1 K,; FORM FACTORS,

4. CONCLUSIONS

From the above discussion, one can draw the following
conclusions:

(i) The second-order corrections in SU(3) breaking to
f+(0) are small (3.7 to 2.5%) in contrast to what people
previously thought.® fx/f-~1.24 to 1.31 and |f./f-|
comes out to be quite small (0.42 to 0.35).

(if) The value of £ is small, in general, and is nearly
Zero:

No=m.Y/mg2~0.02d=~\, if m.=mg*
but

-=~0.041 if m,=1021 MeV.

(i) k— K= width is large. The formula for this
width is nearly the same as in the Veneziano model if
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me=mg* For the case m,=mx*, this is exactly the same
as in the Veneziano model if, in addition, one assumes
that the matrix elements of the divergence of the
|AY| =1 vector current between K and 7 goes to 0 as
{— . In this case e[=fg/f-f+(0)] is predicted to
be mg+/m2~1.36, in fair agreement with its experi-
mental value of 1.284-0.06.

Note added in proof. After submission of this paper,
it came to our notice that some of the results similar
to ours have also been obtained by P. R. Auvil and
N. G. Deshpande, Phys. Rev. 183, 1463 (1969); see
also L. K. Pande, Phys. Rev. Letters 23, 353 (1969).
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An alternative method for deriving Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin- (KSRF-) type
relations, which uses a low-energy theorem in quantum electrodynamics, is presented. The method is
applied to processes of the kind V — P+P’+~. The amplitude for this process is exactly calculable to
order zero in the photon momentum £ in terms of the strong vertex fypp: (mv2,mpmp?), with all particles
on the mass shell. KSRF-type relations are obtained when the momentum-independent term from the
series expansion (in powers of the photon momentum) of the radiative amplitude is equated with the parallel
term obtained from an explicit calculation of the amplitude. The latter calculation involves the use of
current-algebra, partial conservation of axial-vector current, and hard-pion techniques. The derivation is
worked out in detail for the p — n+7 ™y process, and the method is further considered in connection with the

appropriate radiative decays of ¢° and K* mesons.

I. INTRODUCTION

ONE of the most widely discussed applications of
the current-algebra methods and the partial
conservation of axial-vector current is the relation
obtained!? by Kawarabayashi, Suzuki, Riazuddin, and
Fayyazudin (KSRF), fprr=m,2/2F2f,. Through this
expression, the mass of the p meson, the prm coupling
(forr), and the p coupling to the vector current (f,)
are related to F.,, the constant of the partial conserva-
tion of the axial-vector current (PCAC). This relation
was subsequently rederived by the use of other ap-
proaches as well.?* However, in all these derivations, 3

* Work supported at Northwestern University by the National
Science Foundation.

1 Permanent address.

LK. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); 16, 384 (19606).

2 Riazuddin and Fayyazudin, Phys. Rev. 147, 1071 (1966).

3 F. J. Gilman and H. J. Schnitzer, Phys. Rev. 150, 1362 (1966);
J. J. Sakurai, Phys. Rev. Letters 17, 552 (1966); M. Ademollo,

the KSRF relation is obtained only at the expense of
various undesirable approximations. For example, in
the original derivation, the relation obtained is in fact
Jorn(0,0,0) =m,2/2F 2f,, i.e., for zero-mass p and =
mesons. The difficulty stems here mainly from the
unwanted “softening” of the p, which occurs when the
soft-pion limit is taken for the fairly energetic pions in
the p— 7 process. As a result, one is led to inquire
whether the KSRF relation will retain its original form
when the approximations are removed.

Recently, several articles have appeared*=¢ in which
Nuovo Cimento 46, 156 (1966); T. Das, V. S. Mathur, and S.
Okubo, Phys. Rev. Letters 19, 1067 (1967); R. Acharya, H. H.
Aly, N. A. Mavromatis, and K. Schilcher, Nuovo Cimento 54A,
179’ (1968).

