
EVOULTION OF FREE MAGNETIC FIELDS. II

this was an unnecessary precaution. That is, they could
be extended quite naturally into this region.

Mention might also be made at this point of the
possibility of utilizing the techniques presented in the
solution of this problem in Gnding other solutions to
Einstein's time-dependent equations. A subsequent
paper will follow this format, with the initial conditions
corresponding to a uniform Maxwellian magnetic field
as is found in the interior of a long ideal solenoid. Thus
the behavior of an initial radially limited bundle of flux

will be presented which possibly has relevance to the
question of the ability of an astrophysical magnetic Geld
to affect the process of "gravitational collapse. "

In conclusion, the authors believe this work shows
that imposing "boundary conditions at inGnity" is
not always the most appropriate way to start on a
general-relativistic problem, and that more progress
in finding time-dependent solutions may come by
making other assumptions and investigating what
happens "at infinity. "
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In a classical system of particles interacting via neutral vector-meson exchange, at very high densities the
pressure exceeds the relativistic energy density, and the speed of low-frequency sound waves exceeds the
speed of light in vacuum. A quantum version of the same model, if it is stable against spontaneous pair
production, can be neither ultrabaric nor superluminal, if, at high density, the correlation energy increases
faster than the number of particles. Real matter, if it is stable at very high densities, is not expected to
show noncausal sound propagation.

I. NONCAUSALITY AND INSTABILITY

'X two earlier papers, ' ' we considered the possibility
of pressure exceeding energy density, p) e, in

unquantized relativistic matter. If, at very high
densities, real matter could be ultrabaric (p)e), this
would be important, in principle, because the speed of
low-frequency compressional waves must then exceed
that of light in vacuum, c,= c(dp/de)'t') c. The possibil-
ity p) e would also be important practically because
the upper limit on the mass of neutron stars could then
be larger than heretofore thought possible.

A superluminal group velocity (c,)c) for a particular
frequency need not violate causality. It is sufficient for
the causal propagation of stable signals that the index
of refraction, tt(co)=ck/co, obey the Kramers-Kronig
dispersion relation
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A system can have (co/k)„o)c and still be causal,
provided

2
rt(0) =1+—

Imrt(co )dto

i.e., provided the system is amplifying enough at high
frequencies LImrt(co)(0j or, in other words, provided
the system is not in its lowest-energy state. In our
examples, however, a dynamic calculation of the k-co

eigenvalue equation showed that k(co) Pand, therefore,
tt(to) j had branch singularities' in the upper half of
the complex ~ plane, so that the Kramers-Kronig
dispersion relation was indeed not satisfied.

The significance of singularities in the upper half of
the complex co plane is that some normal modes grow in
time so that for arbitrary initial or asymptotic condi-
tions a wave packet is generally unstable. Wave solu-
tions that remain bounded in the future are possible if
suitable initial or asymptotic conditions are imposed,
but then the system preaccelerates before the imposition
of any external force. Upper-half-plane singularities
thus mean that the system is uestabLe or eoecausaL, or
in electrical-engineering terminology, that the system
is active. In either case, the speed of zero-frequency
waves c,&c, and the time development of the system
is not fixed by Cauchy conditions.
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In an active system, the choice between instability
and noncausality is made by boundary conditions. If,
in the complex &o(k) plane, one chooses a contour along
the real co axis, then the upper-half-plane singularities
give a nonvanishing Green's function for 3&0. For t) 0,
on the other hand, these upper-half-plane singularities
do not contribute and the Green's function is bounded
in time. For such a contour, C,&,i,i„ the system's
development is stable but noncausal and, because
some k(&u) are excluded for t) 0, also nonlocal in space.
Alternatively, one may choose a contour above all
singularities in the upper half of the complex co plane.
For this contour, C„„,i, the Green's function vanishes
for t &0. For t &0, however, it contains normal modes
that grow exponentially in time.

We want to emphasize that for an active system (one
violating the Kramers-Kronig relation), a stable
Cauchy problem does not exist. One can insist on
causal propagation at the price of instability, ' or one
can achieve stability at the price of some spatial
nonlocality and temporal noncausality. For example,
the motion of a single relativistic classical Lorentz-
Dirac electron' could be either "runaway" (self-
accelerated) or noncausal (preaccelerated). Because,
under the action of finite forces, the motion of a single
electron is expected to be bounded, an asymptotic
condition is imposed which rejects the runaway solution
and makes the electron preaccelerate at times 2e'/3Mc'
before the imposition of any external force. This non-
vanishing preacceleration is clearly associated with the
use of a finite renormalized mass 3f which assures the
electron's stability by compensating its internal stress.

