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Scalar-Tensor Theory and Gravitational Waves*
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An analysis of general scalar-tensor gravitation theory, containing two arbitrary functions of the scalar
field, is presented. The weak-field limit is considered in detail, and predictions for the classical tests of
gravitation theory are derived. A definite relationship between the light propagation and perihelion shift
effects is found to hold under very general conditions. The theory of the detection of gravitational waves
is also investigated, and the observable differences between the scalar and tensor components are indicated.
Finally, the relationship between the properties of the source and its radiation is considered in the weak-
source limit, and expressions for the rate of energy loss are derived. It is shown that the existing observational
data are consistent with the possibility that the scalar field represents a major component of gravitational
radiation from astronomical sources.

I. INTRODUCTION

1
~~F the four &undamental interactions known to exist

in nature, gravitation has the distinction of being
the one with the longest history of observation, yet at
the present time the one about which we have the least
experimental information. Only in the weak-field regime
are there a few actual numerical results which any
theory must confront. However, many recent astro-
nomical observations (microwave background radia-
tion, ' quasistellar objects, ' pulsars, ' etc.) indicate that
we may now have indirect evidence of the properties of
strong gravitational fields as well. In addition, solar
system experiments of increased precision will soon be
providing more information about the behavior of weak
fields. 4

Thus as observational evidence is being brought to
bear more heavily upon gravitation theory, it would
appear that we have reached a stage where it has be-
come of primary importance to gain more information
concerning the correct theory of gravitation, rather than
proceeding with those detailed calculations within any
specific theory that are not directly related to the
observations. By interpreting the observational results
within the framework of a broad class of theories, one
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(1967); M. Schmidt, ibid. 7, 527 (1969).'F. G. Smith and A. Hewish, Pulsating Stars (MacMillan,
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4K. S. Thorne and C. M. Will, Comments Astrophys. Space
Phys. 2, 35 (1970).

also allows for a wider range of qualitatively different
gravitational effects than predicted by any single
theory.

In addition to considering the classical tests of gravi-
tation theory, we shall be particularly concerned in this
paper with the interpretation of Weber's apparent de-
tection of gravitational waves, ' Among the many impli-
cations of the detection, if it is real, is a new outlook on
many aspects of astrophysics and cosmology. ' The
interpretation of Weber's results depends critically,
however, on the assumption that the energy Aux in the
wave is related to the components of the gravitational
field which are actually measured in roughly the way
predicted by general relativity. v

In the general theory which we shall investigate, the
gravitational field can be thought of as consisting of
both spin-zero and spin-2 particles. Thus there is a place
in this theory for nature's simplest field, a scalar field.
It has so far proven impossible to find a theoretical
reason for the nonexistence of such a long-range field. '

The details of the derivation of some of the results
which we shall present have been omitted, since the
calculations are similar to those employed in general
relativity or the Brans-Dicke theory. ' The notation and

' J. Weber, Phys. Rev. Letters 22, 1320 (1969);J. Weber, ibid.
24, 276 (197O).

'G. B. Field, M. J. Rees, and D. W. Sciama, Comments
Astrophys. Space Phys. 1, 187 (1969); D. W. Sciama, G. B.
Field, and M. J. Rees, Phys. Rev. Letters 23, 1514 (1969).

7 J. Weber, General Relativity and Gravitational lVaves (Inter-
science, New York, 1961).

8 R. H. Dicke, Phys. Rev. 126, 1875 (1962).
R. H. Dicke, The Theoretical Significance of Experimental

Relativity (Gordon and Breach, New York, 1964).
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conventions are as given in Ref. 10, except that the
tensor field g;; is of signature —2, so that the Minkowski
tensor r),;=diag( —1, —1, —1, +1). Greek indices run
from 1 to 3, with x4=ct. Also, the subscripts, jk. . .
and; jk. .. indicate repeated partial and covariant
differentiation, respectively.

II. GENERAL THEORY

The class of classical gravitation theories which we
wish to consider is characterized by the following five
properties.

(1) The principle of general covariance is imposed,
leading to tensor equations.