4D. A. Geffen, Phys. Rev. Letters 19, 770 (1967); S. G. Brown
and G. B. West, 7bid. 19, 812 (1967).

®R. Arnowitt, M. H. Friedman, and P. Nath, Phys. Rev.
Letters®19, 1085 (1967).

SR. Arnowitt, M. H. I'riedman, and P. Nath, Nucl. Phys.
B5, 115 (1968).
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the deficiencies of the existing derivations™3 are
critically analyzed. It becomes obvious, especially from
the more complete analysis of Ref. 6, that in fact current
algebra and PCAC alone are not sufficient to deduce
the KSRF formula. On the other hand, by using hard-
pion methods and vector-meson dominance, Arnowitt
et al.® derive a KSRF-type relation, which supplements
the original formula with additional constants which
relate to the 41 meson. Their expression™ ! reads

f,,,,,r(m,,z,m,,z,m,,z) =

where f4 is the coupling of the 4; meson to the axial-
vector current, and § is related to the anomalous
magnetic moment of 4.

In this article we describe an alternative method by
which KSRF-type relations can be derived. In our
approach, we consider radiative decay amplitudes,
which have both an inner bremsstrahlung and a direct
decay part, and we use a theorem on the series expansion
of these amplitudes in powers of the photon four-
momentum. KSRF-type relations result when one
equates the momentum-independent term from the
expansion, with the parallel term obtained from an
explicit calculation of the decay amplitude. The latter
calculation involves the use of current algebra, PCAC,
and hard-pion techniques.

In this work we consider decays of the type V— P
+P’'+, for which the strong decay V — P+4P’ also
occurs. The procedure is carried out in detail in Sec. II
for the radiative decay p’— wtm—y. In Sec. III the
application to the decays ¢ — K*K~y and K**— Kny

T{3,44>(x), 9,47 (y), 7*(0)}

ox’ dy

—%s(xO—yw{(gi—; + 53;)[@0(@, 4561, 7+0)]

PAUL SINGER 1

is outlined, without, however, our going into the
details of the hard-meson technique for K mesons.
In Sec. IV, we discuss several features of our derivation
as well as the limited experimental information available
for checking the various KSRF-type relations.

II. KSRF-TYPE RELATION FROM
¢-RADIATIVE DECAY

Consider the radiative process o’ — 7tz ~y. This decay
has been discussed previously in the literature, both
without" and with'>!? the current-algebra approach.
We follow here the method developed by Weinberg!®:16
and we write for the decay transition off the mass shell

(27 ) (4pogo) ¥ m* (@) (p)| T (0)] 0%
= (2m F 2 (g —mr2) (p2—m<2) / dixdtyeia-zeir v

X[ T{3,4 (), 9,4-(9), Ju(0)} 9. (2)

In Eq. (2), J, is the electromagnetic current taken as
having the SU(3) transformation properties

Ju(@)=e[Vi*(x)+ 1NV, (x)], )
and F, is defined through the pion decay amplitude
(01844 1#(0) | 7(p) ) =V2F 1, (2m)~32(2po) 7102, (4)

where
A4 (x)=A1*(x)Eid o+ (x). 5)

One now expands the time-ordered product 7{d,4"(x),
9,4-7(y), Ju(0)} in analogy with Eq. (4) of Ref. 16,
obtaining

Jd a
"—”‘T{A.}.”(x), A_v(y), J#(O)} _B(xo_yO)T{[A_O(y)’ aVA-F”(x)]’ J”(O)}

dJ
—)a<x°~yﬂ>z*{ [A9(), A_7(3)], J*(0)}

0x°

1< a
2\dy”

—38(x)8(y)[A-°(9), [A+°(x), J*(0) ]]—=28(=")8 ()[4 (x), [A-(v), 7*(0) 1]

"5(3’0)T{ [A—o(y)’ J”(O)l a,A+’(x)} _6(x0)T{[A+0(x), J“(O)]y 3«7/1—"(3’)} . (6)

7 This formula is implicitly contained also in several other works dealing with hard-pion techniques (see Refs. 5 and 8-10).

