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Equivalence Classes of Minimum Uncertainty Packets*
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We show that all the minimum uncertainty packets are unitarily equivalent to the coherent states and that
coherence is in fact stationary minimality.

I. INTRODUCTION
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E consider the totality of wave packets in one
dimension which minimize the uncertainty prod-

uct (Ax) (Ap), where x and p are the usual position and
conjugate momentum operators which satisfy the com-
mutation rule Px,pj=i (ti= 1).

Ke develop an operator approach to classifying the
minimal packets and show that the totality of minimal
packets divides into equivalence classes.

One of the equivalence classes is the totality of the
coherent states. ' Besides demonstrating the unitary
equivalence of the general minimum uncertainty packet
to the coherent states, we show that coherence is
essentially minimality.

II. MINIMALITY CONDITION

It is easily seen' that the most general one-dimen-
sional wave packet that minimizes the uncertainty
product of position and momentum is completely speci-
6ed by the requirement that it be a normalizable eigen-
function of the operator R=sc+itsp with eigenvalue

(sc)+its(p) The on.ly restriction on ts is that it be real and
positive. The positivity requirement results from the
requirement that the solution be normalizable. It is a
trivial task to find the form of the most general mini-
mum packet, and one can in fact find it in many
textbooks on quantum theory.

What we do here is to approach the class of minimal
packets in a slightly less pedestrian way and in so doing
display all of the pertinent relationships in a lucid
manner. First we dehne the operators

instead of R. This is quite permissible since the eigen-
value equation is homogeneous. Writing S= (2ts) 't'A
we want to solve the eigenvalue equation

Sly)=sly),
where s = (2ts)

—'"[(x)+its(p)j.
In terms of u and c~, we must solve the equation

(2)

DI. UNITARY OPERATOR P,

Consider the unitary operator,

U, = expP, (sad —s*dtd")j,
where @=re'& is an arbitrary complex number. Inspec-
tion of the above operator shows that U,~= U,—'= U, .

A straightforward application of the formula'

reveals the following relation:

(a coshr+ dt sinhr)
~ P)= s

~ f), (3)

where coshr= (1+tsX')/(2X+ts) and sinhr=(1 —ties)/
(2X+ts).

Rather than solve this problem in the conventional
way, we note that if there exists an operator U which
can, by means of a similarity transformation, transform
a coshr+dt sinhr into d, then the state ~ii)= U~n) for
any coherent state2

~
n) will be a solution. The proposed

transformation preserves the commutation relation so
we may hope to find a unitary operator which does the
job.

U,dU, t=d coshr+dte 'r sinhr,

U,dtU, t=dt coshr+de'r sinhr. (6)

i
dt=(1/K2)] )x——P [,

where A. is any real, positive number. If X takes on the
value (ntco)U', then d and ds are the usual ladder
operators for an harmonic oscillator of mass m and
angular frequency co. We can express the operator A in
terms of a, and at. For convenience, we consider (2ts) 't'A

~ Work supported in part by the Science Development Program
of the National Science Foundation.' R. J. Glauber, Phys. Rev. 131, 2766 {1963).
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York).

So the operator U, will more than suit our purpose, i.e.,
when s is purely real we have the transformation that
we are seeking. Hence the most general minimal un-
certainty packet is given by the expression

~ P~.„.o.)= ~
r; u), n = any complex number

—= U, tn) (0&r& ~).
There are three arbitrary real parameters here, i.e., r,

Reo, , and Imn, which is as it should be since the most
general mieimues packet is specified by the three

'A. Messiah, Quantum Mechanics (Interscience, New York,
1961),p. 339.
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Using Eq. (12) in this relation, we havenumbers (x&, (p), and t) x or Ap. For r=0 we have all
the coherent states.

We might just as well consider the more general td
s„e'1'n'

states Is; ) when we consider detaiied properties We X (~Pdr w) «PI, 'I
I )2cf.shall see that in general these are not reieima/ packets.

IV. moZZRTIZS OZ Sn TZS lx; n)

A. Completeness (Overcompleteness)

This follows directly from the completeness or rather
overcornpleteness of the In& in a trivial fashion, i.e. ,

1
d'nln)(nl =1.

