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setting gy' ——1 and g~' ——1.51, we obtain
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This is in very good agreement with the relation

do'"&(X & 8)

d(cos8)

do. &"& (e—& p; », 8)~(S—Z)
d(cos8)e=o

(22)

derived by Goulard and Prirnakoff, ' but in violent
disagreement with the recent experimental value'

Setting 8=3.11 and applying this relation to AP~ and
Fe" we find that"

do &"& (Fe' '
r 8) '"p" do i"& (r4~ p ' » 8)

~30
d (cos8) p=p d (cos8)

(23)

do'"&(AP' & 8)

d (cos8)

do&"&(r4 &p —
& 8)~1.02

p —p d (cos8) t&=p

(20)

"Direct use of the experimental value of I'(E;) with (4&4)
= (0.75)' does not change the value of the cross section for Al"
but increases the value for Fe" by 10%.

Further experiments are clearly needed to clarify the
situation.

Two of the authors (CWK and MR) acknowledge the
hospitality of the Summer Institute for Theoretical
Physics at the University of Colorado, where some of
this work was done.
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Dispersion relations and the hard-meson method of Schnitzer and Weinberg are used to study the radia-
tive leptonic decay of the X+. It is shown that in the pole-dominance approximation the relevant form
factor in the axial-vector amplitude cannot be unsubtracted. Possible alterations of our results arising from
relaxing a smoothness approximation are estimated to be small. We discuss and compare various symmetry-
breaking schemes for the evaluation of necessary coupling constants. The branching ratio for E+ —+ ye+v is
calculated to be ~2.5)&10 ' for interesting structure-dependent decays. This is comparable to that for
E—+ ev and two orders of magnitude larger than one would expect from the usual estimates for electro-
magnetic decays. The feasibility of experimentally observing the decay is discussed, as are the possible
effects of electromagnetic violations of time-reversal invariance. From these results, a soft-pion estimate of
F4, the vector form factor in X~4, yields ( F4 )

=6.9.

I. INTRODUCTION
~ 'HERE have been several discussions, both experi-

mental' and theoretical, ' ' of the strangeness-
conserving decay mode m+ —+ pl+v, where 1+ is a
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~ Riazuddin and Fayyazuddin, Phys. Rev. 171, 1428 (1968).
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positron or a positive muon. In the present paper we
study the decay E+~ pl+v from the point of view of
current-algebra and hard-meson methods. The theo-
retical situation is much less clear for strangeness-
changing decays. There has been some discussion of
this E+ decay mode " in the hterature, with vridely
different results depending upon the particular sym-
metry-breaking scheme employed. We shall therefore
present a comparison of these results together with
those of our own method.

The hard-pion method vre use, that of Schnitzer and

7 D. E. Neville, Phys. Rev. 124, 2037 (1961).' J. S. Vaishya and K. C. Gupta, Phys. Rev. 165, 1696 (1968).
9 A. Q. Sarker, Phys. Rev. 173, 1749 (1968).
0 R. Rockmore, Phys. Rev. 177, 2573 (1969).
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Weinberg, " is inherently a low-energy method. As
such, it complements the method of dispersion relations
which makes specihc assumptions as to high-energy
behavior according to the number of subtractions
assumed. We shall therefore be able to learn some
information about the subtractedness of various ampli-
tudes. In an appendix we study a possible source of
error in this information: that the smoothness assump-
tion in the Schnitzer-Weinberg method is too restrictive.
We make a reasonable estimate of the expected cor-
rections arising from relaxing this assumption and
conclude that their effects are small.

The calculated branching ratio for E —+kiev comes
out =2.5)& 10 ' for interesting structure-dependent
decays. This is comparable to the branching ratio (BR)
for the nonradiative decay E -+ev (BR=1.5&&10 ')
and many times larger than one would expect from the
usual estimates for electromagnetic decays. Apparently
this fact has not been recognized previously. "Although
there is an enormous E+—+ &'ev background, we discuss
the feasibility of detecting the radiative decay and
conclude that it is possible but difficult with existing
apparatus.

Since the final state contains a photon and a charged
particle with spin, the decay is a candidate for observing
the eGects of a time-reversal-noninvariant interaction.
At present, this point is highly academic because of the
small branching ratio. Nevertheless, we brieRy discuss
final-state correlations that would indicate a time-
reversal-violating electromagnetic interaction.

Finally, we add a comment concerning the vector
form factor I"4 in E&4 decay.

II. GENERAL FORMALISM

The amplitude for the decay E+(P) —+ y(k)+3+(p)
+v(g) may be written'

polarization vector,

P=u„y" (1—p,)c,

is the lepton weak current,

j.(*)= V.'(*)+(1/~~) V'(*)

(2.4)

(2.5)

is the hadron electromagnetic current, V2F~ is the
charged-kaon decay amplitude, and V„4 " and A„4 "
are the strangeness-changing weak hadronic vector and
axial-vector currents, assumed to obey the usual
commutation relations.