We considered'' a lattice of E classical particles
interacting among themselves through retarded neutral-
vector-meson fields and found that, when sufficiently
compressed, p& e and c.)c. In this case, contrary to the
electromagnetic-interaction case, ' the finite range of
interaction between particles permitted the microscopic
noncausality-instability to become macroscopic. This
classical lattice is fundamentally unstable against
self-accelerating runaway because the stationary lattice
is not a system with a true energy minimum. If, as is
done for a single particle, these runaway solutions are
removed by fiat, so that the stationary lattice is a true
ground state, then the lattice becomes noncausal. In the
instability case, the Green s functions vanish outside
the light cone and signals do not propagate faster than
light. In the second case, the Green's function is
nonvanishing outside the light cone and signal propaga-
tion is noncausal.

' This appears to be the point of view of Hers, Fox, Kuper, and
Lipson I reports from Technion-Israel Institute of Technology
iunpublishedl ] towards tachyons and towards our classical
nonlinear-field model. Note that even if the attitude of Fox,
Kuper, and Lipson is imposed to make the acoustic branch of
our model causal, the optic branch of our model remains noncausal.

4 P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938);
see also F. Rohrlich, Classical Charged Particles (Addison-Wesley,
Reading, Mass. , 1965).' J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 1'7, 157
(1945).

II. CONDITIONS FOR MATTER TO BE
ULTRABARIC OR SUPERLUMINAL

In this paper, we describe the quantized version of
this same lattice and deduce the equation of state in
the high-density limit, continuing to assume the
existence of a lowest-energy state. The energy of an
1V-particle system can be written E=Es+Erl+Z, in
terms of Eo——EMc', the renormalized rest energy of the
free sources; EII, the Hartree energy due to a source's
interaction with the uniformly smeared continuum of
uncorrelated sources; and E., the correlation energy
correcting for the anticorrelation in position between
near neighbors. For fixed volume V, XII is always
proportional to —,'S', the number of particle pairs.
Since correlation lowers the energy, E, is always
negative, vanishing when the number density m= 0 and
dominated by the Hartree energy at e= ~. In terms of
the energy density e=E/V,

e = so+ err+ e g = sMc'+ Bus'+ e„ (2.1)

where 8 is a positive constant and e,(0.The pressure

dE d(e/m)
P = — =B'

d V d'Ig

=I——e—=ny —e, (2.2)
dm

and
(c,/c)'= tsdp/@dt's. (2.3)

Here IJ, =de/dt's is the chemical potential, the energy
necessary to add one more particle to the system.

The condition for matter to be ultrabaric is

0&ep, —2e

and, to be superluminal, is

0 (trd p/dts —p.

(2.4)

(2.5)

(2.6)Pc tspe ec y

these conditions are

Mc'( (p, )s/n, —ultrabaric

d(—(p.—e.), superlurninal.
dQ

(2.7)

Since, at low density, e, and p, vanish at least as fast
as e, matter can become ultrabaric at some density
terr only if p, —e. increases faster than 2Mc'ts at some
lower density e,(e~.

We have already mentioned that —e, does not, at
high e, increase faster than ts' (which is proportional
to sr1P the number of pairings between all E particles).
Because the correlation feels the eRects of pairings with
some of the S particles, one would expect, at high e,
that —e, would increase faster than linearly in e, unless
a phase transition takes place. If this expected behavior
takes place, then at high e,

&c

In terms of the correlation energy and the correlation
pressure,
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and p.= (y —1)p, (0. Indeed, whenever in any density
region the correlation energy obeys a power law
p. = —A ~ with constant exponent y)1, then p, is
negative in that density region.

III. CLASSICAL BARYONIC LATTICE

We first recapitulate the result obtained earlier' for
a classical lattice of point sources which repel each other
because they are coupled with coupling constant g to a
neutral-vector-meson field of finite range p, '. At fixed
average density n=E/V=1/o. ' and zero temperature,
N such classical sources form a lattice, with average
separation a, whose energy per particle is

so that y(n)) 1, then being ultrabaric is incompatible
with stability against baryon-antibaryon production.