(2) The field equations are derived from the usual
invariant variational principle

measured by the radar method, for instance) can then
be shown to be related to the corresponding coordinate
separations by

cdr =P(g) Pg,;dx'dx& ji", (4)

Sy employing the representation transformations

av=hgv,

dP 3 dh)s—=h hl
dp 2 dpi

df=4(4) L(g4-Ziug« ' g—-z)d~ d~'j"' (5)

Thus all space-time measurements are affected by the
scalar field with the factor iP(g).

(Zz;+Z z)de =0,
we may put the theory in its final form (suppressing the

(1) bars)

where Zp represents the contribution from the gravita-
tional GeMs alone, and Z~ represents their interaction
with all other forms of matter. The variations of the
Qelds and their derivatives are assumed to vanish on
the boundary of the region of integration.

(3) The long-range fields of nature are composed of
the three lowest spin bosons, leading to scalar, vector,
and second-rank symmetric tensor Gelds. Ke assume
that electromagnetism represents the only vector Geld,
leaving a tensor g;; and a scalar p to the gravitational
Geld, which we take to be real. The observationa1 evi-
dence indicates that the tensor Geld must be present,
while offering no reason why the scalar Geld should not
also exist. 9 Indeed, there is reason to believe that the
scalar Geld should be of roughly the same strength as the
tensor Geld, s although its effects must be somewhat
smaller in the solar system.

(4) The field equations are of at most second differ-
ential order. This leads to the general form

~r
(—g)'"T", (10)

L(—g)i~s(g —zsgizy y +»)+gz(Pg )jd4g"=0

(zs =a1) (8)

over the range of g where Eqs. (6) and ('7) remain
nonsingular. Thus the theory contains two unde-
termined functions, a "cosmological function" ) (P) and
a "mass function" f($). The Brans-Dicke theory" " is
the member of this class characterized by

pccexpL —p(co+ss) 'i'j, co=const;
)%, =0; rz=+1. (9)

Of course, Einstein's theory is obtained by setting
Q =const.

The matter stress-energy tensor T'&'is defined through
the relation

for the Geld Lagrangian density, within a divergence. "
It involves the arbitrary functions h, l, and X.

(5) We postulate a principle of mutual coupling, in
which the interaction Lagrangian density depends upon
the gravitational Gelds according to

(3)

where P(P) is another arbitrary function of the scalar
field. This implies that g'& occurs in the form P 'g'4 Such
a functional dependence guarantees that a local inertial
system in which the laws of special relativity and
electromagnetism hold can always be constructed.
Proper time intervals dr and distance elements dl (as

' L. D. Landau and K. M. Lifshitz, The Classical Theory of
Fields, revised 2nd ed. (Addison-Wesley, Reading, Mass. , 1965),
Chaps. 10 and 11."P.G. Bergmann, International J.Theoret. Phys. 1, 25 (1968).

with the constant G* to be determined. It then follows
that

2 dlt Mz 16sG* 1 df= ——g', =, ——(—g)'"& (11)f dP r)g;; c' lt dP

Employing the variational principle indicated by Eq.
(8) then leads to the Euler-Lagrange field equations

gi. r$i.g zs($k ~im 1p.gkm)y sy

=8~G*c~&' (12)

dX 8sG* 1 dg
(—g) '"t (—g)'"g"4.~3,z+I—= —~ ——~ (13)

dp c4

~ C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961)."R.H. Dicke, Phys. Rev. 125, 2163 (1962).
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As in general relativity, the equations of motion of
a free neutral test particle follow from the Geld equa-
tions, which imply the generalized Bianchi identities

We write the expansions in the form

4=4 + 4(*')+ V(x')+ (19a)

c' dP
(4'g' U')—= '&'U'U'g s-+—~ .

ds.
(16)

where the four-velocity U'=dx'/dr, with iIrsU'U;=cs.
Thus P;=rngg;;U' represents the four-momentum of
the particle, which responds to both the scalar and
tensor Gelds in this representation of the theory. As
usual, photons are assumed to obey these equations of
motion in the limit dv. —+ 0, which leads to the result
that they do not respond to the scalar field.