The vector form factor v~ and the axial-vector form
factor u~ are defined in terms of the vector and axial-
vector parts of BR„„:

OR "=— dr e'~*(0~ T{7„(x)3 ' "(0))jE+(P))

P„(P k)„—
=%2Fir g„„+ I' k

+a&EP.kg„„P„k„j. (2.7)—

The same equations apply for 7t- —+ plv with the replace-
rnent of cos8 for sin8, P for F~, and the 1—i2 com-
ponent of the currents for 4—i5. We will denote the
corresponding x decay form factors by v and u . All
four form factors are real if time-reversal invariance
holds. They are functions of v—=I' k and k' in general.

An alternative parametrization of the axial-vector
amplitude which is useful for more general discussions
1s

OR =— dx e'"*(0~ T{j„(x) V ' "(0))
~
E+(P))

icicle„„—g.P"kv, (2.6)

where

OR=ORLs+ie(G/v2) sine e"OR„„l", (2 1) (2P —k)„(P—k)„
ORv„~ =V2Frc +P„P„Ht+P„k„Hs

2E' k

ORv„= dx e'" (0~ T{j„(x), V,' "(0)
—~.' "(o))IE'(P)) (2 2)

ORLB ie(G/V2) sing(&2Fir)
P(2e p+Ay e)

Xsi, (1+vs) (2.3)
2k p

is the amplitude for "lepton bremsstrahlung, " i.e., the
process in which the photon is emitted from the virtual
final charged lepton. In these equations, G is the Fermi
constant, 0 is the Cabibbo angle, e& is the photon

"H. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967).
~2 E. Fischbach and J. Smith t Phys. Rev. 184, 1645 (1969)]

remark that "typically P(X-+ eve)/P(K-+ all) =10 '."

+k„P,Hs+k„k,H4 g„,Hs. (2.8)—
The first term exhibits the Born contribution, and the
remaining invariants H; are functions of v and k' and
are free of poles at v=0. For the physical process
(k'= 0, e k =0, electromagnetic current conserved),
air(v) = —Hs(k'=0, v).

Decays which take place by lepton bremsstrahlung
or by the process in which the photon is emitted from
the parent meson Lthe first term in square brackets in

Eq. (2.7)) are called inner bremsstrahlung (IB). Other
decays are called structure dependent (SD) and are
determined by the form factors e& and az.

We will calculate the vector form factor in Sec. III
using dispersion relations, and the axial-vector form
factor in Sec. IV using both dispersion relations and the
hard-meson method of Schnitzer and Weinberg. "
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III. VECTOR FORM FACTOR meson is included, then the erst sum rule is

(3.8)g „2/M 2+F 2 —
g 2/M 2To calculate the vector form factor we write, for e~

in Eq. (2.6), an unsubtracted dispersion relation
(IISDR) in the variable Q', where Q=F k=—P+q,
and saturate the intermediate states with the E*meson.
This gives us

Equation (3.7) yields

igx*~ =0 15Mxps. (3.9)

vx= &&gx*Gx x,/(Mx*' Q')—,

where g~* is the coupling to the vector current

g~* may also be obtained from E* dominance in E ~3

(3 1) decay. If the form factor f+(t) is unsubtracted, f+(t)
=gx*Gx*xp/(Mxp' t), then—f+(0)= 1 implies

(0I I'p' "
I
&*+(e,Q)) =~2gx*ep (3 2)

~gx. i
=0.156Mx". (3.10)

and the E*Ey vertex is defined by

ig .
~

=0.143M .s. (3.11)

If f+(t) is once subtracted, f+(t) = f~(0) tgx—*Gx*x /
Mx*'(Mx*' 1), t—hen the slope parameter X+——0.023

(&*+(e,Q) I
I'.™I&+(&))=Gx*x,e."."F"Q.. (3 3)

The use of an USDR for vz may partly be justified by
comparing with the m. decay form factor.

An USDR for e gives

=%2g,G, /(M, '—Q') (3.4)

when we saturate the intermediate states with the p
meson. Numerically,

v (v= sm s) = (0.035+0.0025)M (3 5)

We have used g, =0.105 GeV' from the Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF)" relation, gs/
M ps2F s, andG, ~=1.0GeV 'fromSU(3) symmetry

nd co ~ ~p decay
Another method of determining v is from the con-

served vector current (CVC) hypothesis, "which gives

8p(v = ', m~') = 4(2rrw-s)"'/(e'm "')
= (0.0322&0.0016)m (3.6)

gxp'/Mxp'= gp'/Mp' (3.7)

if the contribution of the a meson is ignored. If the f(;

"K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

'4 We note that in the KSRF relation, g~=V2F Mp which
employs PCAC in its derivation, there is always the question of
whether F should be taken from the experimental 7i- —+ yv rate
or from the Goldberger-Treiman relation, V2F =2M~ggG ',
which is an equally valid equation within the spirit of PCAC
(3f~=nucleon mass; ggG 1=1.18). This latter relation predicts
V2F =0.8' and would maker =0.0293f ', also near the CVC
value, Eq, (3.6). This uncertainty, inherent in all PCAC calcu-
lations, means that our results cannot claim to be accurate to
better than about 15 jo."V. G. Vaks and B. L. Ioffe, Nuovo Cimento 10, 342 (1958}.