8 J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967).

9 H. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967).
10§, G. Brown and G. B. West, Phys. Rev. 168, 1605 (1968).
1 P, Singer, Phys. Rev. 130, 2441 (1963); 161, 1694 (1967).

12 p_ P, Srivastava, Nuovo Cimento 484, 563 (1967).

13 R, N. Chaudhuri and R. Dutt, Phys. Rev. 177, 2337 (1969).

14 I Ref. 12 the rate of p® — w*r~y decay is calculated using the soft-pion limit of the amplitude obtained with the current-
algebra technique. This is inadequate, since by taking the soft-pion limit one loses also the terms of order 1/k in photon momentum,
which give essentially the major contribution to therate. This deficiency is remedied by the authors of Ref. 13, who use the hard-pion
method in their analysis. The results of the latter work are in remarkable agreement with the original pole-model calculation (Ref. 11).

15 S, Weinberg, Phys. Rev. Letters 16, 879 (1966).

16 §, Weinberg, Phys. Rev. Letters 17, 336 (1960); 18, 1178 (1967).
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In order to evaluate these terms, we use the following current commutation relations!?:

[4¢*(x), 4,°(9) 16 (wo—y0) =ifavc Vo ()8 (2 —7) , @)

LA (@), VsP(3)18(x0—y0) =i fareds* ()0* (6 =), 8)
as well as the additional commutation relation of the ¢ model,

LA (x), 3ud v*(y) 16 (w0 —y0) =18aze (x)8* (x—7) . ©

Then one easily sees that the third term in the expansion of the right-hand side of Eq. (6) vanishes because of
V,3(x) conservation, and the fourth term vanishes by the requirement of charge-conjugation invariance. The
nonvanishing contributions are calculated by double application of the commutation relations and by using the

identity

0uT{AM0), A (%)} =5("[ A (x), 4M0) J+T{4:2(0), duda* (%)} .

(10)

Finally, using partial integration, the invariant amplitude for the decay is

M (0" — wtrry) = (2F ;2)~te, ™ [qapf/d"xd‘*ye“" w2 00| T{A 7 (x), A_"(y), J*(0)} | 0%

=2 / dtoe* @) -=(0] T{o (x)7*(0)} | o°) +iep, / dtye» (0| T{4(0), A ()} [ #)

—ieg, / diceit (0| T(A_#(0), Ay (1)} | o) +2e(m,2/ [,) ey b . (11)

€," and e*(,) are the polarization four-vectors of the
photon and p meson. In writing the last term in (11),
we used the definition of the p coupling to the vector
current,

(2m)32(2p0) 20} V5#(0) [ 2 (p) ) = (ms/ f) € -

In general, the amplitude for a radiative decay can be
written!18:1% as the sum of an inner bremsstrahlung
term M, and a direct term M4, which are separately
gauge-invariant.? In an expansion of the amplitude in
powers of the photon four-momentum, one has M=
Oib(k—l) +O,b(0)+015(k)+ s, while Md=0d<k)+ RN
M; has no terms of order %2~! which come from
charged-particle propagators, since the photon vertex
is never on a free line in M 4. In addition, by using the
technique developed by Low?* for scattering, Chew!s
and Pestieau!® have shown that in the radiative decay
of a hadron to two hadrons, terms of order zero in %
can originate only from the M;; part of the amplitude.
As a result, terms up to zero order in the photon
momentum in the radiative amplitude V — P4P'+vy
are exactly calculable in terms of the strong vertex
fvep (mvimpdmp'?), with all particles on the mass shell.

(12)

17 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63
1964).
( 18 H. Chew, Phys. Rev. 123, 377 (1961).