Ss(ppdss

=&(P, , *r,~+ & expt —llPI'+ . (14)
2c,

The solution to this functional equation for E is

f s„e'd'p'
K(n,P,P*,r, p) =expl ——', IPI'+

2c,

Multiplying this equation by U, on the left and by
U,~ on the right, we have4

1
d'n

I
z; n)(s; n

I

=1.

B. Connection with Other Bases

In this regard, all we need do is calculate the trans-
formation function (nls; p&=(nl U, lp) which can be
done very simply as follows.

If In) and Ip) are coherent states, i.e. , eigenstates of
the operator a, then we have the following relation:

(nlU*Ip&=p '(nlU*~lp&= (nl U.aU-'U.
l p&

(10)

In arriving at the last results we have used Eq. (6)
and written c„ for coshr and s, for sinhr. In Eq. (10) we
make use of two properties of the coherent states,
namely, (nla'=n*(nl; (nla, = (a/c)n*+-', n)(nl, which
gives us the following differential equation for (n

I
U,

I p):

8c„- +s„e '&n*+(—-,'nc„p) (nl—U, lp)=0. (11)
BA

The solution to this is

n"p s„e 'tpn*'

( I
tt. Iltt) =X esp( —.'

I
I'+ - — — —, (12)

c& 2c&

where Jh may depend on n, P, P*, r, and p, but not on
o,*. We can use the unitarity of U, to determine the
functional form of K. We have

So we have, 6nally,

Qp

(nlU*Ip&=expl —:lnl' —l I pl'
kc,

C. Expectation Values

The simplest way to compute expectation values in
this approach is by means of the characteristic function.
The expectation value of any positive integral power of
x, p, or a linear combination of these may be obtained
from the characteristic function of the operator A. =y6
+y*(it, q being an arbitrary complex number. By a
straightforward application of Eq. (15), we find the
characteristic function C~(P) of A. in the state

I s; n& to
be

~~(k)=—(s nlexpLsk(v~+v*ri ))is;n&
=expL-,'(z&)'I tr, I'+i((k* *+k )j, (16)

+ ((P ' e'e-' )) . (15)
2cp

Note that (Ol U. IO)=1 so we are not dealing with an
inequivalent representation.

We can use Eq. (15) to find the transformation to the
number state basis, i.e., the eigenstates of the operator
tfta. This is done quite easily by expanding (n I

in terms
of the ()sl states in (nl U,

l p) and expanding the right-
hand side of (15) in powers of n* The las. t-mentioned
expansion is done by means of the generating function
for the Hermite polynomials. The result is

(mls; p)= (ri!) '"t"exp( ——', Ipl'+p't*')H (p/2c„t),
(15')

where t= (s„e '(p/2c„)'(' and H is the mth order Hermite
polynomial.

4 In exactly the same fashion one can demonstrate that all of
the properties of the states ~s;n& as regards the expansion of
operators, diagonal representation, quasiprobability distributions,
etcsa, follow from those of the )thl states automatically. Equation
(9) is a special case of the identity for overcomplete states which
may be found in J. R. Klauder, J. Math. Phys. 5, 177 {1964).

(~-&=
~"~~($)

~('5)" f-o

where k =yc„—y*s„e'~.
The expectation value of A" is given by

(17)
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If we let y = 1/X&2, then A =x and we find

V2
(x), ,= —Ret u(c„—s„e'+)7.

X

In a similar manner, we also find

(18a)

We can ask what is the most general Hamiltonian
that keeps a minimal packet minimal. This question has
been answered for the special case of coherent states by
Sudarshan and Mehta. ' They show that the most
general Hamiltonian that keeps an 0. state an n state is
given (in Heisenberg representation) by

(p),, =XV2 Im)u(c, +s„e'&)7, (18b)

L(hx)'7, = (1/2X')Lc, '+s„'—2s„c, cosq7, (18c)

L(hp)'7. , =-',X'Lc„'+s,'+2c„s„cosy7, (18d)

f(Ax)'(hp)'7, .=-'(1+4s„'c„'sin'p). (18e)

The last of these results shows that the state
~
z; u)

is a minimal uncertainty packet only if z is real. Notice
also that the variances are independent of 0..