G. Belletini, C. Bemporad, P. L. Braccini, C. Bradaschia, L.
Foa, K. Lubelsmeyer, and D. Schmitz, Nuovo Cimento 66A, 243
(1970).

r' 8, Weinberg, Phys. Rev. Letters 18, 507 (1967).

using the latest experimental m decay rate" of
Ws ——(0.56&0.06) ')&10+" sec ' As these two esti-
mates for e are close to each other, "we suspect that
an USDR for ~z is also equally valid.

Returning to Eq. (3.1), we take gx* from the first
Weinberg sum rule, '~ which reads

These two values straddle the Weinberg sum-rule value
without a I(; meson.

The situation on f+(0) and F„has been summarized
by Weinberg. " Values of ~F„/F ~' from 0.0 to 0.34
have been suggested. Even the largest of these de-
crea, ses gxp' by only 15% in Eq. (3.8), which makes

~
gxp

~
only slightly smaller than the value obtained

from Egs decay. There seems to be no compelling reason
to choose any particular value of F„/F . We can say
only that a nonzero F„will lower g&*. In view of its
small effect, we ignore the I(, meson and use the value
for gx. in Eq. (3.9).

Gxpx~ in Eq. (3.1) may be obtained from the SU(3)-
symmetry relation

G~*~~=3G„o 0 =0.98 GeV ', (3.12)

the number coming from the experimental cv' —&~'y
width. If we wish a broken-symmetry value for Gz*z~,
the only way seems to be to assume the photon leg is
dominated by the vector mesons p, co, and p, i.e.,

Gxpxy Q GxpxvGF/Mv'
+=pi&&P

(3.13)

and we try to break the symmetry in the coupling
constants in the numerator. In Eq. (3.13), Gv=G,
is the coupling of the vector meson to the electro-
magnetic current,

(01 I
r
'

I p)~iv'(e)P)) =Gp, ~,pep ~p (3 14)

and discuss the g~.

'8 S. Weinberg, in ProceeCings of the Fourteenth International
Conference on High-Energy Physics, Vienna, 1068 (CERN, Geneva,
1968), p. 253.

Sometimes the quantities g„=G„, g„=V3G„, g„=v3G„
are more convenient.

Even in this way we only have theoretical methods
to discuss symmetry breaking in the gz. We therefore
take Gz*~z from nonet symmetry,

Gx*xp= —(1/~2)Gxpxp=GxpxN=sGpp. ~ ', (3 15)
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TABLE I. Values of the ratios of the vector-meson coupling
constants gz and their widths Fp for several symmetry-breaking
models discussed in the text. The resulting value for G~*~7 is
given in the last row.

Expt DMO' OSb
Present

sin'g = -', sin'g =0.402

0.40
0.12
1.33
0.19
0.30
0.65
1.23

0.43 0.24
0.14 0.078
1.03 1.43
0.15 0.208
0.42 0.17
0.93 0.37
1.35 1.09

0.482
0.156
0.96
0.14
0.502
1.1
1.40

0.557
0.181
0.833
0.12
0.668
1.47
1.35

See Ref. 20.
b See Ref. 21. The numerical vaiues of g„2/g p2 and

g&2/gpss

are taken from
Ref. 10.

g~= slnttr) g8) gy= cosp g8~ (3.16)

where gs is the coupling of the eighth member of the
octet to the eighth component of the current,

(0I V'l~s(e, p)) =a«. , (3.17)

and the SU(3) singlet coi does not couple to the octet
of currents.

Tal&ing the ratio of Eqs. (3.16) and using the first

' N. Barash-Schmidt et al. , Rev. Mod. Phys. 41, 109 (1969).
T. Das, V. Mathur, and S. Okubo, Phys. Rev. Letters 19, 470

(1967)."R.J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
(1967).

"For these estimates, for which we do not need or claim great
accuracy, we choose not to involve ourselves in the complications
arising from two mixing angles in the +-q system. See R. J. Oakes
and J. J. Sakurai, Ref. 21.

The gz may be obtained from the experimental
widths Fy for t/'~ e+e . Unfortunately, the experi-
ments are not yet very precise. Experimental numbers"
(without errors) are listed in the first column of Table I.

Now Das, Mathur, and Okubo" (DMO) have derived
relations among g„g„, and g„using the first Weinberg
sum rule and a modification of the second sum rule.
This modification is to assume that the integral
J'd

mp (m') of the spectral function p (m') (n is the
SU(3) indexj is not independent of n, but rather obeys
the Gell-Mann —okubo first-order mass-spitting formula.
These authors' values are given in column 2 of Table
I.

An alternative method of obtaining gy has been
proposed by Oakes and Sakurai" .(OS). These authors
include symmetry breaking in a diferent way which
amounts to assuming that the integral J'dm' m 4p (m')
obeys the mass-splitting formula. Together with the
first sum rule, this relation predicts the values in the
third column of Table I.

A diGerent relation among the gz may be obtained
from the first sum rule and the quark model. co-q

mixing" gives us

sum rule, we obtain

g.'

g„' M„'
&pm

)
tan'y M„'

(3.18)

3fp2 Mp'
= tansy +

3E„' M„'
(3.19)

~

vx(()s=o)
)
=0.12M'-

~

ex(Qs=Mxs)
~

=0 1/Mrr
(3.21)

IV. AXlAL-VECTOR FORM FACTOR

A calculation of the axial-vector form factor can be
done by dispersion relations or by the hard-meson
method of Schnitzer and Weinberg. "A generalization
of the work of Ref. 11 to the case of strangeness-
changing currents has been carried out,""and we
make the following observations.