A. Hartree Energy

In a box of volume V=Ãa', consider E physical
(dressed) spinless baryons which are the conserved
sources of a neutral-vector-meson field of bare mass po
and bare coupling gp. Let fp be a product of X independ-
ent dressed-particle wave functions, each of zero
momentum. Pp neglects correlations between baryon
sources and bosons and is a state of zero total four-
momentum. We prove the following:

Theorem: In the approximate ground state ltp, the
exact Hamiltonian has the expectation

p/n =E/1V=(E p+Er'r+E. )/Ã
=Mc'+2sg'/p'u' —P2s.g/a+0(1), (3.1)

Qo~H~Qo)=XJV~'+2 go'S'/po'V. (4 1)

in the high-density limit pa&&1. In this case„ the
correlation energy satisfies a —, power law,

p =nMc'+ Bn' An"'—, (3 2)

with B=2vrg'/p', A=2m. g'P, P being a dimensionless
constant which equals 1/12 for a simple cubic lattice.
The superluminality condition (2.7) is satisfied when

(3.3)

This exact result shows that, for any repulsive
coupling strength, such classical rnatter must become
superluminal and ultrabaric when that fraction of a
baryon's self-energy outside a exceeds the phenom-
enological mass Mc'. Mass renormaliz ation, which
reduces the energy density while leaving the dynamic
pressure unaltered, makes matter superluminal and
ultrabaric at suKciently high particle densities. This
static result is confirmed' in a dynamic calculation of
all the lattice normal modes using the usual relativistic
and retarded interaction between particles. The wave
number k(oi) has an infinite number of branch points in
the upper half of the complex co plane, ' thus violating
Kramers-Kronig causality.

I'roof: All of the self-intera, ctions of the Ã baryons
at rest are contained in the phenomenological mass term
TMc2. The second term follows from current conserva-
tion which makes the exact unrenormalized vector-
meson propagator Ar'(k') 6„„reduce to the bare propaga-
tor (k' —pp') '8 in the limit k —+0 ' For two fixed
dressed baryons, the space-integrated potential energy is

d'x gpss r'(x) =gps4s/1ip',

so that the average potential energy of two baryons is
4sgp'/pPV. Since there are 2)V' pairings of two particles,
the total potential energy is given by the last term in

Eq (3)
Because all physical states in Pp have zero four-

mornentum, only the exchange of vector mesons of
zero four-momentum between dressed sources can
contribute to the ground-state energy. (Other meson
contributions are included in the phenomenological
rest masses. ) For these, by Ward's identity, radiative
corrections vanish, as do the eBects of vacuum polariza-
tion. This is how current-conserving interactions
maintain the Hartree energy (4.1), so long as correla, —

tions and the identity of source bosons and of vector
mesons are omitted from leap.

IV. QUANTUM BARYONIC MATTER

The quantum treatment of this same lattice model
would involve the additional consideration of zero-point
energy, of real particle-antiparticle production, and of
radiative corrections. In considering quantum rnatter
we will now do two things: (1) We prove that the
Hartree energy, which neglects correlations including
that due to the identity of particles, in quantum theory
retains the same form (3.1) as in classical theory, i.e. ,

we will show that the Hartree energy increases with E'
and is unaffected by vacuum polarization and other
radiative corrections. (2) We show that, if at high
density —p. (n) increases with n faster than linearly

3. Correlation Energy and Instability

Now, the symmetry of the Hamiltonian will make the
true ground state Pp' automatically symmetric under
particle exchange. The ground-state energy calculated
with Pp' must be less than (4.1), i.e., that computed
with the simple-product wave function tPp. Therefore,
it remains to consider only the effects of nonstatistical
correlation, which also lower the energy. In the classical
lattice, the correlation energy E,= —P2s.g'X/a in-
creased faster than E as the particle spacing a ~ 0, i.e.,

e+'. This led to superluminal and ultrabaric
behavior.