Within a macroscopic body which can be represented
as a perfect fluid, the use of Eq. (15) leads to the form

&' =4'L(p+P/c')PU'U P&'s] —(17)

for the stress-energy tensor, where p and p are the total
mass density and pressure as measured by observers
moving with the fluid. The additional factor of ltrs comes
from the use of proper volume elements.

In this form of the theory, characterized by the action
principle (8), one may consider the scalar field as an
additional source of the tensor field. "It is thus possible
to associate with the scalar field a stress-energy tensor
5'&', defined as in Eq. (10) with Zr replaced by Ze
=Zs —(—g)'"R= (—g)"'(—ng'sp P;+2K). One thus
obtains

(2' ). —(d 1ng/drtr)Ty;=0. (14)

The form of the interaction Lagrangian is uniquely
determined from our assumptions to be

gr ~ 16srG*c ssn Jp('@) (g;;x'xs)'"&4/x p x—p(X)]dX (15)

in this limit. Here m is the mass of the particle, X an
arbitrary path-length parameter, and x'=—dx'/dX. Using
the expression for the proper time interval, Eq. (4), the
equations of motion can be put in the form

(n'-g- l&"n'"g.—-).' =o. (23)

One reason for choosing the representation of the theory
given by Eqs. (6) and (7) is that the weak-field equa-
tions for g;; and P are then uncoupled as indicated in
Eqs. (21) and (22). Employing a Fourier decomposition,
the well-known solutions to Eqs. (21) and (22) for an
infinite domain are

g''='g ' +eg''(x )+ (19b)

X(y) =)~p+e),p'y+e'(Xp' j+-',Xp"y')+, (19c)

O(~) =1+esp%+"(Op'~+ 'e 'V-')+ ", (»d)
T', =eT';(x')+ (19e)

The last equation holds only if the field is also weak near
the source. Note that we have normalized lt so that
coordinate intervals equal measured intervals at in-
finity. The constants ) p

——X(gp), )ip'= (dX/dP) (Pp), etc.
Substituting these expansions into the field equations

(12) and (13), the equations corresponding to order es

give
X& =&0'=O.

It should be noted that this result remains valid if the
sources of the fields are of arbitrary strength, as long as
they are localized. Of course, Eq. (20) is a direct conse-
quence of our asymptotic boundary condition on g;; and.

P, which in the real world are modified slightly by
cosmological effects. However, Eq. (20) is of suflicient
accuracy for our purposes.

The field equations corresponding to order e are then

ri'"g;;, p =g'g;, = 16rrG*c '—(T,; ', rl;;T), —(-21)

0'p+n) p"p = —8nnG"c Qp'T, . (22)

where we have imposed the usual coordinate conditions

S'J= (cs/8wG*)$( ', ng' y—,y-+))g's'
+ng' g' @,s4,~7

Of course, it then follows that (P"c+5;), =0.

g"=—2x 'G*c
(18)

R 'P'"(x")—-'n f'(*")7

&&expit co(t —t)+(oR/c]dsx dtdps, (24)

III. WEAK-FIELD LIMIT

We now consider the properties of a gravitational
Geld at distances far enough from its source so that it
may be expanded in terms of some small parameter ~

about the values &=go=const, g;;=si;; corresponding
to no source. The magnitude of pp is determined by the
distribution of matter at cosmological distances, s and so
will not be strictly constant, but can be considered so for
our purposes. The derivations of the results to be
presented in this section employ the same techniques
used in general relativity, and so we mention again that
details are presented only when they di8'er from the
standard approach.

nsr 'G*c—sgp'—R-'T(x') exptt'&o(t —t)

~="'(-:g.+s V), (26)

"P. M. Morse and H. Feshbach, 3Eethods of Theoretical Physics
(McGraw-Hill, New York, 1953), Chap. 7.