19 J, Pestieau, Phys. Rev. 160, 1555 (1967).

2 We define M3 so as to include already the “direct” part which
is related to the soft-photon terms by gauge invariance. The M,
part on the other side is model-dependent. For instance, in the
vector-dominance model, the My part of p®— w*ta~y vanishes
(Ref. 11).

2 F, Low, Phys. Rev. 110, 974 (1958).

By using this theorem, we obtain
M (p* — mtry)

(e®) . p) (M.
= Zefp,,,,(mp"’,mr?’m’r?)[e(p) ceM ___P_)ie___?_)_

q-k
( . )( ).
n € -q) (e p)

]+Oib(k)+- Mg (13)
Pk

From Eq. (13), it is evident that the term of zero order
in %, which depends only on the constants e and f,n,
has no pion momentum dependence either. One can
also easily check that the sum of the first three terms on
the right-hand side of (13) is gauge-invariant.

Now we have to identify the momentum-independent
term from (11), and by equating it to the parallel term
of (13) a KSRF-type relation obtains, with Sorr
defined for all particles on the mass shell. As a first
step, let us consider the soft-pion limit g,, p,— 0. In
this limit, the first, third, and fourth expressions on the
right-hand side of (11) vanish, being of first or second
order in pion momenta. Considering ¢(x) to represent
a scalar particle, the second term is related to the
amplitude for p— o+, which belongs to M,. Hence,
the only term of order zero in % surviving in the soft-
pion limit in (11) is the last one, and equating now the
momentum-independent terms in (11) and (13), one
obtains

fp”-(0,0,0) =mp2/2Fﬂ'2fp- (14)

This is the original expression of KSRF,12 and since we
deal here with soft pions and real photon, the coupling
constant f,.» appearing in (14) is obtained at the
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point m2=m,2=0. One should also remark that in the
limit taken above, the M3 part of the radiative ampli-
tude is not gauge-invariant any more.

In order to obtain f,..(m2m.%m.?), one has to
calculate explicitly the expressions in (11) which
vanish in the soft-pion limit. To this end, we use the
so-called hard-meson current-algebra techniques which
allow us to calculate the expressions in Eq. (11) for
physical pions. As developed by the authors of Refs.
9 and 22-24, these techniques give explicit expressions
for the three- and four-point functions of axial-vector
and vector currents, which appear in our Eq. (11) after
the p is brought into the bracket by the standard
reduction procedure. These 7' products of current
operators are evaluated on the assumptions (e.g., Refs.
24 and 25) (1) that one may saturate the sums over the
intermediate states with the lowest-lying single-meson
states, i.e., 7, p, and A particles; (2) that the resulting
particle vertex functions have the smoothest dependence
on the momenta of the single particles involved; and
(3) that the currents appearing in the 7' products
satisfy conservation of vector current (CVC), PCAC,
and the SU(2) XSU(2) chiral algebra [ the latter being
sufficient for the derivation of (1)]. The expressions we
used for our calculation are summarized in Chap. IV
of Ref. 22. A straightforward calculation then gives
for the momentum-independent (m..) part of (11)

M (po — 7r+7l'_'Y>m.i. =@ . M) (ZF,.-Z)—I

X Zem”2[1- }%(HB)] . (15)

3

Equating this to the appropriate term in (11), one
obtains

Sorr (mp*matm ) =

ZZ:fp[1— ffiuw]. 1)

§ is the parameter entering in the definition of the
A1Aqp, prm, and A pm vertices as defined, e.g., in Ref. 9,
and is related to the magnetic moment of the A4;
meson. f4 is the A1 coupling to the axial-vector current
A*#, defined by

(2m)*2(2p0)42(0] 45(0) | A1 (p) )= (ma®/ fa) €*(ap - (16)

III. KSRF-TYPE RELATIONS FROM ¢
AND K* RADIATIVE DECAYS

A similar approach is used to deal with the ¢ and K*
appropriate radiative decays. For the decay amplitude

2], S. Gerstein and H. J. Schnitzer, Phys. Rev. 170, 1638
1968).
( % R. Arnowitt, M. H. I'riedman, and P. Nath, Phys. Rev. 174,
1999 (1968).

