZ4') as before, we obtain
Eqs. (3.2) and (3.5), except for the constant factor in
(3.2) which will be calculated presently.
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But
I'4 'qs ' ——cf/(dq')/(q —q')'jqs' —'

7—I c/nt, tqs/

In order for this formula to be applicable, it is necessary
to represent the inner product by (A20); replacement
of 1 by Xs anywhere in (A20) invalidates (A22).

so that c must be —m

Form Factors

The inner products

y(p, nrnz)V(p', n't'm')= (y( ~ ), r P( ~ ))

AAs ——XA'gs —(1+»')8A . (A21)

In the case of the discrete states, when n and/or n,
' is an

integer, the sum over k is cut off by the binomial
coefficients. The matrix elements of I'z are given by

4(p, n)'I'A (p' n')

= —(8/N. A+8/8X'Ag (p, n) tp(p', n') (A22).

can be found by evaluating the integrals

—z. 'f(dq)(dq')(q —q') V.*( )4, ( )

=~t 'f(dq)(~'Q)k. *( )0.( )

The integrations can actually be carried out if one
recognizes that the wave functions are five-dimensional
spherical harmonics on the cone (A1), with the help of
the addition formulas for Gegenbauer functions. The
desired results can also be obtained with less effort by
tensor methods. Let us expand the polynomial 7'„t (X, x)
by writing

2z.l—"'F'„& (X, x) =xA' x""-'P(P, n&~)A, ".A„,
(A18)

Here ) is the quantization axis for e, x is any unit vector
normal to X, and the tensor P is traceless, symmetric,
and transverse to X. The wave functions are thus
given by

y, (p, ntnz) = (~,n/ &~) (~Q)-='

XQA' QA"-'g(p, ntm)A, ...A„,. (A19)

We may sometrmes suppress the arguments et' in p,
since n is already given by the number of indices and
the angular momentum decomposition is usually not
needed.

The inner products can be evaluated very easily by
extending the SO(4) tensor notation to SO(4, 1). The
result is"

4(p, n)V(p' n')
t -1) ( '-11

= (—)"+"'(I+»')'-"-"'
~)E ~ )

XLp(p)tA&" A~-g A . ..g'A jAA». ..AA s

Xp '+' "~'"'-V(p')A "A. 3 (A2o)
where

or more directly by using (A19) and

~""'"~""= Z 4 (p).,-'. ,~ (p) " '-'- ~.,' ~ ~ ~ ~. ,'
lm

=2/(V'X)' —1$'" o"((X'X)'—1/&" ""E 4(P). (A24)

The argument P is the angle between the projections of
X' and X" on the plane normal to X, and

P„,4(P) =sin(nP)/sin&. (A25)

When n is pure imaginary the addition formula (A23)
remains valid, with / running over all non-negative
integers. "The precise expressions for I'„g in the two
cases are

(2/s )'I' (n+l)!
(2/ 1)!! (n —1—/)!

XF (1+l+n; 1+3—n; —',+l; -', ——',p) P i„(A26)
when /t/ is real and n is integer, and

t'(2/'z)&Is (n+$)!($—n) t &/s

I/'„)„=
' '

sinh'(iy)
(23+1)!! (n —1)!( —n —1)!
XF(1+/+n, 1+l—n; ss+t; z

—-', p) Yin (A27)

when P and n are imaginary.

Symmetry of 2' Matrix

The T matrix is a matrix element:

T=ptL(f 'is/,

with L = I'41 and I/s I'4(ps' ms'——) If a pr—ime in.dicates
the result of a transformation that is unitary in the
group metric 1!'tp of Xg, then

y/tf /f/ yf /p/—
One such transformation is an SO(4, 1) rotation in the
plane formed by p„and the fourth axis. In the center-
of-mass system, consider the transformation

I'4' ——cosh8 I'4+sinh8 r„
I's' ——cosh8 I's+sinh8 I'4,

F Fp sinh8= —2pom (p' —I ') '.

"A more general addition formula of this type was derived in
C. I'ronsdal, Trieste Internal Report No. 15, 1967 (unpublished).
The special case needed here was given by M. Bander and C.
Itzykson, Rev. Mod. Phys. 38, 346 (1966).

Addition Formulas

The sum over / and n' in (5.3) may be carried out
by using (4.20) and

P F'„$„(!t,X")Y„/ (X, X') = (n/2 ')P„, (y) (A23)
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The parameter was chosen so that the effect on L is On the mass shell
given by (p —q)'= srt2s

I' = (P' —srtt, '+srt2') l'4' —2nt21' 'P —y.

This is the same form as J., with ns1 and m2 interchanged,
which reveals a symmetry of the wave operator, of the
solutions of the wave equation, and ultimately of T.
To express this symmetry in terms of the momentum
variables we must define g„' symmetrically; thus, while
q„=m174 'I'„, we must define q„'=ns2I'4' 'I'„'. Then

T(p~ g, rrty) nz2) = T(p~ g ~ nts, rÃr).

Here a single set of momentum variables represents
both initial and final values, to avoid a cluttered nota-
tion.

The expression for g' in terms of q is

cjo cosh8+rptq sinh8
gp' ——m2

orts cosh8+ge sinh8
'

—ns2qq'=
rn~ cosh8+gv sinh8

or

qo
——(P'+mP rrt—2s)/2Po,

which gives

8' = (P' '—+ ')/2Po =Po tfo-
and q'= —q. Thus, on the mass shell q'= p —q= p, , and
the symmetry of the T matrix takes the form

T(p, p„~„ms) T(p p2 Tsar Bz],),
or, briefly, since p= p&+p& and pp=rnz', pss=sttp,

T(p~ P2) =T(P2, Pi),
which is the desired result.

So far we have treated y=I'4V as a constant. A
sufhcient condition for the symmetry of the scattering
matrix is that p be symmetric (invariant) under the
above transformation, including the interchange of m1
and m2. This condition is not necessary, since V is not
completely determined by the on-shell T matrix. A
necessary condition is that V be symmetric on shell.
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A general formulation of duality theory is presented that includes nonplanar Feynman-like diagrams.
All diagrams, planar as well as nonplanar, are so classified that the diagrams in a given class are mutually
connected by duality. A prescription is given for constructing an integral representation of the scattering
amplitude for each class. Some fundamental properties of the duality relations are discussed.

I. INTRODUCTION

"N Paper I' we have discussed planar Feynman-like
. . diagrams (FLD), the corresponding duality ampli-
tudes, and their high-energy behavior. In this paper we
continue the program to include nonplanar diagrams.
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As was shown in I for the planar diagrams, FLD's
and dual diagrams have a one-to-one correspondence.
Once the dual diagram of a given FLD is drawn, by
erasing its internal lines we obtain the duality diagram.
By performing various triangulations of the duality
diagram, we obtain a class of dual diagrams to which all
the FLD's connected by duality correspond. Since a
dual diagram is composed of a set of triangles which are
connected by the common sides, it is a surface. There-
fore it is possible to study the classification problem of
dual diagrams, accordingly of FLD's, based on the
topology of two-dimensional surfaces.