+ (po'/c' —n)~p")'isR]d'x~dtdco, (25)

where R=$(x—x)'+ (y —g)'+ (z—z)'7'i' and the proper
integration path in the co plane must be taken. '4

Now in the weak-field slow-motion limit, Eq. (16)
assumes the form of Newton's second law if the gravi-
tational potential C (x ) is identified with
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assuming that the fields also change slowly with time.
Employing Eqs. (24) and (25) in the static limit, and
noting that Eq. (17) gives eT,;=poc'64, 6';, where po is the
proper rest mass density, we obtain

C = —G* ppR '{1+2ngo')'

or

0& (neo") "'&1 cm,

Gg G

tÃo" i-'")10"cm,

G"=GE1+2eg o')'7 '.

(28a)

(28b)

(29a)

(29b)

The first choice corresponds to a short-range scalar field
of mass ns=A~Xo"

~

'"/c) 3&&10 "nz, . Although the ex-
istence of such a component of the "gravitational" field
is certainly possible as long as fo is not too large, it
would not be detectable except at very small distances
from its source, and so is not of interest for this in-
vestigation. We therefore consider the second set of
constraints, Eqs. (29a) and (29b), to hold, where
G=6.67X10 dyn cm' g

' is the usual gravitational
constant. Note that we have imposed no condition on
the sign of who" in this case, so that oscillatory solutions
are also allowed.

The equation for the redshift Z of a photon emitted
in a time-independent gravitational field and received at
infinity is found from Eq. (4) to be 1+Z=P 'g44 '",
where P and g44 are evaluated at the (stationary) point
of emission. In a weak field this reduces to the result
1+Z=1—c—'C, or DZ= —c '64z, using Eq. (26). This
result agrees with experiment, as it must for any theory
in which inertial and passive gravitational masses are
equivalent, energy content is proportional to inertial
mass, and energy is conserved.

The weak-field solutions can also be used to compute
the bending of light by the sun. A straightforward
calculation yields the result

XexpL —(neo")'"R])d'x . (27)

The Newtonian result 4 = —GJ'poR 'd'x has been
well verified over distances 1&8(10"cm. Thus this
constraint upon theory yields two possible restrictions
on Xo" and G*, either

At present, the most precise observational result"
yields the limits +0.3)2n Q,')') —0.1.

In order to compute the advance of the perihelion of
Mercury, one must include in addition terms of order e2

in the calculation. Again proceeding in the same manner
as in general relativity, one obtains the result

1+l (4')'P —0o"—(6')'j
51+2n 9o')'j'

X (Einstein value) (31)

(fo')'&0.04 for n =+1
&0.005 for (32)

assuming that ~fo" ~&&1. The observational evidence
gives no information about go" if it is as small as Qo')'.
On the other hand, this general theory does predict a
definite relationship between the light-bending and
perihelion-shift measurements, since they are both
effectively only functions of n(go')'. The evidence also
indicates that n =+1 if the Sun does have a large
quadrupole moment.

IV. GRAVITATIONAL WAVES

In this section we are concerned with the radiative
components of the gravitational field at very large
distances from their (arbitrarily strong) source, where
the weak-field equations are applicable. In this case, the
locally valid plane-wave solutions to Eqs. (21) and (22)
are

for the perihelion shift per revolution. Thus in principle
this test also places limits upon Po". Using the fact that
Qo')'&0. 15 from the radar measurements, we may ap-
proximate Eq. (31) by

~~=L1—(8n/3) 9o')'+69 o')'
—-', (fo')'fo"+ j&& (Einstein value),

assuming ~go") & (Po')'.
Now if the measured solar oblateness" represents an

equivalent quadrupole moment, the measured perihelion
shift" leads to An= (0.914&0.025)&&(Einstein value),
giving neo')2=+0. 032+0.009. On the other hand, if
the quadrupole moment of the Sun is negligible, n(fo')'
=+0.003+0.008. In any case, we can say that

Ag = (G*/G) && (Einstein value)
=$1+2n g o')'j '&( (Einstein value) (30) g

—
g ((g)cz (ktz td z)d(g (33)

for the angular deflection. The radar timing experi-
ments" are sensitive at present to the same weak-field
components as the light-bending experiments, and so
their predicted results may also be obtained by merely
replacing G by G* in the general relativistic prediction.