(i) Since, for the axial-vector amplitude, the vector
current involved is the conserved electromagnetic
current, we will not be involved with unknown di-
vergences of strangeness-changing vector currents.

(ii) The Ward identities are relations a,mong the
proper vertices F)„ I'„~, and F„„~.The values of F~ and
F,z are determined by these equations in terms of the
divergences of F„z and 1„„)„respectively. F„„z itself is
chosen by a smoothness hypothesis. Now the 0. term,
arising from the equal-time commutator [BA'(x),
Ae (y))8(xs—ye), occurs only in the equation con-
necting I'&, with the divergence p"I'„i LEq. (4) in Ref.
237. The equation determining I'„i in terms of the
divergence q&I"„„iLEq. (3) in Ref. 23$ does not involve
the unknown 0. term. As our results are drawn only
from this latter equation, the a term has rto effect oe olr
results.

(iii) We are discussing only real kaons so that we
will remain on the E-meson mass shell. Thus no ap-

23 K. C. Gupta and J. S. Vaishya, Phys. Rev. 170, 1530 (1968).
'4 Y. Ueda, Phys. Rev. 1'74, 2082 (1968); 184, 1966(E) (1969).

When the quark-model value sin'p= —', is used, we
obtain the results in the penultimate column of Table
I. If instead the value sin'y=0. 402, obtained from
experimental masses and the first-order mass formula,
is used, the last column results.

Looking across Table I, we find considerable vari-
ation in the values of the gy's. In the bottom row of
Table I we have displayed the corresponding values of
Grr~rc~ using Eqs. (3.15) and (3.13). These numbers
indicate the type of effects which could arise from
symmetry breaking. Since nonet symmetry has been
used for G~~&z, not all possible symmetry breaking
has been included, but it seems reasonable to use as an
estimate of G~*~~ the value

G~*~7——1.2+0.2 GeV. (3.20)

Our final values for vie (with an uncertainty of 20%) are
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proximation is made by replacing the interpolating
kaon field px+t by (v2F»M»2) 'BA

The hard-meson method determines DlZ„," l Eq.
(2.7)). Comparing Eqs. (2.7) and (2.8), we see that
H5 and a& are related by ol

1 00'
ax(Q') = —0.46

0.22. M»~2 —Q'

100
for sr= 1.17.1.28.

Weinberg. "Numerically, we have

(4 8)

H2 —v2F——»+P kax, (4.1)

and we see that to determine az we need only the
coefficient of g„„in 5R„„~.Were we considering x —+ ylv,
only isovector photons would contribute, but for E
decay we have both isoscalar and isovector photons.
The isovector part of the coefficient of g„„ in 5E„„~
comes out

0.042
a»(0)= —b 0.022 M» '

'-0.011.
(4.9)

for M&„——1260 MeV. Its value varies by about a factor
of 4 as» changes by 28%.

For comparison, the x decay form factor calculated
in the same way comes out'

f.—t2F» '—
gag

v8
Mx~'(Mx~' —Q')-

(4.2)

a (Q') = —K2F /(Mg, 2—Q')
(4.10)

a (0)= —b(0.053)M» '.
Now if one writes an USDR for H5 and saturates the

intermediate states with the E~ meson, one obtains

H2=~&g»~G»A»7/(Mx~' —Q'), (411)

The isoscalar contribution is

z 1 g~ gy g~Af.MF»—'—— — +%2' M ' M„2 M»„'

gag
i 8 . (4.3)

Mx„'(Mx„'—Q')

In these equations, a=4+i5, b=4 i5, and f—.t2=~3f.b3

= —iv3. The parameter b is defined in Ref. 11. From
the first Weinberg sum rule it is clear that the isovector
and isoscalar contributions are the same. Thus we have

where Gz„z~ is defined by

(&~+(~,q) Ii .I &+(p) )
=iG»~x~(e. ~ p(p+ q)./(p' q')) —(4.12).

The current-conservation equation, Eq. (4.1), deter-
mines the numerator of (4.11) and one finds

«(Q2= M»2) = 2+gF»/(M—» 2

= —0.115M» '. (4.13)

If instead we write a once-subtracted dispersion
relation (1SDR) for H2, 2 then we find

a»(Q') = 2v2gx, Gx,x—,/
(M» '—Mx') (Mx '—Q'). (4.14)

H2= V2F» —'—g p gag

3f,' M

gzg
v8

Mx~'(Mx~' —Q')-
(4.4)

Sarker' has calculated the numerator using a p-domi-
nance model and SU(3) symmetry to relate G»„»7 to
the D-wave amplitude GD in E~ —+ K*w. He then used
a value for GD obtained by Srivastava" from a dis-
persion relation. Sarker's result for a~ is

This result may be further simplified by using the other
ax(v =0)=

first sum rule Jtd~ '—3f~' 3IIKg K p

g 2/M 2
g 2/M 2+F 2 (4.5)

where gz~ is defined by

(ol A„-'"lit, +(.,p)) =~2gx„.„.
Using this in Eqs. (4.1) a,nd (4.4), we obtain

«(Q') = b(2/~' 1)~~F»l(M—» '—Q—') (4 6)

We have also used the KSRF relation and introduced

(4 7)

The result, Eq. (4.6), is sensitive to». Some theo-
retical models determining z have been summarized by

l
1.164 v2F»

ax(v=0) = 0.424
(0.114.M»„' Mx'—(4.16)

This result is to be compared with the value from
an USDR, Eq. (4.13), and the hard-meson calculation,
"P. P. Srivastava, Phys. Letters 20B, 233 (1968).

