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Slowly Rotating Radiating Sphere and a Kerr-Vaidya Metric

M. MURKNBKKLD AND J. R. TRQLLQPE

Department of Mathematics, Unieersity of Alberta, Edmonton, Atberta, Canada

(Received 3 November 1969)

The problem of a spherically symmetric radiating body was 6rst considered by Vaidya, who obtained what
is of ten referred to as the "radiating Schwarzschild metric. "It is well known that this metric, if expressed in
radiation coordinates, differs from the Schwarzschild metric only in that the parameter m has been replaced
by a function of retarded time. In this paper, the parameter m of the Kerr metric is considered to be a
function of the retarded time and an exact expression for the energy tensor is obtained. It is shown that if
a/m is small then this energy tensor is appropriate for directed radiation. To this approximation Li.e., terms
of order (a/m)' are neglectedg the Landau-Lifschitz pseudotensor is used to show that the angular momen-
tum radiated is —m a. The metric is also used to describe the physical proper ties of a slowly rotating radiating
spherical shell, and it is shown that (provided 2m/R«1) the radiation gives rise to surface pressures pro-
portional to the momentum radiated.

I. INTRODUCTION

8,,= L2m'(u)/r']w„w;,

where w; is the null vector defined by

w, = (1,0,0,0) .

(1.2)

HE problem of spherically symmetric radiation
has been considered by many authors. The

original "radiation metric" was obtained by Uaidya, '
and the various ramifications of this result have been
discussed by Raychaudhuri, ' Israel, ' and Lindquist,
Schwartz, and Misner. 4 A different approach, using a
modified energy tensor, has been proposed by Kauf-
mann. ' In the above papers it is assumed that the
source is a nonrotating spherical body. In this paper
we attempt to obtain a more general solution to the
radiation problem, one which includes the possibility
of a rotating source.

It is well known that the Schwarzschild metric may
be put in the form

ds'= (1—2m/r) dtt'+ 2dQdr —r'(d8'+ siil'8 dqP) . (1.1)

Uaidya's "radiating Schwarzschild metric" is obtained
from (1.1) by simply replacing the constant m by an
arbitrary function m(tt). The resulting metric satisfies
the field equations

[Throughout this paper we shall adopt the following
convention: Latin indices take the values 0,1,2,3, while
Greek indices take the values 1,2,3. For coordinates as
in (1.1) we make the identification x'=tt, x'=r, x'=8,
x'=y.]

It is generally accepted that the exterior held for a
rotating Schwarzschild mass is provided by the Kerr
metric. Hence, it would be plausible to proceed as
follows:

(i) Write the Kerr' metric in a form ana, logous to
(1.1) and consider the parameters m and a to
functions of the retarded time m.

(ii) Compute the Ricci tensor and thereby determine
the form of the energy tensor.

(iii) Examine the resulting energy tensor to see if
it gives a plausible description of a rotating radiating
body.

The original intent of the authors was to actually
carry out steps (i) and (ii) with the hopes of obtaining
an energy tensor similar to that used by Vaidya.
However, the computations seemed so prohibitive we
found it necessary to settle for something less.

The form (see Newman and Janisr) of the Kerr
metric which seems most suitable for our purposes is
the following:

1 2mr/ps—
1
0

.(2mar/p') sin'8

0
0

—8 Sino

0
0

p2

0

(2mar/p') sin'8
—0 Sino

0
—sin 8L(2ma r/p ) sin 8+r +a j

(1.4)

where
ps:—re+as coss8.

If a' is not zero then the above equations rule out the
(1.5) possibilities of having

Preliminary computations show

Rr& =0, Rrs ———(2aa'r' sin8 cos8)/p . (1.6)
~ P. C. Vaidya, Proc. Indian Acad. Sci. A33, 264 (1951);

Current Sci. (India) 21, 96 (1952); Nature 1'7l, 260 (1953).
A. K. Raychaudhuri, Z. Physik 135, 225 (1953).

3 W. Israel, Proc. Roy. Soc. (London) A248, 404 (1958).

l

4R. W. Lindquist, R. A. Schwartz, and C. W. Misner, Phys.
Rev. 13'7, 81364 (1965).' W. J. Kaufrnann, Astrophys. J. 153, 849 (1968).' R. Kerr, Phys. Rev. Letters ll, 237 (1963).

7 E. T. Newman and A. I. Janis, J. Math. Phys. 6, 915 (1965).
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where m; is some null vector. Although it is unlikely
that T,, would be in a form identical to (1.'7), it is not
unlikely that the energy tensor should be in some sense
asymptotic to that form. On the other hand, if the
physical situation were such that terms of the form
aa'/r' could be neglected, then (1.6) and (1.7) would
be less incompatible. The authors felt that some exact
expressions would be of more interest so it was decided
to make the ad hoc assumption a' =—0. However, the
question arises as to whether this assumption leads to
anything physically realistic. The identification of ma
with the angular momentum of a rotating sphere
together with the assumption a' =0 would imply that

Rpo= a' sin48LRpp+ 2m'(r' —a' cos'8)/p'), (2.6)

Roo ——(2m'ra' sing cosg)/p',

R3g = —a sin ORpg .
All other R;; are identically zero.