'5 I. I. Shapiro, Phys. Rev. Letters 13, 789 (1964); D. K. Ross
and L. I. Schiff, Phys. Rev. 141, 1215 (1966); I. I. Shapiro, ibid.
141, 1219 (1966); 145, 1005 (1966).

y (~)cz(ksz —mt)d& (34)

I. I. Shapiro, G. H. Pettengill, M. E. Ash, M. L. Stone, W. B.
Smith, R. P. Ingalls, and R. A. Brockelman, Phys. Rev. Letters
20, 1265 (1968).

~7 R. H. Dickie and H. M. Goldenberg, Phys. Rev. Letters 18,
313 (1967).

'8 P. A. Wayman, Quart. J. Roy. Astron. Soc. 7, 138 (1966).
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where the wave numbers are

k, =p&/c k, = (pi'/c' n—Xp")'t' (35)

and the spatial coordinates have been chosen so that
locally the waves are traveling in the s direction. Thus
the scalar waves propagate as though they traveled
through a medium with an index of refraction

1V (pi) 1—', n—c—9,p"pi '

for wavelengths c/pi« ~nhp"
~

't'. This leads to a group
velocity v,=clV(pi), implying i2,)c (and a phase ve-
locity(c) if nhp"(0. Thus there exists the possibility
of scalar Cherenkov radiation from a moving particle.

This possible difference in the velocity of propagation
of the scalar and tensor components of the gravitational
Geld could lead to other observable consequences. It is
seen from. Eq. (36) that the scalar component of a
gravitational wave which has traveled a distance D
takes a time

D28"

DT2
=R' U&U~S"

where FI, is the nongravitational four-force on the
Z

particle, and are the Christoffel symbols formed

from gpss'.

The observational quantity which we wish to obtain
is an invariant measure of how the separation of any
two particles changes with time as the wave passes by.
For this purpose, it is convenient to label a single
infinity of particles by a parameter p which is constant
along the world line of the particle it identi6es. We then
define a deviation vector W'= ax'/ap, where now
x'=x'(p, r) labels the position of a particle within this
restricted set. Using the fact that since U'=Ox'/Br,
BU'/Bp = BW'/Br, plus the equation of motion (39), one
obtains as a measure of the relative coordinate accelera-
tion of neighboring particles

At (1 1V) (D/—c) =—', ncDX-p"pi ' (37)

longer to travel that distance than the tensor com-
ponent. However, the observational limitation
&~ ' means that the eGect would be easily detectable
only for frequencies pi&cD~Xp"

~
&3X10 "D sec ', using

inequality (29a). Even for sources at cosmological
distances D 1028 cm, such frequencies are lower than
those which seem to offer the best hope for detection. 5 ~

It is beyond the scope of this paper to investigate in
detail such consequences of nonzero Xp", especially
since its small upper limit makes it most likely that
Xp"——0.

Ke now discuss the detection of gravitational waves
through their interaction with macroscopic bodies,
generalizing the analysis of Weber. 7 We assume that the
structure of the detector can be represented by a
collection of mass points interacting via nongravita-
tional forces. The equations of motion of any one of the
particles in a given gravitational Geld can then be
obtained from the variational principle

0=8 Lmclt (P) (g, U'U') i jLNo("xk))dr, (38)

derived from the form of the interaction Lagrangian
density (15), with the path-length parameter X chosen
as proper time 7. Note that the nongravitational inter-
action Lagrangian LNG is assumed to depend only on the
position of the mass point, as would be appropriate for
small displacements. The Euler-Lagrange equations of
motion corresponding to this variational principle are
found to be

D 1dlp c' gib
gik 2 Ui Uk y + J2 „(40)

Dp-Id' P mls'

where the total derivative D//Dg of any vector V' with
respect to some scalar g is defined by DV'/Dg
= V', Bx /Bg. Equation (40) represents a generaliza-
tion of Weber's Eq. (8.10),r with the opposite sign
convention for the Riemann tensor E';~~.

