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(i) The forward peak of the nucleon Cornpton scat-
tering is expected to show shrinking, from an initial
dependence e ' shrinking to e "' eventually (with
a~4 —5 BeV '), as the energy increases. The shrinking

may begin to take place at v 4 or 5 BeV.
(ii) For electroproduction, we conjecture that as Q'

increases, the vS'2 function can begin to show diffractive
features only at increasingly higher energies. The
boundary of the "diBraction plateau" (for vW&) is of the
form o=Z(Q'+nt'). We venture to guess that it is
actually o—3+5Q'

(iii) The qualitative features of Sakurai's results are
more likely to be correct in the di8ractive region, i.e.,
to the right of the line o~3+5Q' in the p —Q' plane.

This is the region where the diRraction model is more
likely to be of relevance.

The physical picture we have pursued is a very simple
one. But if it can provide a qualitative understanding of
the data, its simplicity is its virtue.

1Vote added srt proof T.he connection between the
energy uncertainty LEq. (1)$ and the longitudinal
distance )Eq. (3)j has also been discussed by K. Gott-
fried, Cornell University report, 1969 (unpublished).
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We propose a method for generating Regge cuts based on the multiperipheral model in the approxi-
mation of vanishing coupling of the Pomeranchuk trajectory to production processes. We utilize a for-
malism which explicitly satisfies the full unitarity equations, including inelastic terms, for all connected
multiparticle production amplitudes as well as for the two-body amplitude. The sign of the Regge cut
coincides with the sign of the cut in the absorptive model, and is opposite to that of the Amati-Fubini-
Stanghellini cut. The results are applied to the recent Serpukhov pp data.

S INCE the work of Amati, Fubini, and Stanghellini
(AFS)' appeared in 1962, it has been accepted that

Regge behavior and the bilinear character of unitarity
implies the existence of Regge cuts. Among the models

that evaluate the cut contribution to the two-body
scattering amplitude M~~, we should mention the ab-

sorptive corrections to Regge exchanges, ' ' the hybrid
model, 4 and the eikonal model5 in which the Regge pole
is identified with the first term in the eikonal expansion.

*Work supported in part by the U. S. AKC and NSF.
D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento 26,

896 (1962).
2 (a) G. Cohen-Tannoudji, A. Morel, and N. Navelet, Nuovo

Cimento 48A, 1075 (1967); (b) G. Cohen-Tannoudji, A. Morel,
and P. Salin, CERN Report No. TH 1003 (unpublished).

' See F. Henyey, G. L. Kane, J. Pumplin, and M. Ross LPhys.
Rev. 182, 1579 (1969)]for a justification and applications of the
absorptive-model corrections to Regge-pole exchanges.

4 C. S. Chiu and J. Finkelstein, Nuovo Cimento 57A, 649
(1968).' R. Arnold, Phys. Rev. 153, 1523 (1967); S. Frautschi and B.

An early attempt to derive an expression for the cut
using a detailed model of particle production and elastic
unitarity was made by Amati, Cini, and Stanghellini.

They used, however, a nonunitary expression for the
production amplitude M 2, and unitary corrections to it
may strongly modify the cut in M». For example,
Caneschiv has shown that an absorptive correction to
3f„~ is sufficient to change the sign of the AFS cut.

With this in mind, we construct a formalism in which

unitarity is taken into account for &22, 3f„2, and
cV (rt, srt) 2). To do this, we use a generalization of

Margolis, Nuovo Cimento 56A, 1155 (1968); K. A. Ter-
Martirosyan, Institute of Theoretical and Experimental Physics,
Moscow, Report No. 681, 1969 (unpublished).

D. Amati, M. Cini, and A. Stanghellini, Nuovo Cimento 30,
193 (1963).

7 L. Caneschi, Phys. Rev. Letters 23, 254 (1969).



UNITARY MODEL OF REGGE CUTS 3165

the method of Baker and Blankenbeclers (hereafter
denoted by BB).The only limitation on our amplitudes
is that they do not contain disconnected parts. They
satisfy the full (elastic and inelastic) unitarity equation.
exactly, contain no limitation on their dependence on
any variables, and have no approximation of interacting
only through transitions to two-body intermediate
states in spite of the formal appearance of the solution.

The formalism does not determine the 5 matrix
uniquely, because it contains only unitarity, and addi-
tional dynamical assumptions have to be introduced. In
order to construct a model for high-energy small-
momentum-transfer scattering, we use the results of the
multiperipheral bootstrap, ' " in the approximation of
neglecting Pomeranchukon exchange in production
processes. '" We then arrive at a simple expression,
completely consistent with unitarity, and explicitly
exhibiting the cut corrections to Regge-pole exchanges.