4» —(1+c)
X 1———,(415)

(1—e) 2

where e= (M»„' 2M»*2)/M»„2. —(e= 0.0 for M»„
= 1260 MeV, and e= 0.1 for Mx„= 1330 MeV. )

For ~=0.0, this is



J. CA&RON AND R. L. SCHULT

Eq. (4.9). (Q'=0 and v=0 arguments cause a diGerence
of about 15%.) 8 is known to lie between —i~ and —1,"
and we shall use the value —~3. The USDR and 1SDR
give results differing in sign and, for &=1.17, differing
in magnitude by a factor of 5. The hard-meson value
agrees in sign, and very closely in magnitude, with the
1SDR value.

The conclusion we wish to draw from this is better
substantiated in the case of x decay, where there are
no complications due to symmetry breaking. The
equations analogous to (4.13) and (4.16) show the same
result, only more sharply: A 1SDR for H5 gives a
result for a in excellent agreement in sign and mag-
nitude with the hard-pion method; an USDR gives a
result diBering in sign and in magnitude by a factor of
8/3.

Now the hard-meson method takes an approach
diGerent from that of dispersion relations. In the former
the amplitude is taken to have poles corresponding to
the nearby resonances, and a numerator which is
assumed to be a low-order polynomial for seal/ argu
meets. In particular, no assumption is made about the
asymptotic behavior for large momenta; the large-
argument behavior is irrelevant for the Schnitzer-
Weinberg formulation —it is a low-energy method. This
enables one to calculate u and az without any assump-
tion about their high-energy behavior.

This is in sharp contrast to the dispersion-relation
approach in which a specific assumption is made as to
the behavior of a& or H5 at infinity. We have seen that
the assumption that H~(Q') —+ 0 as Q' —+~ (i.e. ,
assuming that it satisfies an USDR) gives us an answer
that differs by a factor of —8/3 for a, and —5 for az
from the results of the hard-meson method in which no
such assumption was made. We have also seen that the
assumption that II~ —v const&0 as Q' ~~ (i.e.,
assuming that it sa,tisfies a 1SDR) leads to a result in
agreement with the hard-meson method. We therefore
conclude that, within the pole-dominance approxi-
mation, B5(Q') cannot satisfy an USDR.

The only way that this conclusion could be false is if
the smoothness assumption in the Schnitzer-Weinberg
method were too severe, and that even for low momenta
a rapid dependence in the numerator F„q is required.
It may be that the linearity assumption for I'„„z (which
is simply related to I"„„) is too stringent, and that
higher-order terms must be kept. It is then conceivable
that this would affect the determination of 0 and
therefore of a and u~. But in order for this to invalidate
our conclusion, it would have to change the sign of 8

and change its magnitude considerably. In the Appendix
we investigate this possibility and show that such an
occurrence is extremely unlikely.

We also point out, again arguing within the vector-
meson-dominance approximation, that if H5 is unsub-
tracted, then the photon coupling to the x and A~ or
to the E~ and E is different in sign and magnitude

from that predicted by p-meson dominance. This is
seen by combining Eqs. (4.1) and (4.11) at v=0:

Grr„rr, = (Fz/ger, ) (MJr„' M—rr')

or its pion counterpart

G~,-v= (~-/a~i) (il-f~,'—~-').

(4.17)

(4.18)

If g~„and g~, are taken from the Weinberg sum rule,
then these equations predict photon couplings differing

by a factor of about —5 and —8/3, respectively, from
the p-dominance calculations of Sarker, and Riazuddin
and Fayyazuddin. 5 Thus, if p dominance has any merit,
this is another simpler reason that H5 cannot be unsub-
tracted. Of course this result is contained, but not
clearly pointed out, in the work of Refs. 9 and 5.

Several authors have attempted to evaluate v~ and
arr. '" The results for v~ agree within 20%, but the
values of az differ, as can be seen from the values they
give for err—=air/err. Our results, Eqs. (4.9),and (3.21),
with z= 1.17, imply

[&~ [
=0.14.

Sarker' chose a larger value of g and finds

~7~~=0.05 (Sa.ker)

if M~~ ——1260 MeV and

~
pic

~

= 0.11 (Sarker)

(4.19)

V. DECAY RATE

We proceed to discuss the branching ratio for
E+—+ pe+v. Relevant equations for the differential
decay rates are presented in Ref. 2.