In order to obtain an expression for the observed

relative acceleration, we return to the weak-field limit,
and define an infinitesimal separation vector 0' and
relative force vector f':

W'Ap=a''=a p'(p)+ po'(p, r)+ (41)

g'"
I'k ~AP = pf'(P, r)+-

Dp lp'
(42)

DT2
= pc'pR'444+2pp'(rt" 2ti'4flk4)iti, kl/0p—+pm 'f', (43')

where we have taken U'—cb'4. The first-order Riemann
tensor R'44l= p'g (gkl 44+g44, kl g4l, 4k g4k, 4l). — —

Now the measured physical separation L between two
particles is given by Eq. (5),

noting tha. t the particles are in equilibrium in the
absence of the perturbing wave. Equation (40) then

gives, to lowest order,

CPS z

dT k

1 dip c'
22 6"+——2V'U'' —2")4a—

4 d4

L ='P(@)L(g 4 g4pg 44
' gp) a ir 3"'—

Lp(1+.B,y L(&.sa,.us-
+ 'g- ~ spp') j+ )-(44)g' dLNG haik

I'k, (39)
mP where Lp(p) = (—rt pap a.ps) 't' is the unperturbed separa-
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O'L

BT2

BoyI pl/I p

BP

1 t' B'(r~——
I

n-s~o"
I.o E Br'

Bgap t

+p0o 0'os-
Bts I

tion. The measured relative acceleration is then

(45)

limit, it can be shown that *t")or t"= (G*/G) *t",de-
pending on one's normalizationj represents the stress-
energy in the tensor components of the gravitational
wave. "The total stress-energy in the wave is then the
sum 5'&+ *t'&' of terms involving each field separately, in
this limit.

The energy density of the scalar component of the
wave is found from Eqs. (18) and (34) to be

from Eq. (44). Recall that dr=dt Nex.t, using the
relations 0-04=0 and ries By)'

+44~
84rG* Btk

(50)
()2~ 'b0

+pc 0 p rt (g4l, 4s+glk, 44
—g44, 4l)

BTD72

as well a.s Eq. (43), we derive the result

B LI 0'p f&g

+o
Br' Lo m

(46)
in the weak-field limit. Now from Eqs. (29b) and (32),
we see that G*&0.Therefore the requirement that P be
real means that this energy density has the sign of e. It
is interesting to note that no obserm, lioral evidence has
yet ruled out the possibility e= —1, although by Eq.
(32) it would require that (ihip')' be very small.

C2

t &.«p o
—o'+0 '(LoV.« ooV.—tl)3 (+')

Lo

Employing the unit orientation three-vector 1V =0'p /I. p

plus the field equation (22), we finally obtain

'/ '+ ' f= '
L «s—

~. (.-+~-~)~,. =~:~'v»
This result represents the equation of motion of the

particles making up our linear detector, which points in
the direction E .The internal force f may be composed
of a restoring force, a damping term, etc., while the
terms on the right-hand side of Eq. (48) represent the
driving force of the oscillator provided by the incident
gravitational wave. ~ If the detector is oriented in the
direction of propagation of the plane wave, it can easily
be shown that R 44SX ¹=(7t0+1V lV~)@, S=O (Re-.
call that lt ~= —B s.) Thus thewaveispurelytransverse,
except for the contribution proportional to Xo", which
will be of order ~) o"~c'/40'&&1 compared to the trans-
verse components. An observable distinction between
the scalar and tensor components lies in their modes of
excitation in the transverse plane. Whereas the tensor
field leads to the well-known quadrupole deformations,
the scalar field induces isotropic expansions and con-
tractions in the transverse directions, ' as can be seen
from the structure of Eq. (48).

I,et us next determine the energy carried by the wave.
For this purpose it is convenient to rewrite the tensor
field equation (12) in the Landau-Lifshitz form"

L(—g)(g "g' —g"g' )j.l-
= 167rG*C 4( g) (2'"+S "+*t'&),—(49)

where the pseudotensor *t"is obtained from the usual
expression" by replacing G by G*.Now in the weak-field

"D. C. Robinson and J. Winicour, Phys. Rev. Letters 22, 198
(1969).