' K. Johnson, Nncl. Phys. 25, 431 (1961).
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1. Stability of Vacuum

We now show that if the vacuum is to be stable
against baryon-antibaryon production, —e, cannot
increase faster than mac'. ~

Consider first a volume V ccmtaining X+ baryons
described by their exact wave functions fp'(N+),
including the baryon-baryon correlation e, ~N~&. Con-
sider also an identical volume V containing E anti-
baryons and let S =E+ so that the energies of these
two separated systems are equal. Now let us put this
baryon system and this antibaryon system together
in one box of volume V and describe the ground state of
the combined system by the approximate product
wave function Pp =fp (N~)gp (N ). The combined
system is over-all neutral so the Hartree energy is zero.
The true correlation energy E, consists of baryon-
baryon and antibaryon-antibaryon correlations, which
are equal, and of a baryon-antibaryon correlation,
which is negative. Thus

E (NN)+E tNA')+E (Nlv) &2E (ivÃ)

Now, for the product wave function,

(leap'IHIlbp')= (Ni+N )Mc'+2E i

while for the exact wave function including correlations,
@p,

E= (cp'I &
I
c p'& & (lbo'I &

I
&p'&.

Thus for the true energy E of the system of E+ real
baryons and E real antibaryons in the box U, we have

Ei"' i = 2Mc'+E. i"' & & 2Mc'+2t, .

Stability requires that A&I'"'&&0, or

Pc&MC2.

(4.4)

Note that if p, =ntc, —e, )0, vacuum stability (4.3)
implies N-baryon stability (4.5), while if P.&0 the
reverse is the case.

Combining the results (4.3) and (4.5), we have:

for vacuum stability, —e,/n&Mc';

for S-particle stability, —IJ,,&3' .
(4.6)

Comparing with the conditions (2.'/), we find the
following:

(i) For matter to be ultrabaric and stable against
baryon-antibaryon production in (1) the vacuum or
(2) the N-baryon state, it is necessary that p,)0.

(ii) For matter to be superluminal the weaker
requirements

dp, /dn p./n—)0, dp, /dn& 0

Since ti, (n) is the energy necessary to add one more
baryon or antibaryon, with such a baryon-antibaryon
pair the correlation energy

E ip"i&2p, ,(n),

since E.(~"') includes the negative energy of the
baryon-antibaryon interaction. The creation of such
a baryon-antibaryon pair requires energy

E& (N~+N )Mc'+2E. i"~i. are necessary for stabilities (1) and (2), respectively.

But if the vacuum is to be stable against the production
of such X+.——E real baryons and antibaryons, then
E&~0 is necessary. This requires

—e.&eMc', (4 3)

where n=N+/V=N /V is the number density of
baryons or antibaryons in a separated system.

Z. Stability of N Baryon S-ystem

A second stability condition follows from the require-
ments that the Ã-baryon system be stable against the
production of an additional baryon-antibaryon pair.

When particle production is neglected, E, can increase faster
than N. For a nonrelativistic high-density Bose gas with repulsive
Coulombic interactions, the correlation energy per unit volume
is e, = —S(A'/ML')L ', where S is a positive constant of order
unity and L= (ti'/4rme'M)"4; thus e,/n~n"4=a " If the same.
static interaction is considered for a relativistic Bose gas, e, = —5
X(hc/4nme')'@; thus relativistically e,/n~n"'=a ' For fermion.
systems n=a '= (8s/3)(pr/2~6)' and Ep/ti/=~(pipe) relativistic-
ally. The antisymmetrization introduces a negative Fock or
exchange energy —(3/2p)gp'(pr/A), in addition to the Hartree
energy. Thus Z/P= (9s-/8)sl'Ac/a+4wgpP/ppsaP —(81/8~)'~gP/a in
the Hartree-Fock approximation. Thus statistical anticorrelation
suSces to make p& e or dp/de&1 for small enough a provided
gps/if. ,&xss.. The bare coupling constant gp'/he =Zp '(g'/hc), where
the physical coupling constant (p mesons to nucleons) g'/Ac 3
and 23 ~& 1 and, in perturbation theory, Z3 ' ——00.

Our conclusion is that, if at high density the correla-
tion pressure

as expected, then the stability of the vacuum or
Ã-baryon state against baryon-antibaryon production
prevents matter from being ultrabaric or superluminal.
Indeed, if, as in the classical lattice or quantum systems
in the approximations considered in Ref. 7, e, obeys a
power law with exponent y&1, then stable matter
can be neither superluminal nor ultrabaric at any
density where the power law obtains.

If baryon-baryon interactions were repulsive enough
to make matter highly incompressible, then baryon-
antibaryon interactions would be attractive enough to
make the vacuum unstable and to give matter no lowest
nergy s
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