Before calculating the rate itself, let us compare
qualitatively the decays of m and E. The IB rate
is proportional to the nonradiative decays x ~ ev
and E —+ ev Since I'(E ~. ev)/I'(~ —+ ev) = (Mrr/AERY. )
X(a tan8)' 0.27, the absolute brernsstrahlung rate is
slightly smaller in E decay. On the other hand, the
SD amplitude contains a (mass)' of the parent meson.
If, for the moment, we drop energy-dependent poly-

if SI~~——1330 MeV. Rockmore" also finds two values
depending upon the symmetry-breaking scheme used
for g~ and gy'.

~ ya
~

=0.48 (Rockmore)

in the DMO' model and

~
pre ~

=0.58 (Rockmore)

in the OS" model.
The large discrepancies in the values of ~pre~ point

to the differences of opinion as to how best to handle
symmetry breaking. Had we chosen different values
for h or ir, ~pre ~

could be as small as 0.05 or as large as
0.36. All authors agree that ~pic~ &-,'. Because of this,
the decay rate is not very sensitive to pz.



ON —SHELL CURRENT ALGEB RA AN D THE RAD IATI VE 3177

nomials in the SD amplitude which are comparable for
s and E decay (they would be equal if y, =err), then
the ratio of SD rates is

F»(E~ &ev)
~

—tane —
~

=680. (5.1)
Fsn(s. —+kiev) M kM ' M s

Thus SD decays are much more prominent in E decay
than x decay. Similarly, the total rate will also be much
greater for E decay.

That the factor M~' must appear in the SD ampli-
tude can be seen from dimensional reasons alone. In our
normalization the amplitude is dimensionless. Since it
is proportional to the Fermi constant G, which has
dimensions M ', there must appear an additional
(mass)s. As it is an excellent approximation to drop the
lepton mass, this factor must be M~' since there is no
other mass.

We can briefly inquire as to the physical origin of
the (mass)' factor by studying a simple E~ exchange
diagram for v~ such as we used to saturate the dis-
persion relation. We have a E*Ey vertex with a factor
e"(eGrr err„e„„q,p k') connected to a E*propagator with
a factor (g„,—Q„Q,/Mx*')/(Mlr*' —Q') connected to a
E*ev vertex with a factor (G/v2) sin8 v2gx~/'. A similar

diagram involving p exchange holds for m decay with
the same factors, except that the subscripts E* and E
are replaced by p and m, and sin8 is replaced by cos8.

Now G~*~~ and G p ~ are comparable, as are the
numbers gz'* gp and Mz'+ 3fp These numbers do not
cause any large difference between z decay and E
decay. In the last factor, the lepton momentum /'
introduces one factor of (Mx/M ) in the ratio of rates,
which, however, is nearly reduced to unity by the
factor (sino/cos0). In the first factor, p"k' causes a
factor of (Mrr/M )' which remains. Thus, it is essen-
tially the pseudotensor E*Ey (or psy) vertex which
forces the appearance of the (mass)'.

Returning now to the calculation of the rate, we are
interested in that portion of the Dalitz plot in which
the SD decays dominate those occurring via IB or via
the interference of the two. As is the case for x decay, '
the interference term may be neglected. We arbitrarily
require that the bremsstrahlung rate be less than 1%%uo

of the SD rate. We find this to be true over the region
of the Dalitz plot shown in Fig. 1, in which the photon
energy to is greater than 57 MeV and ~+8)260 MeV,
where E is the positron energy. It occupies 87% of the
plot. Thus, for E —+kiev, SD decays are much more
probable than IB decays. IB decays are down by a
factor of 0. compared to the nonradiative decays, but
SD decays are not.

The total SD decay rate for &u) 57 MeV, ~+2) 260
MeV comes out

E

247
228-

-QJ+ E
= 260 MeV

= (R/6o) Lo 98(1+Vx)'+o 75(1—yx)'j (5.3)

where

R= [2Mx/(8~)'5 (eG sin8 Mrt'err)'=68 000 sec—' (5 4)

and x, y, and s are the energies of the photon, positron,
and neutrino, respectively, in units of their maxima.

Since it is the positive value of y that agrees with
the m ~ per experiment, ' we choose the positive value
for yz also, &&=+0.14, assuming that symmetry
breaking is not bad enough to change the sign. Values
of W» and the branching ratio [BR=Ws]3(E ~ yev)/
F(E+~ all)] are given in Table II for three values of
yz. As claimed earlier, the rate is not very sensitive to
PK.

Experimentally the decay will be swamped by
E+—&s'ev (BR=4.8&(10 '), so that the easiest way
to observe the decay will be to seek positrons more
energetic than allowed in E&3. Such decays form only a
narrow band at the top of the Dalitz plot, as shown in
Fig. 1. The maximum electron energy in Eta is 228
MeV, while that in E —+ yea is 247 MeV, so that there
are only 19 MeV to play with. Within this band, the
decay rate is

W= (R/60)[0.321(1+pe)'+0.0027(1—yx)'7

which is 475 sec ' (BR=5.8&&10 ') for yrr=0. 14. As
the integrand in Eq. (5.2) shows, when y is near unity,
the rate is largest for photons near —', their maximum

energy, or about 165 MeV.

TABLE II. Decay rate and branching ratio (BR) of the decay
E+ —+ ye+v for several values of y~.