AT= ppc + T+p' ' '
p

where, for a perfect Quid, we obtain

(51)

e'T= 44 3p+4 p@lpp'p pc'—

from Eq.~(17). We consider situations in which the
observer is at a sufhcient distance E from the non-
relativistic source to be in the "radiation zone, " so"that
r«c/oo«R

The analysis of the tensor gravitational radiation
follows from Eq. (12) in the same way as in general
relativity, ' if one considers the scalar field terms as
part of the effective source. To lowest order, the only
change is the replacement of G by G*, leading to the

~ R. A. Isaacson, Phys. Rev. 166, 1272 (1968).

V. RADIATIOÃ;, .OF GRAVITATION'AL WAVES

In this section we consider the relationship between
the strength of a gravitational wave and its source.
A&though it is likely that the Gelds in the vicinity of any
object which could produce detectable gravitational
waves will be strong (GM/rc' 1), we are forced to
employ the weak-Geld expansion even at the source in
order to obtain explicit expressions. The expansion
parameter c should now be thought of as related to the
strength of the source by ils/cs GM/rcs I/ppc' p/ppc'

e, where e is a typical velocity of the source, r is its
size, and u and p are its internal energy and pressure. It
is then seen from Eqs. (24) and (25) that far from the
source, both g;; and p are independent of time in this
approximation. In addition, in what follows we shall
neglect the function X(p), which we have seen can
produce only very small corrections to our results in any
case.

Our expansions of P, g;;, and lP (P) are still of the form
given by Eqs. (19a), (19b), and (19d). We also have
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well-known result

dE 6*
g~y'Qp)D(3) D(3)

Ch g 45c'
(53)

whereas 3p —u-+ 0 as the gas becomes relativistic. Of
course, it is also seen that monopole scalar radiation is
permitted.

I.et us compare the energy loss rates given by Eqs.
(53) and (57). Their ratio is

o'/=Nor 'G*c ' s(x )R '

Xexptio)(t —t+R/c) jd'x dtd~o. (55)

Taking the time derivative, we obtain

cjoy 2nG* d
oo—= — s (x,t,)d'x,

Bt c4RO dh
(56)

where Ro—R. is the distance from any point in the
source, and t„=t—Ro/c is the retarded time. All terins of
order oor/c smaller have been neglected.

Now the energy Qux at large distances is purely
radial and isotropic, being just equal to c544. Thus we
find the scalar energy loss rate to be

PdE~ NcoRo') BP '
I

=4irRo'cS~=
&dt), 2G* & at

2eG* d
sdV i,

co dt i ' (57)

using Eqs. (50) and (56), with dV=d'x . For a perfect
Quid)

s =4'o'(3P —I)+o4'poc'C —3 (A')' —0o"j (58)

Thus in this case the source of the scalar waves involves
the integral over the body of the first-order scalar field
as well as the thermodynamic properties of the Quid.
Note that for a nonrelativistic ideal gas, 3p —u=u,

for the rate of energy loss by tensor radiation, where

D(3) & is the third time derivative of the mass quad-
rupole moment.

In order to investigate the scalar gravitational radia-
tion, we first note from Eq. (50) that the energy loss
rate will be proportional to (Bp/cjt)'. Thus, since
P=P(x") at the observer's position, the quantity of
interest is p(xo). Its field equation is found by ex-
panding Eq. (13), which gives at order o',

o'C]'j=Q(x')+8m-eG*c 's'(x'), (54)

where s'= oppoc'P(Po')' 4'o"—7 o'g—'o'&, and Q = —o'g "4.it
when the coordinate condition (23) is employed. Fur-
thermore, using the fact that Nfog'&= (rt"—2rt"g")@
from Eqs. (24) and (25), we obtain Q = o'(e/fo') P ( CI'Q-
+2$,44)=8orG*c 4ogpoco, using also Eq. (22), and neg-
lecting terms of higher order. Defining a total source

s =s'+ («'/8~G*)Q= o@poc'EN+ (A')' —6"3—'lt o'2,

the solution to Eq. (54), in analogy with Eq. (22), is
then

(dE/dt),
=90~i sdV

i

(dE/dt) g

(59)

VI. DISCUSSION

The generality of the theory which we have investi-
gated in this paper is contained in the arbitrary func-
tions P(p) and X(p) plus the constant I=&1. Some
authors" have considered such degrees of freedom as
strong evidence against the inclusion of a scalar Geld,
since arguments which do not appear to be of a funda-
mental nature are necessary in order to specify these
functions. " However, since fundamental arguments
which would rule out a scalar field have not been
presented, this criticism does not appear to be com-
pelling. In addition, it is certainly possible that new
physical principles will be discovered which would lead
to a specification of these functions.