Now define the vectors zv; and a; by

M;= (1, 0, 0, —a sin'8),

(2 7)

(2.8)

(2.9)

where
R,;= pv;w;+w, a,+w;a;, (2.11)

a;= (0, 0, Rpp, —m'a sin'8 (r' —a' cos'8)/p4) . (2.10)

It follows from (2.3)—(2.9) that

cvR2 =const, (1.8) g= Rpp o

where ~ is the angular velocity of the sphere with radius
R. This situation could occur if both cv and E. were not
significantly aff ected by the radiation. In order to have
a' identically zero, it is evident that the photons would
have to be emitted in a particular fashion. However, it is
not entirely unreasonable that terms of orders a' and
ma" would be negligible in the first-order analysis of a
slowly rotating massive star. Since terms involving m'

are to be retained, they must be large relative to a'.
A more likely physical model would be a uniformly
rotating spherical shell with a decreasing surface
density. $1n fact, if one initially ignored terms of
orders (a/m)', a', and ma" the result would be Eq.
(3 1) j

II. RICCI EXPRESSIONS FOR a'= O

The computations which take one from (1.4) to
the Ricci components will not be presented here.
However, the procedure was as follows: The Christ-
offel symbols were written in the form

From (1.4) it is seen that

M'= (0,1,0,0),
and we conclude

(2.12)

w,m'= 0, w, a'= 0, R= 0. (2.13)

If we assume that our metric is a solution to the f eld
equations

E.;,——,'g;,R= —Sz T;;,
then if follows that

(2.14)

T;;= —(1/8~) (gw, w, +w;a, +w,a;) . (2.15)

III. THE CASE (a/m)'«1

The metric tensor and the field equations would be
simplified if we could ignore terms of order (a/r)'. On
the other hand, if one is to avoid coordinate singularities
we must have ~)2m. Hence, it seems appropriate to
assume that (a/m)'«1, an assumption that would be
applicable to slowly rotating massive stars. If such is
the case, the nonvanishing components of R;; are

jk
(2.1)

Roo= 2m'/r', Rpo= (—3m'a sin'8)/ro.

It follows that

(3 1)

where {,'&)* are the Christoffel symbols for the usual
Kerr metric in which m is constant. The F',~ involved
the terms depending on m'

~ Obviously

where

Evidently

T;;= —(m'/4mr') v, v, ,
.

v, = (1, 0, 0, —pa sin'8) .

(3.2)

(3.3)

R,;=R,,*+r,;, (2.2)
v'= (0,1,0,—,'a/r'), (3.4)

where R;;* is the Ricci tensor formed from the
while F;; involves the "perturbation terms. "
E;;*=—0 it follows that

Rgy F$j~

{'i )*
Since

(2.3)

so v; is the propagation null vector for the directed
radiation. The solutions to the differential equation

(3.5)

Hence, in making the computations one can ignore
terms involving strictly "starred quantities. "

The above procedure led to the following:

are null geodesics which presumably give the path of
the radiated photons. The solution to (3.5) may be
put in the forrn

Rpo ——2m'r'(r'+ a')/p'+ (m"ra' sin'8)/p', (2.4)

Rpo= —a sin'8PRpp+m'(r' —a' cos'8)/p'j, (2.5)

y =K i a/2 r, —

0=E2, N=E3,

(3.6)

(3.7)
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where
v =x +au, u = ( y/r—, x/r, 0) . (4 2)

As in the Vaidya case, it follows that the momentum
four-vector and total luminosity are given by

a

p'=(trs'000) I.= —m'

The angular momentum three-tensor is defined by

(4.3)

Fzo. 1. Path of a photon.
where

M s= (x hso& x~h —o&+X o»)df (4 4)

(4.5)
the E being arbitrary constants. A photon emitted
from the point (u, R, —',x, 0) travels in the equatorial
plane along the curve

r =Rn/(n —y), n =—ii/2R (3.8)

(See Fig. 1.) The trajectory is asymptotic to the line

y=x tann —~a sec+.

IV. LUMINOSITY AND ANGULAR MOMENTUM

The results on luminosity and momentum which
were presented by Lindquist, Schwartz, and Misner4
for the Vaidya case can readily be obtained for the
"linearized" Kerr-Vaidya metric. In order to use the
I.andau-Lifshitz pseudotensor, the coordinates must
be such that the g'& are asymptotic to the Minkowski
metric. In these coordinates the g'& have the form

goo 1+2m/r, go~ 2nsv%'

g ~= —8 ~+2mv vs/r',
(4.1)

SL. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley, Reading, Mass. , 1962l, Sec. 100.