Rate {8'sD)

O 57 247 ~(MeV)
Frc. 1. Dalitz plot for E+ —+ pe+v. co is the photon energy and

8 is the positron energy in MeV. SD dominates IB (IB (1%%uol in
the area indicated (co)57 MeV, u+E&260 MeV). The narrow
band at top (E)228 MeV) is the area in which positrons cannot
come from E~3.

Wsn =R dx dy(1 —x)

&& [(1+yrr)'(1 —s)'+(1—pre)'(1 —y)'$ (5.2)

0.05
0.14
0.50

1900 sec '
2050 sec I

2700 sec '
2.3X10 6

2.5X10 '
3.3X10 5
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It is quite possible that this decay could be observed
as a by-product of an accurate E~ev experiment.
Some effort has already been made in this direction by
Macek, Mann, McFarlane, and Roberts, "who get an
upper limit of lux(0) I

&0.24Mrr
—' (BR&7.1X10—').

VI. TIME REVERSAL

In the decay E~ pp v, IB generally dominates over
SD decays. Other authors'~ have considered the effects
of time-reversal noninvariance in this decay manifest
in the interference between IB and SD amplitudes. In
the present case we consider the electron decay mode
and concentrate our attention on the SD amplitude
alone, which is much larger than the IB amplitude.

If the time-reversal violation occurs in the electro-
magnetic interaction, the form-factor structure of the
amplitude will be unaltered except that ez and az may
now be complex. In general the correlations e (kXp)
and e (kXp), where c is the positron spin, can occur.
However, it is an excellent approximation to neglect
the positron mass, and to this extent, the positron has a
definite helicity. The U—A interaction aligns the
positron along its momentum and so, in fact, no
e (kXp) asymmetry can arise, regardless of any
imaginary part in the form factors. Thus we must
search for photon-polarization asymmetry.

Drop the subscript E or x from v, u, and y, and define
D = t'eG sin8 Mx'v (1—g)'". Then the amplitude for
producing a left-circularly polarized photon is given by

-4t= D(1+v) (1—&)

and the amplitude for right-circularly polarized photons
1s

-4.=D(1—7) (1—y)

This means that the general state of polarization is
elliptical with the axis of the ellipse at an angle f with
respect to the decay plane, with f given by

tan2$=2 Imp/(1 —ly I')

and the ratio of minor axis to major axis given by

& I1-v
I

—
I 1+v I

&I1—y I+ I1+~ I

where P= (1—y)/(1 —s). Thus if time-reversal invari-
ance holds (Imp=0), the major axis must have /=0'
or 90'. On the other hand, if ImyQO, other axes are
possible and, in particular, for y = s (maximal violation),
there is a region of the Dalitz plot (where y=s) for
which the photons are plane polarized at 45' to the
decay plane. In general, Im p~0 implies an asymmetry
between the number of photons plane polarized at
+45' and those at —45'.

' R. J. Macek, A. K. Mann, W. K. McIarlane, and J. S.
Roberts, Phys. Rev. D (to be published)."D. E. Neville, Ref. 7; J. L. Gervais, J. Iliopoulos, J. M.
Kaplan, Phys. Letters 20, 432 (1966); S. W. MacDowell, Phys.
Rev. Letters 17, 1116 (1966); 18, 227(E) (1967).

If we now contract the two pions, use partial conser-
vation of axial-vector current (PCAC) to introduce the
currents, let p„and q„approach zero, and use the
Weinberg identity" for the T product of two divergences
and a current, we are left with only the term

,' (a—/a—y" 8/B—x")b(x p y„)—

X(0I T(P o'+"(&) ~ ' "(y)j I'" "(0)) I
A+)

which, upon evaluating the equal-time commutator,
reduces to the amplitude for the emission of an isovector
photon in E —+ ply. As the amplitude for emission of a
real photon is two-thirds that for an isovector photon
in this case ""we arrive at

=0.025 IF, lux-i. (7.1)

The situation on P4 is unclear. A simple p-dominance
model with SU(3) symmetry predicts" IF4I = 1.24. A
better meson-dominance calculation including the E*
gives" 0.96& IF4I &1.37, depending on how symmetry
breaking is included. A direct hard-pion current-algebra
calculation by Sarker" finds

I
F4

I

= 5.07. Our evaluation
of nx implies IF4I = 6.9 according to Eq. (7.1).

Ely et al.32 have presented the most recent experi-
mental results. From an analysis of 269 events they
find two solutions consistent with the data:

I F4I = 18.7
+6.8 and 10.04&7.78. All calculations of IF4I lie
between 1 and 7 and are significantly smaller than the
data, which are not yet very precise.

VIII. SUMMARY

We have calculated the axial-vector form factor in
E —+ plv by both on-shell current algebra and dispersion
relations. Choosing reasonable values of the param-
eters 6 and Fir/F„, our result, Eq. (4.19), is intermediate
between values obtained by other theoretical methods.
By observing that we needed no assumption about the
large-argument behavior, we were able to conclude that
IE; cannot be unsubtracted.

Several symmetry-breaking schemes were discussed
and compared in connection with the vector form factor.
The z meson has little effect on the final result. Values

"S.Weinberg, Phys. Rev. Letters 17, 336 (1966l.'" We are indebted to Prof. W. Kumrner for a communica-
tion on this point.