We consider the simpliQ. ed problem in which all
external particles are spinless and choose kinematic
variables for the amplitude M„as follows: (i) the total
energy squared s; (ii) a set of 3N —7 variables v which
depend only on the final momenta; (iii) an analogous
set of 3m —7 initial variables v; and (iv) three Euler
angles corresponding to the relative orientation of the
final and initial momenta in the c.m. frame; these three
parameters are denoted by g. We then project the
amplitude M„(v„,s,g, v ) on the representations of the
rotation group and obtain the generalized partial-wave
expansion'3

(21+1)
Ilf'nm(vnp~g~vm) = Q Hem (vnppm)

J) )

XDi„).„'*(g). (1)

Unitarity for the partial-wave amplitudes
H„~i"""(v„,s,v ) reads

ImH ~""""(v,s,v )

where ps(s, vs) is the k-body density of states. When ri,
m, or k=2, v2 and X2 are absent. In the following, we
restrict the use of the indices e, m, and r to be greater
than 2, we drop the index J, we include the index P I,

among the variables vi, and we use the symbol J's to
denote not only the sum over the number of particles,
but also 1'dv& Pz, for k) 2. The unitarity equation (2)
has the same form as that of BB, but is exact at all
energies and implies no restriction on the dependence of
the amplitude on its variables.

The next step in the generalized BB model is to
assume knowledge of Born terms 822, 8 2, and 8
which have no right-hand cuts, and to unitarize them
with a generalized E/D method in which D is allowed to
have left-hand cuts. We proceed in two steps. First,
inelastic unitarity (i.e., e)2 intermediate states) is
imposed, and then the two-body cut is introduced. The
first stage is accomplished by solving the set of coupled
integral equations

(3)

where, at fixed v&, I&(s,vt) is a real analytic function of s
such that its imaginary part on the physical s cut is
ps(s, vs). We assume that the integral equations are
Fredholm, and approximate the Born term 8 by a
sequence of kernels of finite rank

L

B„„(v„,s,v„) = lim P g„'(s,v„)g '(s,v„) .
L~oo i=1

This is the step where connectedness of the amplitude is
assumed.

The solution of Eq. (3) for L=1 is

BJ'=»'+

dvs pi(s, vs) Q H„s ""*(v,s,vs)

XHs ~i'"m(vt„s, v ), (2)

' M. Baker and R. Blanitenbecler, Phys. Rev. 128, 415 (1962);
J. W. Dash and A. Pignotti, University of Washington Report No.
RLO-579, 1970 (unpublished). See also R. Arnold /Phys. Rev. 136,
B1388 (1964)] and H. D. I. Abarbanel, S. D. Drell, and F. J.
Gilman PiNd 17'7, 2458 (1969)]. for alternative high-energy models
in which the BB method is used.

9 G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112 (1968).
"G. F. Chew, M. L. Goldberger, and F. E. Low, Phys. Rev.

Letters 22, 208 (1969);I. G. Halliday, Nuovo Cimento 60A, 177
(1969)."I.G. Halliday and L. M. Saunders, Nuovo Cimento 60A, 494
(1969)."G. F. Chew and W. R. Frazer, Phys. Rev. 181, 1914 (1969);
L. Caneschi and A. Pignotti, ibid. 184, 1915 (1969).The approxi-
mation in our model is that the internal Pomeranchukon coupling
in production amplitudes vanishes, the nonzero Pomeranchukon
couplings to external particles being responsible for the cuts.

13 J. Werle, Eetativistic Theory of Reactions (Interscience, New
York, 1966), Chap. 5.

ImB,;=
r+2

B,„*p„B„;. (6)

We proceed now with the second step in the uni-
tarization by writing

H;, =B;,+H,sIrBs;,

which can easily be inverted:

H22 B22/(1 I2B22) )

H„s=B„2/(1—IsBss) =Hs„)

(Sa)

H„=B„+B„sIrBs/(1 IrBss) =H „. (Bc)—

The form of Eq. (5) is somewhat more complicated
for rank L) 1. We assume that 8,,=8;;; hence,
8;,=8,;. In addition, 8;; satisfies inelastic unitarity,
1.e.)
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The form of these equations is valid for any rank I..
It can be verified that II;; satisfies full unitarity
Ãq (2)].

At this stage, the freedom of choice of the Born
terms corresponds to the lack of crossing symmetry in
the model. Instead of attempting to enforce crossing,
we construct a high-energy model by appealing to the
results of the multiperipheral bootstrap and guessing
B;; directly, thus avoiding the choice of 8,., In the
multi-Regge bootstrap model, inelastic unitarity gener-
ates Regge and multi-Regge behaviors for the ab-
sorptive parts of M»'" and M„2." Very likely, a
similar statement can be made for 3I„.In the reason-
able approximation of neglecting the Pomeranchukon
contribution to the production amplitudes, ' "the Regge
cuts in the multi-Regge inelastic sum are due to lower
exchanges (e.g. , multimeson exchange), and occur
around or below zero in the angular momentum plane,
but have smaller slopes than the meson pole. We will

neglect them at high energy, thus making some error at
large momentum transfer. We can then incorporate the
results of the multiperipheral bootstrap by identifying
B», B„~, and B with the partial-wave projections of
the Regge amplitude, and the 2 —+ e and m —+ m multi-
Regge amplitudes. We see that the inclusion of nonzero
8„ into the model is necessary for the identification of
B 2 and B„with multi-Regge amplitudes, because
otherwise B„2would have no right-hand cut, and B
would be zero.