We have seen that the observational evidence makes
it seem likely that n =+1 and XQ) is negligible, at least
for weak fields, so that the theoretical problem reduces
to the form of |t (p) in this case. We have also seen that
the classical tests of gravitation provide information
about P(g) in the weak-field limit, with the cosmological
distribution of matter determining the appropriate
asymptotic value of p through Eq. (13).

The detection of gravitational waves provides a
means of isolating the effects of the scalar Geld. The use
of Eq. (48) allows one to relate the driving force on the
detector to the various components of the gravitational
field, provided the relative orientation of the propaga-
tion direction and detector is known. Note that for
scalar and tensor fields of comparable strength p(o~)

g, ;(&u), the response of a single detector to the scalar
field will be weaker than its response to the tensor field

by a, factor of the order of fo'. However, through the
simultaneous monitoring of detectors at various orienta-
tions, the transverse monopole modes, which can only be
excited by the scalar waves, can be isolated.

Since the ratio of the energy density in the scalar
component to that in the tensor components of the
same frequency is of the order of g(co)/g, , (oo)j', it is
seen that the ratio of relative detected strength to

Thus unless
I J'sdVI((ID(» pl most of the energy will

be lost by scalar radiation. Although s is proportional to
Po', and by Eq. (32) ~Po'~ &0.2, it would still require
sizable deviations from spherical symmetry, for in-
stance, in order that the tensor contribution dominate,
assuming ~iso'

~
0.1.Thus the classical tests of gravita-

tion theory do not rule out the possibility of a significant
scalar component in gravitational radiation.
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relative intrinsic strength of the components is of the
order of ($0')'&0.04. Thus a scalar wave which pro-
duced the same response in a single detector as a tensor
wave would have at least 25 times more energy
density than the tensor wave. This fact makes it
difficult to believe that the signals which Weber is
observing" are due primarily to scalar waves of this
type

As far as the source of the gravitational radiation is
concerned, the relative production of the scalar and
tensor components is strongly dependent on its con-
figuration, as has been indicated in connection with
Eq. (59). Let us investigate in more detail the scalar
energy loss rate from a specific type of object, in order
to gain a better understanding of how important it
might be. (See also Ref. 21.)

Consider a collection of small masses, each of whose
internal structure is not changing with time. Then from
Eq. (58), we have for any individual mass A,

where we have used the relation e$= (2ego'G*/c'G)C
between the first-order scalar field and the Newtonian
potential.

For a system of two masses nz& and m, , Eq. (61)
reduces to

(62)

where r is their separation. It is seen that particles in
circular orbits do not radiate scalar waves, although
they do radiate tensor waves. " For other types of
relative motion, however, the scalar radiation is of the
order of the tensor radiation if (Po')'=0.03, the value
needed to produce the observed perihelion advance of
Mercury if the solar oblateness represents a quadrupole
moment. This fact is illustrated by taking as an example
the case in which the two masses are falling directly
toward each other. The tensor radiation is found to
contribute a loss rate of

d dj
sd U tLBs~—c'E (60)

(63)

where e(d@/Ch)~ represents an average over the mass A
of the rate of change of the total potential due to all the
other masses, and we have assumed that ~$0"

~

& ($0')'.
Then the energy loss rate due to the scalar waves
becomes

dE S~G* $0'G*~' dC~
-'

~
Pm, —~, (61)dt, c' G i ~ dtig

' R. H. Dicke, in Gravitation aed Re4tivity, edited by H. Chiu
and W. I'. Housman (Benjamin, New York, 1964), Chap. 12,

in this case. Thus the energy loss due to scalar radiation
is approximately twice that due to tensor radiation if

Q o')'= 0.03.
The simplest situation in which pure scalar radiation

is produced remains the radial pulsation of a single,
spherically symmetric body.
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