2# R, Arnowitt, M. H. Friedman, P. Nath, and R. Suitor, Phys.
Rev. 175, 1802 (1968).

25 A relation for soft K’s and reading f¢xx(0,0,0)=V3mg42/
4Fg?fs was previously obtained by W. W. Wada, Phys. Rev.
Letters 16, 956 (1966).
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¢ — K+tK— one has an expression analogous to (2),
except that we replace p® — ¢°, 7= — K=+ and 4 *(x) —
Ag*(x), where

Ag=(x) =A»(x)Eid#(x). an

Partial conservation of the axial-vector strangeness-
changing current is now used:

(0]0ud x+#(0) | K£(q) ) =V2F kM ic*(2m)~*2(2g0) 2. (18)

Using the commutation relations (7) and (8) and an
SU, generalization of (9), as well as the definition

(2m)32(20) 20| V,i2(0) [ ¢ (9) ) = (m4?/ ) €u®,
we obtain the relation2’

Jorrr-(mg,mg?me?) =V3my2/4F g fo-+Hy. (20)

(19)

In arriving at (20), the procedure followed is identical
with the one described in the previous section. In the
expansion of the product T{8,4x+(x), d.4x(y),
J4(0)}, one has now the third term vanishing because of
V.3 (x) and V,8(x) conservation, and the fourth term
because of charge-conjugation invariance. In Eq. (20),
H, is the addition to a “soft” KSRF-type relation,
which can be obtained by calculating terms similar to
the first, third, and fourth on the right-hand-side of
(11), with the replacements p'— ¢°, 7%— K=, and
A:‘:“(x) b d AKin(x).

We further apply the same method to K**— K+r—y
decay.?® Now, in the expansion of the 7-ordered
product, one obtains from the third term a “k term,”
if we assume the divergence of the strangeness-changing
vector current to be proportional to a scalar « field.
A similar k term arises also from the second term. These
terms do not affect the KSRF-type relation to be
obtained, since they describe the direct decay K* — «
-+, which is at least of first order in the photon
momentum %. The fourth term vanishes because of the
assumed form of J*(x), which gives zero magnetic
moment for K*. Defining

(2m)32(2g0)"2(0] V0 (0)+iV,7(0) | K*(g) )
= (ﬁmx*z/fK*) éﬂ(K*o) ,

we now obtain the relation

fK*0K+,,-(mK*2,mK2,m,r2) =mK*2/2\/2FKF,fK*+HK*. (22)

21

Here again Hgx is the correction to the formula which
is obtained when K* and = are on the mass shell.
Discussions on the extension of the hard-meson techni-
que to SU(3)XSU(3) current algebra which is needed
to evaluate Hy and Hg« have appeared recently (e.g.,
Refs. 27 and 28). We feel, however, that at present the
“single-particle approximation” to the needed three-

26 M. Sapir and P. Singer, Phys. Rev. 163, 1756 (1967).
( 2761.) S. Gerstein and H. J. Schnitzer, Phys. Rev. 175, 1876
1968).
28 R. Arnowitt and P. Nath, Lectures at the Summer Institute of
Theoretical Physics, University of Colorado, 1968 (unpublished).
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and four-point functions is not as meaningful (from the
experimental point of view) as in the SU(2)XSU(2)
case, and we shall therefore refrain for the time being
from a detailed calculation of Hg and Hgs.

IV. DISCUSSION

By considering the radiative decays of vector mesons
to S-wave pseudoscalar mesons and a low-energy
theorem in quantum electrodynamics, we arrived here
at a new technique for deriving KSRF-type relations.
In our approach, we can obviously avoid the soft
limit for p-wave mesons of the original derivations, as
well as the zero-mass limit for the decaying particle. In
addition, our method provides a compact procedure for
treating both the soft case as well as the on-the-mass-
shell one. The method can be extended, in principle, to
obtain additional relations by using radiative decays
such as w — 374, etc.