Equations (8) can be interpreted at high energy as
providing elastic unitarity corrections to the Regge and
multi-Regge amplitudes, which already do contain
inelastic unitarity. An expression of the type of Eq.
(8a) has been recently proposed by Lovelace'4 as an
elastic unitarization of the Veneziano model.

Our dynamical assumption is to equate the physical
amplitudes to the pure Regge amplitudes in the absence
of two-body intermediate states, formally achieved by
setting I2 ——0. Equations (8) now provide expressions for
the fully unitarized amplitudes, but there is still an
ambiguity in the choice of the real part of I2. We can
eliminate this ambiguity by requiring that the correc-
tions to the model originating from the denominators in
Eqs. (8) introduce only Regge cuts of well-defined
signature. This imposes a choice of I2 which is purely
imaginary at high energy. Therefore we set

I2(s) =ip(s) =m[(4trP —s)/s]'i .

Equation (8a) with the above choices for 822 and I2
has recently been proposed by Cohen-Tannoudji et al. 'b

We have shown here how it arises in connection with a
detailed model of particle production, and we have, in
addition, simultaneously generated a prescription for
unitarity corrections to multiperipheral amplitudes.

We can obtain insight into the cut structure by
comparing the expansions of ImH~2 to order I" from

'4 C. Lovelace, CERN Report No. TH 1041 (unpublished);
Xucl. Phys. B12, 253 (1969).

Eq. (8a) and from unitarity. Here P denotes the high-
energy limit of B», i.e., a pure Regge-pole term. The
elastic (AFS) contribution is p~P ~, while using Eq. (6),
the inelastic sum yields IrnP —2p(ImP)'.

The net result is
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FIG. 1. (a) Fit to values of c from Ref. 15. (b) Differential cross
section obtained from the above fit and comparison with the
experimental values of Ref. 15 at 58.1 GeV.

ImH» =ImP+ pr (ReP)' —(ImP)']+0 (P'),

and we see that the inelastic contribution has reversed
the sign of the dominant part of the AFS cut, in agree-
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and again its sign coincides with that of the absorptive
model.

The formalism can easily be extended to include in-
ternal quantum numbers. For example we can treat xx
scattering by including several coupled tw'o-body chan-
nels. 06-diagonal meson-pole exchanges again originate
from inelastic unitarity and are corrected by two-body
unitarity, which yields meson-Pomeranchukon cuts in
leading order.

We illustrate the model by fitting both the pp
Serpukhov data' and the 22—26-GeV total cross sec-
tions. "We approximate the partial-wave expansion by
the Fourier-Bessel expansion, neglect spin dependence,
and parametrize the Pomeranchuk pole by

Mr (s,t) = —u'yssL(s/ss)e ' "j'+ '
which has the Bessel transform

where
P(s,b) = (its/4pp') exp( —b'/4n'p),

P =in(s/ss) ——',is. and P = z (s —4yiss)'Is.

Equation (8a) then reads

P(s,b)
B»(s,b) =

1 ip (s)P (s—,b)

and the full amplitude is

M»(s, t) =2p' Js(b( —t)"s)Bss(s,b)bdb.

The differential and total cross sections are given by

do. 4mm2

IM»(s, &) I'
dt sp'

"G. G. Beznogikh et al. (unpublished)."K.J. Foley et a/. , Phys. Rev. Letters 19, 857 (1967).

ment with absorptive model results' 3 5 and the calcula-
tions of Caneschi. ' Therefore, in our model, absorptive
corrections are interpretable as originating from the
denominators in Eqs. (8).

The cut in ImH22 is, to all orders,

( ipP'
ImSX» I,„,= Iml

(1 ipP—

4l
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FIG. 2. Fit to the values of the total cross sections from Ref. 16
and predictions at higher energies.

rm yms'i')
ImMss(s, 0) =16z.rr' Im ip ln 1+

s'i' 2pp, i

Most of the Serpukhov results" are presented in the
form of a plot of c versus lab energy up to 70 GeV, where
c is obtained by fitting do/dt by A e" over the range
0.008& III &~0.12 GeV'. The fit corresponding to the
parameters y =4.04/GeV, n'=0. 60/GeV', and ss ——0.025
GeV' is shown in Fig. 1(a), and Fig. 1(b) shows the
comparison of the differential cross section at 58.1 GeV
with the experimental values. '7 The fit to the total
cross section and predictions up to 300 GeV are shown
in Fig. 2. The cut contributions modify the shape of the
large-momentum-transfer cross sections, and are capable
of producing kinks. We have obtained qualitative fits of
high-t pp data at lower energies, but feel that their
signi6cance is questionable owing to additional inelastic
unitarity meson-meson cut corrections, ambiguities in
the Regge residues at high t, secondary trajectories, and
spin dependence.

We are indebted to N. Bali, R. Blankenbecler, and L.
Caneschi for many helpful discussions.

"A 6t to the Serpukhov data with a diferent model for cuts is
reported in Ref. 15. A somewhat smaller value of n' is obtained,
mainly because of the inc]union of lower-energy data.