» F. A. Berends, A. Donnachie, and G. C. Oades, Nucl. Phys.
33, 569 (1967};see also Phys. Rev. 1/1, 1457 (1968).' L. E. Wood, Phys. Rev. 181, 1890 (1969).

"A. Q. Sarker, Phys. Rev. 176, 1971 (1968)."R.P. Ely et ul. , Phys. Rev. 180, 1319 (1969).

VII. VECTOR FORM FACTOR IN X)4 DECAY

We would like to add a remark concerning F4, the
vector form factor for E~4. In the soft-pion limit, it can
be related to ~E. F4 is defined by

( '(P) ( )I I' ' "(o)IIt'(lt)) = (F /~ ') ...It"P"
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for. g&, the leptonic decay constant of the vector mesons,
consistent with the calculation of DMO, were obtained
with the 6rst sum rule and the ideal mixing angle, but
these results disagree with those of OS.

The decay rate for E—+ per due to SD processes
comes out unexpectedly large. This is not a current-
algebra result, but is rather due to the peculiar vertex
structure in a simple model and the large mass of the E.

A time-reversal-violating electromagnetic interaction
could be detected by studying the polarization of the
photons but not that of the positrons.

A soft-pion calculation of F4 in K~4 gives a result
somewhat larger than other theoretical calculations,
and still much smaller than the present experimental
values.

APPENDIX

To demonstrate that the smoothness hypothesis" for
the proper vertex F„,q is a satisfactory assumption, we
shall estimate the effects of higher-than-linear terms. "
Keeping terms of third order, the most general form
for this function is

I'.,~(q,p) =aip.p.px+asq, q.q~+asp„p.q~+a4p. q.p.
+asql p px+asq q.px+avq p qx+asp q.qx

+gp v (pi 1+qx+2) +gp x (p

mfa'

3+q v 734)

+g'(p.~.+q.~ ), (A1)
where

and two inhomogeneous equations among the coeffi-
cients b; which are the same as if no cubic terms were
present. Thus one of the b; and Ave of the a, , b, & are
undetermined. Of the b;, let us choose c5 as the un-
determined one. Recall b= —2—bs/b~.

We wish corrections to the coeKcient of g„), in F„),.
Since F„& comes from q&F„,„& in the Ward identity, the
only corrections arise from the cubic terms in the
coe%cient of g„q in I'„„q (bs' and bs'). I.et us write

were we have exhibited masses to make the coefficients
c dimensionally the same as b;.

Nonzero values of c would be produced by higher-
mass dynamics, for example, a resonance with the same
quantum numbers as the p or A& but of greater mass.
To estimate their effect, let us suppose they may be
approximated by a resonance with the quantum num-
bers of the p at about twice the p mass. This resonance
would supply F„,z with an extra factor

1+k'/M*'
(A6)

1., =g, p. l
b,+. ' +., +.,'

M~' M~' Mp'J

p' q' k'
+q~l bs+cs +cs +cs + ', (A5)

M~' Mg' M p'

Qy= 82 )

83=86)

a4= 87 )

u5 ——as,

bg=b2,

bg'= b2'

b'=b '

bg'= b2',

b3=b6,

b3~= b62

b3'= b6',

b3 b3

b4=b5,

b4'= b

b4'= b5',

b4'= b5'.

B;=b,+b 'p'+b 'q'+ bp k'.

Crossing symmetry implies

(A2)

(A3)

where M*=23f, is the resonance mass. This will make
css (or cs') come out about s' of bs (or bs). Then when

b5 and b6 or 5 are determined from the A ~ ~ px and

p ~ mm widths, k' is set equal to Mp and b5 and b6 will
be found to change by about 25%%uo. Instead of the limits
1&8+2&1.5, as previously determined with c,'=0,
the lower limit 1 will change by 25%%uc to, let us say,
0.75 or 1.25, and the upper limit 1.5 will change by

25%%uo to 1.13 or 1.87. Then b will obey either

Only 16 of the 32 coeKcients are independent. Choose
those with odd subscripts to be independent.

The Ward identity satis6. ed by F„„zproduces eight
homogeneous equations among the a; and b, i.e.,

bg'+bP=0

bs'+bs'+ 2 (ai+as) =0,
bs'+bss+-,'(a, —as) =0,

85—G7= 0)

by'+bP=O,

bs'+bss —-', (ay+as) =0,
(A4)

bs' bs'+ 2 (as+—a7) =0,
. bs' —bss —2 (as+ ay) =0,

"For other attempts at relaxing the smoothness hypothesis
see P. Horwitz and P. Roy, Phys. Rev. 180, 1430 (1969); S. G.
Brown and G. B. West, ibid. 180, 1613 (1969).

—1.25& b& —0.87 or —0.75& b& —0.13. (A7)

These limits are not very different from the original
—1&8&—0.5.

In order to make 6 change sign and change in mag-
nitude by nearly a factor of 5, several such resonances
at not too high an energy would have to conspire to
produce a similar change in bs and bs in Eq. (A5). From
the above estimate, we find this possibility very un-
likely. Effects of higher-order terms should change 8 by,
let us say, not more than 30%%uo. We conclude that the
original linear approximation to F„,q is a safe one for
the determination of a~.