V. s CLASSES

We can group the states is;u) into equivalence
classes, each of which is speciled by its own particular
s. Since the width of these packets is independent of 0.,
we may regard the equivalence relation as being "having
the same width as."

The Weyl operator D(P) = exp(Pat —P*tf) acting on a
given state

~
z; u) takes it into a width-equivalent one.

This can be seen as follows:

D(P) ~z;u)=D(P)U*~u)= U .'(U .D-(P)U -') lu) -(19)

From Eq. (6) we can also show that U,D(P)U, t is

equal to D(Pc„+P*s,e '").
Since D(u) ~0)= ju) and

D( )D(P) = expt -,'( P*—*P)7D( +P),
we have

D(P) ~z; )=e'"~z; +(c.P+s.P*e '")), (2o)

where q=Imgc, Pu+s, (uP*e '&)7. Hence D(8) does not
alter the value of s and is thus reduced by s classes. For
real s, we have U, U, = U,+... so we can transform a
minimal packet from one class to another by means
of U, .

VI. TIME EVOLUTION OF izl e)

In Schrodinger representation, the state at time t

which evolves from iz;u) at t=0 is given by ~z;u)~
=exp( —iHt) ~z; u). H is the Hamiltonian operator
governing the system involved.

Let us consider the case of an harmonic oscillator
initially in the state ~z; u). Then the Hamiltonian is
H = co (a"a+ ~~). A simple calculation then shows that un-

der these circumstances we have
~
z; u) ~

——
~

ze" '; ue '"').
So we see that the free oscillator Hamiltonian will take
a state out of its s class but periodically return it. In
particular, if z is real at t= 0 (i.e., q =0), then at a later
time the state is in general no longer a minimal packet.

H(t) =~(t)&'(t)&(t)+f(t)&t(t)+ f*(t)&(t)+P(t) .

The functions ~(t) and P(t) must be real to make H(t)
Hermitian.

We can use this result and the unitary equivalence of
general minimal packets to coherent states to arrive at
the form of the most general minimality-preserving
Hamiltonian. The result is

H(t) = (t)c.(t)&'(t)&(t)+-'&(t)s (t)L&'(t)+&"(t)7
+g(t)&'(t)+a*(t)u(t)+&(t), (»)

where c,(t) = coshr(t), s„(t)= sinhr(t), r(t) = any real
positive function of t; and &u(t), b(t) are real but other-
wise arbitrary; g (t) is also arbitrary.

VII. DISCUSSION

We have demonstrated the unitary equivalence of all
minimum-uncertainty packets to the coherent states.
It is clear that these results are easily extended to the
case of more than one degree of freedom. The technique
employed here serves to reveal in a simple way the
structure of minimal-uncertainty packets. The coherent
states have found a very wide range of usefulness in a
variety of contexts and the structure discussed here
seems to be relevant to that usefulness. For example, I
have been able to generate exact solutions to some
nonlinear oscillator problems and also arrive at known
solutions to linear parametric problems in a simple way.
In a future paper the details of this and a number of
other applications will be given.

It is of interest to note that in a state of minimum
uncertainty product, the position and momentum vari-
ables are uncorrelated. This is because a correlation
between x and p would serve as a constraint on the
minimization of the uncertainty product and prevent it
from attaining its lowest possible value.

The results reported here have a very interesting
bearing on quantum optics. First note that of all the s
classes it is the z=0 class that contains the state ~0)
which for quantum optics is the no-photon state.
Furthermore it is only the s=0 class that remains
nsimimal at all times under the action of the free-Geld
Hamiltonian. Hence propagation of minimality (in
time) alone serves to set the coherent states apart from
all other minimum-uncertainty states. In this sense we
may identify coherence with minimality.

~ E. C. G. Sudarshan and C. L Mehta, Phys. Letters 22, 574
(1966).