For deriving a KSRF-type relation, we consider the
(convenient) zero-order term in the expansion of the
radiative amplitude. If the vector particle has no
magnetic moment, the same relation results by equat-
ing the appropriate 1/k terms, and we checked this
explicitly.

In deriving Eq. (1), we found the following interesting
result: After explicitly calculating the expressions of
Eq. (9) by the hard-pion technique, it turns out that
in collecting the various momentum-independent terms,
the pion mass disappears from the final term. Hence,
somewhat paradoxically, the hard-pion correction does
not depend explicitly on the pion mass. Therefore, the
same result will be obtained,?® for instance, for zero-

mass pions; i.e.,
m 2 2
~ 1= ava),
2F2f L fa?

Jornx(m,%0,0)=
with, however, the p being on its mass shell.

The experimental validity of (1) has already been
discussed in the literature. If one uses p dominance of
the pion form factor (f,~~=/,), then, neglecting the
correction term (f,%/ f42) (144), one would predict from
(1) a p width of approximately 140 MeV. The experi-
mental value obtained from colliding-beam experiments
is 110-130 MeV.® Hence, 6§ is expected to lie between
—0.5 and —0.2, the correction to the “soft” KSRF
formula being indeed fairly small (with our notation,
fa=2f, from the second Weinberg sum rule).

In order to check (20) and (22), we proceed by assum-
ing H4 and Hg+ to be also small compared to the main

2 This result was also obtained using a different method by the
authors of Ref. 6.
% J, E. Augustin ef al., Nuovo Cimento Letters 2, 214 (1969).
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terms. Neglecting the term (f,2/f4%)(146) in (1), we
rewrite (1), (20), and (22) as

V2fsxrx-  [me\*( F=\* [,
=—){—) —F— 2
Jorr < > <FK) VZ/N3)fs @)
e _(meEe ) o
Sorr m, ) Fx fxr

Various approximations can be made for the right-
hand sides of (23) and (24). Using vector-meson
dominance for appropriate processes, one has f,= fyrnr,
fre=V2 fgrog*.~, and f3=V3f4x*k-, and the SU; ratios
of the ¢ —» KK, p— mr, and K* — K= decay widths
are modified by factors proportional to the squares of
the masses, if F,/Fx=1. Then Eqs. (23) and (24)
give, for a p width of 120410 MeV, Tgx=4744 MeV
(versus Tgx®Pt=49.241.0 MeV) and I'y.xg=4.4-+0.4
MeV (versus I'y,xg®Pt=3.540.4 MeV). However, it
is quite possible that Fg/F,=1.16, and these results
should be then appropriately corrected. Alternatively,
if we assume that the fy’s obey exact nonet symmetry,
the SU; ratios for the decays are now modified by mass
ratios to the fourth power. Equally good agreement with
experiment is obtained now if one takes Fg/F,=1.16,
giving T'gx=4644 MeV and I'y_xz=4.140.3 MeV.
Sakurai and Oakes® have recently obtained somewhat
similar relations from an analysis of sum rules.

Our analysis hence shows that H, and Hgx are also
small compared to the appropriate main terms, since
this assumption leads to consistent values for the
quantities discussed above.

Finally, we wish to remark on the meaning of KSRF-
type relations. This becomes more explicit if we
consider for simplicity the soft-pion case. In deriving
the last term in (11), we used the commutator (7).
This is of the type [4,4]=V, i.e., the commutator
which was “scaled” by Gell-Mann in proposing a
closed 4,V algebra.'” In demanding that the expression
obtained from the commutator (which is essentially also
the main term of the correct KSRF relation) conform
with the exact quantum-electrodynamics calculation,
one obtains (1) as a necessary consistency relation.
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