To a distant observer on this line the star would appear
to be at O'. However, if the star was not rotating, the
radiation would be along radial lines and the same
observer would see the star at 0. Hence, the rotation
appears to displace the star by an amount

(3.10)

The question arises as to whether the situation in
Fig. 1 occurs when u'=—0 or when a' is merely negligible.
If a' were identically zero, then the photons would have
to be emitted in a direction such that the back stress
would tend to increase the angular velocity. As this
does not seem to be the case, it wouM appear that the
latter alternative is more tenable. In that case a random
radiation on the surface could lead to an average
photon path resembling that in Fig. 1. This does not
seem inconsistent with the fact that a rotating object
tends to drag local inertial frames in the direction of
the rotation.

and the integration is over the two-dimensional surface
enclosing the volume under consideration. In our case
the surface will be a large sphere with center at the
origin. Neglecting terms of orders 1/rs and a'/r', Eq.
(4.4) reduces to

1 2m'
(8 &u~ 8»u )—
4m'

+ x&(x us xsu )—
r5

2m
(x vs7 —xsv &) df, . (4.6)r'

Qn performing the integration, one finds that all the
3f & vanish except for 3P which is given by'

3P'= ma

where m is now a function of t—r. It follows that the
angular momentum radiated per unit time is —m'a.

V. SLOWLY ROTATING SPHERICAL SHELL

In a paper by De La Cruz and Israel" it is shown
that the intrinsic metric which the Kerr geometry
induces on the "sphere" r=R can be joined contin-
uously to a flat interior (that is, to first order in a).
The Lanczos jump conditions" were then used to
provide the surface energy tensor. The transformation
given there can be modified to include the radiating
case. If u, r, 8, and @ are taken as the exterior coor-
dinates, then the metric on the cylindrical hypersurface
r=R is given by

ds'= (1—2m/R)d +u(4ma/R) sin'g dydu

R'(dg'+sin'8 dqP—). (5.1)
9The a used in (1.4) is the negative of the a used by various

other authors. For example, see Ref. 10.
0 V. De La Cruz and W. Israel, Phys. Rev. 170, 1187 (1968)."C. Lanczos, Z. Physik 23, 529 (1922); Ann. Physik 74,

518 (1924).
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The "surface" transformation

2m ~12 28
e =0, 1= 1 — dg, f=Q —— mdu, (5.2)

R R'

Neglecting terms of order a', these equations reduce to

(oSe&+S e=or o, S "=o, Sssu'=us, (5.13)

and the conclusion is

yields
ds'= dP —R'(de'+ sin'8 dP) (5.3)

EgB —S ';y
g~A d~B

(5.4)

which is compatible with the Qat-space interior coor-
dinates 1, r, 8, and P. If we denote the hypersurface
r= R by Z, the interior space-time by V, the exterior
space-time by V+, then the extrinsic curvatures of Z in
V+ and V are given by

Bx Bx~

I'=0 r =
7

2maL1+2 V—2m'/ V'3

R'L(1 —V) (1+3V) +2m'/ V'$

(5.14)

If the quantities 2m/R and m' are considered to be
small relative to unity, then the above expressions lead
to a variable density and constant angular velocity
which are given by

o =m (I)/4s R, co =3u/2R'. (5.15)
the P~ being the intrinsic coordinates of Z. The unit
vector m; is the outward normal to Z, and the covariant
differentiation is with respect to the metrics of V+
and U . %e shall adopt the convention that capitalized
indices take values 0, 2, 3 and P=u, ts=g, $'=P.

The surface energy tensor can be computed from the
relations

Equations (5.9) and (5.10) give rise to the classical
expressions for momentum density, but (5.7) implies
the existence of surface "pressures" given by

Ss'=See m'/87rR. —— (5.16)

S&~B PB 0B P )

BA +BA EB+
~

where

The nonzero components of SB~ are

Evidently these stresses are needed to balance the
(5.5) back-pressure of the radiation. Since the radiation

intensity is q= —m'/4s. R', a unit area of the surface
imparts a momentum of q/c= —m'/4s. R' to the photons
in unit time. The surface pressure p required to accomp-
lish this would be given by the expression

s&=s &=
m —R(1—V)

+
SxR'V SmR V'

—3ma sin'8

SxR'V

ma 2m)
S„&= 1+2V-

SmR4V V2 P

(5.7)

(5.9)

(5.10)

2P/R = g/c = —m'/4s. R' (5.17)
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The angular velocity cv (as measured by an observer at
infinity) and surface density o can be obtained from
the equations

Speal" =aud ugN" =1 Ne=(og". (5.12)
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